You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Cooper GM: The development and causes of cancer, The cell: A molecular approach. 2nd edition. Sunderland (MA): Sinauer Associates; 2000 | |
|
Balkwill FR, Capasso M and Hagemann T: The tumor microenvironment at a glance. J Cell Sci. 125:5591–5596. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Lu P, Weaver VM and Werb Z: The extracellular matrix: A dynamic niche in cancer progression. J Cell Biol. 196:395–406. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D and Coussens LM: Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell. 21:309–322. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Fan X and Houghton J: Tumor microenvironment: The role of the tumor stroma in cancer. J Cell Biochem. 101:805–815. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Pietras K and Ostman A: Hallmarks of cancer: Interactions with the tumor stroma. Exp Cell Res. 316:1324–1331. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Zhou L, Zhou J, Li Q and Ji Q: Underlying mechanisms and drug intervention strategies for the tumour microenvironment. J Exp Clin Cancer Res. 40:972021. View Article : Google Scholar : PubMed/NCBI | |
|
Joyce JA: Therapeutic targeting of the tumor microenvironment. Cancer Cell. 7:513–520. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Henke E, Nandigama R and Ergün S: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci. 6:1602020. View Article : Google Scholar : PubMed/NCBI | |
|
Tsai MJ, Chang WA, Huang MS and Kuo PL: Tumor microenvironment: A new treatment target for cancer. ISRN Biochem. 2014:e3519592014. View Article : Google Scholar : PubMed/NCBI | |
|
Willumsen N, Thomsen LB, Bager CL, Jensen C and Karsdal MA: Quantification of altered tissue turnover in a liquid biopsy: A proposed precision medicine tool to assess chronic inflammation and desmoplasia associated with a pro-cancerous niche and response to immuno-therapeutic anti-tumor modalities. Cancer Immunol Immunother. 67:1–12. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, Hu G and Sun Y: New horizons in tumor microenvironment biology: Challenges and opportunities. BMC Med. 13:452015. View Article : Google Scholar : PubMed/NCBI | |
|
Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, et al: Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 24:541–550. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X and Song E: Turning foes to friends: Targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 18:99–115. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Brassart-Pasco S, Brézillon S, Brassart B, Ramont L, Oudart JB and Monboisse JC: Tumor microenvironment: Extracellular matrix alterations influence tumor progression. Front Oncol. 10:3972020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Chen JQ, Liu JL and Tian L: Exosomes in tumor microenvironment: Novel transporters and biomarkers. J Transl Med. 14:2972016. View Article : Google Scholar : PubMed/NCBI | |
|
Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V and Wargo JA: The microbiome, cancer, and cancer therapy. Nat Med. 25:377–388. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, et al: A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ganguly D, Chandra R, Karalis J, Teke M, Aguilera T, Maddipati R, Wachsmann MB, Ghersi D, Siravegna G, Zeh HJ III, et al: Cancer-associated fibroblasts: Versatile players in the tumor microenvironment. Cancers (Basel). 12:26522020. View Article : Google Scholar : PubMed/NCBI | |
|
Liao Z, Tan ZW, Zhu P and Tan NS: Cancer-associated fibroblasts in tumor microenvironment-accomplices in tumor malignancy. Cell Immunol. 343:1037292019. View Article : Google Scholar : PubMed/NCBI | |
|
Arina A, Idel C, Hyjek EM, Alegre ML, Wang Y, Bindokas VP, Weichselbaum RR and Schreiber H: Tumor-associated fibroblasts predominantly come from local and not circulating precursors. Proc Natl Acad Sci USA. 113:7551–7556. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Jung Y, Kim JK, Shiozawa Y, Wang J, Mishra A, Joseph J, Berry JE, McGee S, Lee E, Sun H, et al: Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun. 4:17952013. View Article : Google Scholar : PubMed/NCBI | |
|
Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW and Banerjee D: Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 68:4331–4339. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Q, Zhang X, Zhang L, Li W, Wu H, Yuan X, Mao F, Wang M, Zhu W, Qian H and Xu W: The IL-6-STAT3 axis mediates a reciprocal crosstalk between cancer-derived mesenchymal stem cells and neutrophils to synergistically prompt gastric cancer progression. Cell Death Dis. 5:e12952014. View Article : Google Scholar : PubMed/NCBI | |
|
Jotzu C, Alt E, Welte G, Li J, Hennessy BT, Devarajan E, Krishnappa S, Pinilla S, Droll L and Song YH: Adipose tissue-derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor-derived factors. Anal Cell Pathol (Amst). 33:61–79. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Kidd S, Spaeth E, Watson K, Burks J, Lu H, Klopp A, Andreeff M and Marini FC: Origins of the tumor microenvironment: Quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS One. 7:e305632012. View Article : Google Scholar : PubMed/NCBI | |
|
Miyazaki Y, Oda T, Mori N and Kida YS: Adipose-derived mesenchymal stem cells differentiate into pancreatic cancer-associated fibroblasts in vitro. FEBS Open Bio. 10:2268–2281. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Nurmik M, Ullmann P, Rodriguez F, Haan S and Letellier E: In search of definitions: Cancer-associated fibroblasts and their markers. Int J Cancer. 146:895–905. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Simon T and Salhia B: Cancer-Associated fibroblast subpopulations with diverse and dynamic roles in the tumor microenvironment. Mol Cancer Res. 20:183–192. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sebastian A, Hum NR, Martin KA, Gilmore SF, Peran I, Byers SW, Wheeler EK, Coleman MA and Loots GG: Single-cell transcriptomic analysis of tumor-derived fibroblasts and normal tissue-resident fibroblasts reveals fibroblast heterogeneity in breast cancer. Cancers (Basel). 12:13072020. View Article : Google Scholar : PubMed/NCBI | |
|
Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, Corbo V, Oni TE, Hearn SA, Lee EJ, et al: Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 214:579–596. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS, et al: Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9:1102–1123. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Cohen N, Shani O, Raz Y, Sharon Y, Hoffman D, Abramovitz L and Erez N: Fibroblasts drive an immunosuppressive and growth-promoting microenvironment in breast cancer via secretion of Chitinase 3-like 1. Oncogene. 36:4457–4468. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Amatangelo MD, Bassi DE, Klein-Szanto AJP and Cukierman E: Stroma-derived three-dimensional matrices are necessary and sufficient to promote desmoplastic differentiation of normal fibroblasts. Am J Pathol. 167:475–488. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Carmeliet P and Jain RK: Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 10:417–427. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Nishida N, Yano H, Nishida T, Kamura T and Kojiro M: Angiogenesis in cancer. Vasc Health Risk Manag. 2:213–219. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Jain RK: Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science. 307:58–62. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Semenza GL: Cancer-stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis. Oncogene. 32:4057–4063. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Weis SM and Cheresh DA: Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat Med. 17:1359–1370. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hillen F and Griffioen AW: Tumour vascularization: Sprouting angiogenesis and beyond. Cancer Metastasis Rev. 26:489–502. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Italiano JE Jr, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, Ryeom S, Folkman J and Klement GL: Angiogenesis is regulated by a novel mechanism: Pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood. 111:1227–1233. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Armulik A, Genové G and Betsholtz C: Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 21:193–215. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Balta E, Wabnitz GH and Samstag Y: Hijacked immune cells in the tumor microenvironment: Molecular mechanisms of immunosuppression and cues to improve T cell-based immunotherapy of solid tumors. Int J Mol Sci. 22:57362021. View Article : Google Scholar : PubMed/NCBI | |
|
Biswas SK and Mantovani A: Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat Immunol. 11:889–896. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, Pamer EG and Li MO: The cellular and molecular origin of tumor-associated macrophages. Science. 344:921–925. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wu K, Lin K, Li X, Yuan X, Xu P, Ni P and Xu D: Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment. Front Immunol. 11:17312020. View Article : Google Scholar : PubMed/NCBI | |
|
Dehne N, Mora J, Namgaladze D, Weigert A and Brüne B: Cancer cell and macrophage cross-talk in the tumor microenvironment. Curr Opin Pharmacol. 35:12–19. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cassetta L, Fragkogianni S, Sims AH, Swierczak A, Forrester LM, Zhang H, Soong DYH, Cotechini T, Anur P, Lin EY, et al: Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell. 35:588–602.e10. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Costa AC, Santos JMO, Gil da Costa RM and Medeiros R: Impact of immune cells on the hallmarks of cancer: A literature review. Crit Rev Oncol Hematol. 168:1035412021. View Article : Google Scholar : PubMed/NCBI | |
|
Roma-Rodrigues C, Mendes R, Baptista PV and Fernandes AR: Targeting tumor microenvironment for cancer therapy. Int J Mol Sci. 20:8402019. View Article : Google Scholar : PubMed/NCBI | |
|
Ostrand-Rosenberg S and Sinha P: Myeloid-derived suppressor cells: Linking inflammation and cancer. J Immunol. 182:4499–4506. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Veglia F, Sanseviero E and Gabrilovich DI: Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 21:485–498. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Masucci MT, Minopoli M and Carriero MV: Tumor associated neutrophils. Their role in tumorigenesis, metastasis, prognosis and therapy. Front Oncol. 9:11462019. View Article : Google Scholar : PubMed/NCBI | |
|
Ye Y, Gaugler B, Mohty M and Malard F: Plasmacytoid dendritic cell biology and its role in immune-mediated diseases. Clin Transl Immunology. 9:e11392020. View Article : Google Scholar : PubMed/NCBI | |
|
Karthaus N, Torensma R and Tel J: Deciphering the message broadcast by tumor-infiltrating dendritic cells. Am J Pathol. 181:733–742. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Benavente S, Sánchez-García A, Naches S, LLeonart ME and Lorente J: Therapy-induced modulation of the tumor microenvironment: New opportunities for cancer therapies. Front Oncol. 10:5828842020. View Article : Google Scholar : PubMed/NCBI | |
|
Campbell DJ and Koch MA: Treg cells: Patrolling a dangerous neighborhood. Nat Med. 17:929–930. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hsieh CS, Lee HM and Lio CWJ: Selection of regulatory T cells in the thymus. Nat Rev Immunol. 12:157–167. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Coronella JA, Telleman P, Kingsbury GA, Truong TD, Hays S and Junghans RP: Evidence for an antigen-driven humoral immune response in medullary ductal breast cancer. Cancer Res. 61:7889–7899. 2001.PubMed/NCBI | |
|
Schioppa T, Moore R, Thompson RG, Rosser EC, Kulbe H, Nedospasov S, Mauri C, Coussens LM and Balkwill FR: B regulatory cells and the tumor-promoting actions of TNF-α during squamous carcinogenesis. Proc Natl Acad Sci USA. 108:10662–10667. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Quail DF and Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med. 19:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J and Lanier LL: Natural killer cells and cancer. Adv Cancer Res. 90:127–156. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Hong J, Jin JO, Chen WY, Poggi A and Cheong JH: Editorial: Emerging roles and mechanisms of stromal cells in carcinomas at the molecular level. Front Immunol. 13:10258382022. View Article : Google Scholar : PubMed/NCBI | |
|
Koppensteiner L, Mathieson L, O'Connor RA and Akram AR: Cancer associated fibroblasts-an impediment to effective anti-cancer T cell immunity. Front Immunol. 13:8873802022. View Article : Google Scholar : PubMed/NCBI | |
|
Mun JY, Leem SH, Lee JH and Kim HS: Dual relationship between stromal cells and immune cells in the tumor microenvironment. Front Immunol. 13:8647392022. View Article : Google Scholar : PubMed/NCBI | |
|
Belli C, Antonarelli G, Repetto M, Boscolo Bielo L, Crimini E and Curigliano G: Targeting cellular components of the tumor microenvironment in solid malignancies. Cancers (Basel). 14:42782022. View Article : Google Scholar : PubMed/NCBI | |
|
Theocharis AD, Skandalis SS, Gialeli C and Karamanos NK: Extracellular matrix structure. Adv Drug Deliv Rev. 97:4–27. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Badylak SF: The extracellular matrix as a biologic scaffold material. Biomaterials. 28:3587–3593. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Fuhrmann A and Engler AJ: The Cytoskeleton regulates cell attachment strength. Biophys J. 109:57–65. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kechagia JZ, Ivaska J and Roca-Cusachs P: Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol. 20:457–473. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Romani P, Valcarcel-Jimenez L, Frezza C and Dupont S: Crosstalk between mechanotransduction and metabolism. Nat Rev Mol Cell Biol. 22:22–38. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Cichon MA and Radisky DC: Extracellular matrix as a contextual determinant of transforming growth factor-β signaling in epithelial-mesenchymal transition and in cancer. Cell Adhes Migr. 8:588–594. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Karamanos NK, Piperigkou Z, Passi A, Götte M, Rousselle P and Vlodavsky I: Extracellular matrix-based cancer targeting. Trends Mol Med. 27:1000–1013. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Rilla K, Mustonen AM, Arasu UT, Härkönen K, Matilainen J and Nieminen P: Extracellular vesicles are integral and functional components of the extracellular matrix. Matrix Biol. 75–76. 201–219. 2019.PubMed/NCBI | |
|
Apte MV, Yang L, Phillips PA, Xu Z, Kaplan W, Cowley M, Pirola RC and Wilson JS: Extracellular matrix composition significantly influences pancreatic stellate cell gene expression pattern: Role of transgelin in PSC function. Am J Physiol Gastrointest Liver Physiol. 305:G408–G417. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Naba A, Clauser KR, Hoersch S, Liu H, Carr SA and Hynes RO: The matrisome: In silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics. 11:M111.014647. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Musiime M, Chang J, Hansen U, Kadler KE, Zeltz C and Gullberg D: Collagen assembly at the cell surface: Dogmas revisited. Cells. 10:6622021. View Article : Google Scholar : PubMed/NCBI | |
|
Eble JA and Niland S: The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis. 36:171–198. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yue B: Biology of the extracellular matrix: An overview. J Glaucoma. 23 (8 Suppl 1):S20–S23. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Naba A, Pearce OMT, Del Rosario A, Ma D, Ding H, Rajeeve V, Cutillas PR, Balkwill FR and Hynes RO: Characterization of the extracellular matrix of normal and diseased tissues using proteomics. J Proteome Res. 16:3083–3091. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Erdogan B and Webb DJ: Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans. 45:229–236. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Najafi M, Farhood B and Mortezaee K: Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem. 120:2782–2790. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Muncie JM and Weaver VM: The physical and biochemical properties of the extracellular matrix regulate cell fate. Curr Top Dev Biol. 130:1–37. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White JG and Keely PJ: Collagen density promotes mammary tumor initiation and progression. BMC Med. 6:112008. View Article : Google Scholar : PubMed/NCBI | |
|
Mammoto T, Jiang A, Jiang E, Panigrahy D, Kieran MW and Mammoto A: Role of collagen matrix in tumor angiogenesis and glioblastoma multiforme progression. Am J Pathol. 183:1293–1305. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, Psaila B, Kaplan RN, Bromberg JF, Kang Y, et al: Pre-metastatic niches: Organ-specific homes for metastases. Nat Rev Cancer. 17:302–317. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Moreira AM, Pereira J, Melo S, Fernandes MS, Carneiro P, Seruca R and Figueiredo J: The extracellular matrix: An accomplice in gastric cancer development and progression. Cells. 9:3942020. View Article : Google Scholar : PubMed/NCBI | |
|
Høgdall D, Lewinska M and Andersen JB: Desmoplastic tumor microenvironment and immunotherapy in cholangiocarcinoma. Trends Cancer. 4:239–255. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ho WJ, Jaffee EM and Zheng L: The tumour microenvironment in pancreatic cancer-clinical challenges and opportunities. Nat Rev Clin Oncol. 17:527–540. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, et al: Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 139:891–906. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Damodarasamy M, Vernon RB, Chan CK, Plymate SR, Wight TN and Reed MJ: Hyaluronan in aged collagen matrix increases prostate epithelial cell proliferation. In Vitro Cell Dev Biol Anim. 51:50–58. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Suhovskih AV, Mostovich LA, Kunin IS, Boboev MM, Nepomnyashchikh GI, Aidagulova SV and Grigorieva EV: Proteoglycan expression in normal human prostate tissue and prostate cancer. ISRN Oncol. 2013:6801362013.PubMed/NCBI | |
|
Ajeti V, Nadiarnykh O, Ponik SM, Keely PJ, Eliceiri KW and Campagnola PJ: Structural changes in mixed Col I/Col V collagen gels probed by SHG microscopy: Implications for probing stromal alterations in human breast cancer. Biomed Opt Express. 2:2307–2316. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Fang S, Dai Y, Mei Y, Yang M, Hu L, Yang H, Guan X and Li J: Clinical significance and biological role of cancer-derived type I collagen in lung and esophageal cancers. Thorac Cancer. 10:277–288. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Miskolczi Z, Smith MP, Rowling EJ, Ferguson J, Barriuso J and Wellbrock C: Collagen abundance controls melanoma phenotypes through lineage-specific microenvironment sensing. Oncogene. 37:3166–3182. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Rossow L, Veitl S, Vorlová S, Wax JK, Kuhn AE, Maltzahn V, Upcin B, Karl F, Hoffmann H, Gätzner S, et al: LOX-catalyzed collagen stabilization is a proximal cause for intrinsic resistance to chemotherapy. Oncogene. 37:4921–4940. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Guzman A, Ziperstein MJ and Kaufman LJ: The effect of fibrillar matrix architecture on tumor cell invasion of physically challenging environments. Biomaterials. 35:6954–6963. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Xu S, Xu H, Wang W, Li S, Li H, Li T, Zhang W, Yu X and Liu L: The role of collagen in cancer: From bench to bedside. J Transl Med. 17:3092019. View Article : Google Scholar : PubMed/NCBI | |
|
Gilkes DM, Semenza GL and Wirtz D: Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat Rev Cancer. 14:430–439. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Allen SC, Widman JA, Datta A and Suggs LJ: Dynamic extracellular matrix stiffening induces a phenotypic transformation and a migratory shift in epithelial cells. Integr Biol (Camb). 12:161–174. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, Choi H, El Rayes T, Ryu S, Troeger J, et al: Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 527:472–476. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Han L, Lam EWF and Sun Y: Extracellular vesicles in the tumor microenvironment: Old stories, but new tales. Mol Cancer. 18:592019. View Article : Google Scholar : PubMed/NCBI | |
|
Kanada M, Bachmann MH and Contag CH: Signaling by extracellular vesicles advances cancer hallmarks. Trends Cancer. 2:84–94. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Minciacchi VR, Freeman MR and Di Vizio D: Extracellular vesicles in cancer: Exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol. 40:41–51. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chronopoulos A and Kalluri R: Emerging role of bacterial extracellular vesicles in cancer. Oncogene. 39:6951–6960. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Morad G and Moses MA: Brainwashed by extracellular vesicles: The role of extracellular vesicles in primary and metastatic brain tumour microenvironment. J Extracell Vesicles. 8:16271642019. View Article : Google Scholar : PubMed/NCBI | |
|
Parayath NN, Padmakumar S and Amiji MM: Extracellular vesicle-mediated nucleic acid transfer and reprogramming in the tumor microenvironment. Cancer Lett. 482:33–43. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Patras L and Banciu M: Intercellular crosstalk via extracellular vesicles in tumor milieu as emerging therapies for cancer progression. Curr Pharm Des. 25:1980–2006. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Xie C, Ji N, Tang Z, Li J and Chen Q: The role of extracellular vesicles from different origin in the microenvironment of head and neck cancers. Mol Cancer. 18:832019. View Article : Google Scholar : PubMed/NCBI | |
|
Caicedo-Carvajal CE, Liu Q and Goy A: Three-dimensional cell culture models for biomarker discoveries and cancer research. Transl Med. 1:1–8. 2012. | |
|
Wang HX and Gires O: Tumor-derived extracellular vesicles in breast cancer: From bench to bedside. Cancer Lett. 460:54–64. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Gould SJ and Raposo G: As we wait: Coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2:2013. View Article : Google Scholar : PubMed/NCBI | |
|
Beach A, Zhang HG, Ratajczak MZ and Kakar SS: Exosomes: An overview of biogenesis, composition and role in ovarian cancer. J Ovarian Res. 7:142014. View Article : Google Scholar : PubMed/NCBI | |
|
Mashouri L, Yousefi H, Aref AR, Ahadi A mohammad, Molaei F and Alahari SK: Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 18:752019. View Article : Google Scholar : PubMed/NCBI | |
|
Théry C, Zitvogel L and Amigorena S: Exosomes: Composition, biogenesis and function. Nat Rev Immunol. 2:569–579. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Chang WH, Cerione RA and Antonyak MA: Extracellular Vesicles and their roles in cancer progression. Methods Mol Biol. 2174:143–170. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Menck K, Sivaloganathan S, Bleckmann A and Binder C: Microvesicles in cancer: Small size, large potential. Int J Mol Sci. 21:53732020. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A and Rak J: Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 10:619–624. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Di Vizio D, Kim J, Hager MH, Morello M, Yang W, Lafargue CJ, True LD, Rubin MA, Adam RM, Beroukhim R, et al: Oncosome formation in prostate cancer: Association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res. 69:5601–5609. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Gurunathan S, Kang MH, Jeyaraj M, Qasim M and Kim JH: Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 8:3072019. View Article : Google Scholar : PubMed/NCBI | |
|
Hessvik NP and Llorente A: Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 75:193–208. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Baig AM, Khaleeq A, Ali U and Syeda H: Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 11:995–998. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Li I and Nabet BY: Exosomes in the tumor microenvironment as mediators of cancer therapy resistance. Mol Cancer. 18:322019. View Article : Google Scholar : PubMed/NCBI | |
|
Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C, et al: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 18:883–891. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Walbrecq G, Margue C, Behrmann I and Kreis S: Distinct cargos of small extracellular vesicles derived from hypoxic cells and their effect on cancer cells. Int J Mol Sci. 21:50712020. View Article : Google Scholar : PubMed/NCBI | |
|
Azulay EE, Cooks T and Elkabets M: Potential oncogenic roles of mutant-p53-derived exosomes in the tumor-host interaction of head and neck cancers. Cancer Immunol Immunother. 69:285–292. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Pavlakis E, Neumann M and Stiewe T: Extracellular vesicles: Messengers of p53 in tumor-stroma communication and cancer metastasis. Int J Mol Sci. 21:96482020. View Article : Google Scholar : PubMed/NCBI | |
|
de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G, Schiffelers RM, Gucek M and van Balkom BW: Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles. 1:2012. View Article : Google Scholar : PubMed/NCBI | |
|
Drake RR and Kislinger T: The proteomics of prostate cancer exosomes. Expert Rev Proteomics. 11:167–177. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hamzah RN, Alghazali KM, Biris AS and Griffin RJ: Exosome traceability and cell source dependence on composition and cell-cell cross talk. Int J Mol Sci. 22:53462021. View Article : Google Scholar : PubMed/NCBI | |
|
Jelonek K, Widlak P and Pietrowska M: The influence of ionizing radiation on exosome composition, secretion and intercellular communication. Protein Pept Lett. 23:656–663. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Jiao YJ, Jin DD, Jiang F, Liu JX, Qu LS, Ni WK, Liu ZX, Lu CH, Ni RZ, Zhu J and Xiao MB: Characterization and proteomic profiling of pancreatic cancer-derived serum exosomes. J Cell Biochem. 120:988–999. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hornung T, O'Neill HA, Logie SC, Fowler KM, Duncan JE, Rosenow M, Bondre AS, Tinder T, Maher V, Zarkovic J, et al: ADAPT identifies an ESCRT complex composition that discriminates VCaP from LNCaP prostate cancer cell exosomes. Nucleic Acids Res. 48:4013–4027. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Nabet BY, Qiu Y, Shabason JE, Wu TJ, Yoon T, Kim BC, Benci JL, DeMichele AM, Tchou J, Marcotrigiano J and Minn AJ: Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer. Cell. 170:352–366.e13. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Luo N: Editorial: Tumor microenvironment in cancer hallmarks and therapeutics. Front Mol Biosci. 9:10198302022. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Q, Yu X, Zhang M, Zhang S, Guo W and He Y: Current research progress of the role of LncRNA LEF1-AS1 in a variety of tumors. Front Cell Dev Biol. 9:7500842021. View Article : Google Scholar : PubMed/NCBI | |
|
Tu J, Chen W, Zheng L, Fang S, Zhang D, Kong C, Yang Y, Qiu R, Zhao Z, Lu C, et al: Circular RNA Circ0021205 promotes cholangiocarcinoma progression through MiR-204-5p/RAB22A axis. Front Cell Dev Biol. 9:6532072021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Wang Y, Lu X, Zhang L and Wang Z: miRNA-7062-5p promoting bone resorption after bone metastasis of colorectal cancer through inhibiting GPR65. Front Cell Dev Biol. 9:6819682021. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao J, Liu Y, Yi J and Liu X: LINC02257, an enhancer RNA of prognostic value in colon adenocarcinoma, correlates with multi-omics immunotherapy-related analysis in 33 cancers. Front Mol Biosci. 8:6467862021. View Article : Google Scholar : PubMed/NCBI | |
|
Ma J, Lin X, Wang X, Min Q, Wang T and Tang C: Reconstruction and analysis of the immune-related LINC00987/A2M axis in lung adenocarcinoma. Front Mol Biosci. 8:6445572021. View Article : Google Scholar : PubMed/NCBI | |
|
Huang K, Fang C, Yi K, Liu X, Qi H, Tan Y, Zhou J, Li Y, Liu M, Zhang Y, et al: The role of PTRF/Cavin1 as a biomarker in both glioma and serum exosomes. Theranostics. 8:1540–1557. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ayala-Mar S, Donoso-Quezada J and González-Valdez J: Clinical implications of exosomal PD-L1 in cancer immunotherapy. J Immunol Res. 2021:88399782021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B, Sun H, et al: Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 560:382–386. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Rai A, Greening DW, Chen M, Xu R, Ji H and Simpson RJ: Exosomes derived from human primary and metastatic colorectal cancer cells contribute to functional heterogeneity of activated fibroblasts by reprogramming their proteome. Proteomics. 19:e18001482019. View Article : Google Scholar : PubMed/NCBI | |
|
Berg G, Rybakova D, Fischer D, Cernava T, Vergès MC, Charles T, Chen X, Cocolin L, Eversole K, Corral GH, et al: Microbiome definition re-visited: Old concepts and new challenges. Microbiome. 8:1032020. View Article : Google Scholar : PubMed/NCBI | |
|
AlHilli MM and Bae-Jump V: Diet and gut microbiome interactions in gynecologic cancer. Gynecol Oncol. 159:299–308. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Anfossi S and Calin GA: Gut microbiota: A new player in regulating immune- and chemo-therapy efficacy. Cancer Drug Resist. 3:356–370. 2020.PubMed/NCBI | |
|
De Almeida CV, de Camargo MR, Russo E and Amedei A: Role of diet and gut microbiota on colorectal cancer immunomodulation. World J Gastroenterol. 25:151–162. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Di Modica M, Gargari G, Regondi V, Bonizzi A, Arioli S, Belmonte B, De Cecco L, Fasano E, Bianchi F, Bertolotti A, et al: Gut microbiota condition the therapeutic efficacy of trastuzumab in HER2-positive breast cancer. Cancer Res. 81:2195–2206. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu L, Tabung FK, Zhang X, Nowak JA, Qian ZR, Hamada T, Nevo D, Bullman S, Mima K, Kosumi K, et al: Diets that promote colon inflammation associate with risk of colorectal carcinomas that contain Fusobacterium nucleatum. Clin Gastroenterol Hepatol. 16:1622–1631.e3. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ponziani FR, Nicoletti A, Gasbarrini A and Pompili M: Diagnostic and therapeutic potential of the gut microbiota in patients with early hepatocellular carcinoma. Ther Adv Med Oncol. 11:17588359198481842019. View Article : Google Scholar : PubMed/NCBI | |
|
Rodríguez-García C, Sánchez-Quesada C, Algarra I and Gaforio JJ: The high-fat diet based on extra-virgin olive oil causes dysbiosis linked to colorectal cancer prevention. Nutrients. 12:17052020. View Article : Google Scholar : PubMed/NCBI | |
|
Laplane L, Duluc D, Bikfalvi A, Larmonier N and Pradeu T: Beyond the tumour microenvironment. Int J Cancer. 145:2611–2618. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chakladar J, Kuo SZ, Castaneda G, Li WT, Gnanasekar A, Yu MA, Chang EY, Wang XQ and Ongkeko WM: The pancreatic microbiome is associated with carcinogenesis and worse prognosis in males and smokers. Cancers (Basel). 12:26722020. View Article : Google Scholar : PubMed/NCBI | |
|
Chandel D, Sharma M, Chawla V, Sachdeva N and Shukla G: Isolation, characterization and identification of antigenotoxic and anticancerous indigenous probiotics and their prophylactic potential in experimental colon carcinogenesis. Sci Rep. 9:147692019. View Article : Google Scholar : PubMed/NCBI | |
|
Clanton R, Saucier D, Ford J and Akabani G: Microbial influences on hormesis, oncogenesis, and therapy: A review of the literature. Environ Res. 142:239–256. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Guo W, Zhang Y, Guo S, Mei Z, Liao H, Dong H, Wu K, Ye H, Zhang Y, Zhu Y, et al: Tumor microbiome contributes to an aggressive phenotype in the basal-like subtype of pancreatic cancer. Commun Biol. 4:10192021. View Article : Google Scholar : PubMed/NCBI | |
|
Huang H, Ren Z, Gao X, Hu X, Zhou Y, Jiang J, Lu H, Yin S, Ji J, Zhou L and Zheng S: Integrated analysis of microbiome and host transcriptome reveals correlations between gut microbiota and clinical outcomes in HBV-related hepatocellular carcinoma. Genome Med. 12:1022020. View Article : Google Scholar : PubMed/NCBI | |
|
Ingman WV: The gut microbiome: A new player in breast cancer metastasis. Cancer Res. 79:3539–3541. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Jenkins SV, Robeson MS II, Griffin RJ, Quick CM, Siegel ER, Cannon MJ, Vang KB and Dings RPM: Gastrointestinal tract dysbiosis enhances distal tumor progression through suppression of leukocyte trafficking. Cancer Res. 79:5999–6009. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Deng X, Zou Y, Lv X and Guo Y: Characterization of the nasopharynx microbiota in patients with nasopharyngeal carcinoma vs healthy controls. Braz J Microbiol. 52:1873–1880. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu HX, Tao LL, Zhang J, Zhu YG, Zheng Y, Liu D, Zhou M, Ke H, Shi MM and Qu JM: Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects. Int J Cancer. 142:769–778. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Tzeng A, Sangwan N, Jia M, Liu CC, Keslar KS, Downs-Kelly E, Fairchild RL, Al-Hilli Z, Grobmyer SR and Eng C: Human breast microbiome correlates with prognostic features and immunological signatures in breast cancer. Genome Med. 13:602021. View Article : Google Scholar : PubMed/NCBI | |
|
Livyatan I, Nejman D, Shental N and Straussman R: Characterization of the human tumor microbiome reveals tumor-type specific intra-cellular bacteria. Oncoimmunology. 9:18009572020. View Article : Google Scholar : PubMed/NCBI | |
|
Burns MB, Lynch J, Starr TK, Knights D and Blekhman R: Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment. Genome Med. 7:552015. View Article : Google Scholar : PubMed/NCBI | |
|
Burns MB, Montassier E, Abrahante J, Priya S, Niccum DE, Khoruts A, Starr TK, Knights D and Blekhman R: Colorectal cancer mutational profiles correlate with defined microbial communities in the tumor microenvironment. PLoS Genet. 14:e10073762018. View Article : Google Scholar : PubMed/NCBI | |
|
Lee JA, Yoo SY, Oh HJ, Jeong S, Cho NY, Kang GH and Kim JH: Differential immune microenvironmental features of microsatellite-unstable colorectal cancers according to Fusobacterium nucleatum status. Cancer Immunol Immunother. 70:47–59. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu W, Zhang R, Shu R, Yu J, Li H, Long H, Jin S, Li S, Hu Q, Yao F, et al: Study of the relationship between microbiome and colorectal cancer susceptibility using 16SrRNA sequencing. Biomed Res Int. 2020:78283922020.PubMed/NCBI | |
|
Liu X, Shao L, Liu X, Ji F, Mei Y, Cheng Y, Liu F, Yan C, Li L and Ling Z: Alterations of gastric mucosal microbiota across different stomach microhabitats in a cohort of 276 patients with gastric cancer. EBioMedicine. 40:336–348. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Oresta B, Braga D, Lazzeri M, Frego N, Saita A, Faccani C, Fasulo V, Colombo P, Guazzoni G, Hurle R and Rescigno M: The microbiome of catheter collected urine in males with bladder cancer according to disease stage. J Urol. 205:86–93. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu P, Zhang G, Zhao J, Chen J, Chen Y, Huang W, Zhong J and Zeng J: Profiling the urinary microbiota in male patients with bladder cancer in China. Front Cell Infect Microbiol. 8:1672018. View Article : Google Scholar : PubMed/NCBI | |
|
Yin J, Dong L, Zhao J, Wang H, Li J, Yu A, Chen W and Wei W: Composition and consistence of the bacterial microbiome in upper, middle and lower esophagus before and after Lugol's iodine staining in the esophagus cancer screening. Scand J Gastroenterol. 55:1467–1474. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Minarovits J: Anaerobic bacterial communities associated with oral carcinoma: Intratumoral, surface-biofilm and salivary microbiota. Anaerobe. 68:1023002021. View Article : Google Scholar : PubMed/NCBI | |
|
Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J, et al: Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22:292–298. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Thomas AM, Jesus EC, Lopes A, Aguiar S Jr, Begnami MD, Rocha RM, Carpinetti PA, Camargo AA, Hoffmann C, Freitas HC, et al: Tissue-associated bacterial alterations in rectal carcinoma patients revealed by 16S rRNA community profiling. Front Cell Infect Microbiol. 6:1792016. View Article : Google Scholar : PubMed/NCBI | |
|
Thompson KJ, Ingle JN, Tang X, Chia N, Jeraldo PR, Walther-Antonio MR, Kandimalla KK, Johnson S, Yao JZ, Harrington SC, et al: A comprehensive analysis of breast cancer microbiota and host gene expression. PLoS One. 12:e01888732017. View Article : Google Scholar : PubMed/NCBI | |
|
Cavarretta I, Ferrarese R, Cazzaniga W, Saita D, Lucianò R, Ceresola ER, Locatelli I, Visconti L, Lavorgna G, Briganti A, et al: The microbiome of the prostate tumor microenvironment. Eur Urol. 72:625–631. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Duan H, Chen L, Qu L, Yang H, Song SW, Han Y, Ye M, Chen W, He X and Shou C: Mycoplasma hyorhinis infection promotes NF-κB-dependent migration of gastric cancer cells. Cancer Res. 74:5782–5794. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Duan H, Qu L and Shou C: Mycoplasma hyorhinis induces epithelial-mesenchymal transition in gastric cancer cell MGC803 via TLR4-NF-κB signaling. Cancer Lett. 354:447–454. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, Nejman D, Gavert N, Zwang Y, Cooper ZA, Shee K, et al: Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science. 357:1156–1160. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Huang S, Li JY, Wu J, Meng L and Shou CC: Mycoplasma infections and different human carcinomas. World J Gastroenterol. 7:266–269. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Liu D, Hu Y, Guo Y, Zhu Z, Lu B, Wang X and Huang Y: Mycoplasma-associated multidrug resistance of hepatocarcinoma cells requires the interaction of P37 and Annexin A2. PLoS One. 12:e01845782017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Rong Z and Shou C: Mycoplasma hyorhinis infection promotes gastric cancer cell motility via β-catenin signaling. Cancer Med. 8:5301–5312. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Li H, Chen W, Yao X, Xing Y, Wang X, Zhong J and Meng G: Mycoplasma hyorhinis activates the NLRP3 inflammasome and promotes migration and invasion of gastric cancer cells. PLoS One. 8:e779552013. View Article : Google Scholar : PubMed/NCBI | |
|
Gedye C, Cardwell T, Dimopoulos N, Tan BS, Jackson H, Svobodová S, Anaka M, Behren A, Maher C, Hofmann O, et al: Mycoplasma infection alters cancer stem cell properties in vitro. Stem Cell Rev Rep. 12:156–161. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Franco OE, Shaw AK, Strand DW and Hayward SW: Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol. 21:33–39. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, Andreeff M and Marini F: Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One. 4:e49922009. View Article : Google Scholar : PubMed/NCBI | |
|
Erez N, Truitt M, Olson P, Arron ST and Hanahan D: Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell. 17:135–147. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, et al: Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 487:500–504. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Z, Zhou Q, Wu X, Xu S, Hu X, Tao X, Li B, Peng J, Li D, Shen L, et al: VCAM-1 secreted from cancer-associated fibroblasts enhances the growth and invasion of lung cancer cells through AKT and MAPK signaling. Cancer Lett. 473:62–73. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Li F, Zhao S, Guo T, Li J and Gu C: The nutritional cytokine leptin promotes NSCLC by activating the PI3K/AKT and MAPK/ERK pathways in NSCLC cells in a paracrine manner. Biomed Res Int. 2019:25857432019.PubMed/NCBI | |
|
Folkman J, Watson K, Ingber D and Hanahan D: Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature. 339:58–61. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D and Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 86:353–364. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Butler JM, Kobayashi H and Rafii S: Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer. 10:138–146. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Balkwill F, Charles KA and Mantovani A: Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 7:211–217. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Lu P, Takai K, Weaver VM and Werb Z: Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 3:a0050582011. View Article : Google Scholar : PubMed/NCBI | |
|
Pontiggia O, Sampayo R, Raffo D, Motter A, Xu R, Bissell MJ, Joffé EB and Simian M: The tumor microenvironment modulates tamoxifen resistance in breast cancer: A role for soluble stromal factors and fibronectin through β1 integrin. Breast Cancer Res Treat. 133:459–471. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Mohamed MM and Sloane BF: Cysteine cathepsins: Multifunctional enzymes in cancer. Nat Rev Cancer. 6:764–775. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Xu R, Boudreau A and Bissell MJ: Tissue architecture and function: Dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev. 28:167–176. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Goulet CR and Pouliot F: TGFβ signaling in the tumor microenvironment. Adv Exp Med Biol. 1270:89–105. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hou W, Kaczorowski A, Lantwin P, Kippenberger M, Schütz V, Franke D, Dieffenbacher SC, Hohenfellner M and Duensing S: Microenvironment-derived FGF-2 stimulates renal cell carcinoma cell proliferation through modulation of p27Kip1: Implications for spatial niche formation and functional intratumoral heterogeneity. Pathobiology. 87:114–124. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zou F, Zhang ZH, Zhang YT, Zhao JQ, Zhang XL, Wen CL, Song XY and Zhou WM: Cancer-associated-fibroblasts regulate the chemoresistance of lung cancer cell line A549 via SDF-1 secretion. Zhonghua Zhong Liu Za Zhi. 39:339–343. 2017.(In Chinese). PubMed/NCBI | |
|
Wang H, Huang H, Wang L, Liu Y, Wang M, Zhao S, Lu G and Kang X: Cancer-associated fibroblasts secreted miR-103a-3p suppresses apoptosis and promotes cisplatin resistance in non-small cell lung cancer. Aging (Albany NY). 13:14456–14468. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sun X and Chen Z: Cancer-associated fibroblast-derived CCL5 contributes to cisplatin resistance in A549 NSCLC cells partially through upregulation of lncRNA HOTAIR expression. Oncol Lett. 22:6962021. View Article : Google Scholar : PubMed/NCBI | |
|
Tao L, Huang G, Wang R, Pan Y, He Z, Chu X, Song H and Chen L: Cancer-associated fibroblasts treated with cisplatin facilitates chemoresistance of lung adenocarcinoma through IL-11/IL-11R/STAT3 signaling pathway. Sci Rep. 6:384082016. View Article : Google Scholar : PubMed/NCBI | |
|
Bian L, Sun X, Jin K and He Y: Oral cancer-associated fibroblasts inhibit heat-induced apoptosis in Tca8113 cells through upregulated expression of Bcl-2 through the Mig/CXCR3 axis. Oncol Rep. 28:2063–2068. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Daenen LG, Shaked Y, Man S, Xu P, Voest EE, Hoffman RM, Chaplin DJ and Kerbel RS: Low-dose metronomic cyclophosphamide combined with vascular disrupting therapy induces potent antitumor activity in preclinical human tumor xenograft models. Mol Cancer Ther. 8:2872–2881. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Q, Zhang XHF and Massagué J: Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell. 20:538–549. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Yang C, He L, He P, Liu Y, Wang W, He Y, Du Y and Gao F: Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway. Med Oncol. 32:3522015. View Article : Google Scholar : PubMed/NCBI | |
|
Harley CB, Kim NW, Prowse KR, Weinrich SL, Hirsch KS, West MD, Bacchetti S, Hirte HW, Counter CM, Greider CW, et al: Telomerase, cell immortality, and cancer. Cold Spring Harb Symp Quant Biol. 59:307–315. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Jäger K and Walter M: Therapeutic targeting of telomerase. Genes (Basel). 7:392016. View Article : Google Scholar : PubMed/NCBI | |
|
Ge Y, Wu S, Xue Y, Tao J, Li F, Chen Y, Liu H, Ma W, Huang J and Zhao Y: Preferential extension of short telomeres induced by low extracellular pH. Nucleic Acids Res. 44:8086–8096. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Jiang Y, Li A, Liu X, Xing X, Guo Y, Xu Y, Hao Y and Zheng C: Telomere length is positively associated with the expression of IL-6 and MIP-1α in bone marrow mesenchymal stem cells of multiple myeloma. Mol Med Rep. 16:2497–2504. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lin EY, Li JF, Bricard G, Wang W, Deng Y, Sellers R, Porcelli SA and Pollard JW: Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Mol Oncol. 1:288–302. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z and Hanahan D: Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2:737–744. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z, Caughey GH and Hanahan D: Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 13:1382–1397. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Khazaie K, Blatner NR, Khan MW, Gounari F, Gounaris E, Dennis K, Bonertz A, Tsai FN, Strouch MJ, Cheon E, et al: The significant role of mast cells in cancer. Cancer Metastasis Rev. 30:45–60. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Huang B, Huang M and Li Q: Cancer-associated fibroblasts promote angiogenesis of hepatocellular carcinoma by VEGF-mediated EZH2/VASH1 pathway. Technol Cancer Res Treat. 18:15330338198799052019. View Article : Google Scholar : PubMed/NCBI | |
|
Räsänen K and Vaheri A: Activation of fibroblasts in cancer stroma. Exp Cell Res. 316:2713–2722. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Huizer K, Zhu C, Chirifi I, Krist B, Zorgman D, van der Weiden M, van den Bosch TPP, Dumas J, Cheng C, Kros JM and Mustafa DA: Periostin is expressed by pericytes and is crucial for angiogenesis in glioma. J Neuropathol Exp Neurol. 79:863–872. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Xian X, Håkansson J, Ståhlberg A, Lindblom P, Betsholtz C, Gerhardt H and Semb H: Pericytes limit tumor cell metastasis. J Clin Invest. 116:642–651. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Branco-Price C, Zhang N, Schnelle M, Evans C, Katschinski DM, Liao D, Ellies L and Johnson RS: Endothelial cell HIF-1α and HIF-2α differentially regulate metastatic success. Cancer Cell. 21:52–65. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Navarro R, Tapia-Galisteo A, Martín-García L, Tarín C, Corbacho C, Gómez-López G, Sánchez-Tirado E, Campuzano S, González-Cortés A, Yáñez-Sedeño P, et al: TGF-β-induced IGFBP-3 is a key paracrine factor from activated pericytes that promotes colorectal cancer cell migration and invasion. Mol Oncol. 14:2609–2628. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Pirilä E, Ramamurthy NS, Sorsa T, Salo T, Hietanen J and Maisi P: Gelatinase A (MMP-2), collagenase-2 (MMP-8), and laminin-5 gamma2-chain expression in murine inflammatory bowel disease (ulcerative colitis). Dig Dis Sci. 48:93–98. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Vasiljeva O, Papazoglou A, Krüger A, Brodoefel H, Korovin M, Deussing J, Augustin N, Nielsen BS, Almholt K, Bogyo M, et al: Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res. 66:5242–5250. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Balkwill F: Tumour necrosis factor and cancer. Nat Rev Cancer. 9:361–371. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Abraham S, Zhang W, Greenberg N and Zhang M: Maspin functions as tumor suppressor by increasing cell adhesion to extracellular matrix in prostate tumor cells. J Urol. 169:1157–1161. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Gorden DL, Fingleton B, Crawford HC, Jansen DE, Lepage M and Matrisian LM: Resident stromal cell-derived MMP-9 promotes the growth of colorectal metastases in the liver microenvironment. Int J Cancer. 121:495–500. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Labelle M, Begum S and Hynes RO: Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 20:576–590. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Chaffer CL and Weinberg RA: A perspective on cancer cell metastasis. Science. 331:1559–1564. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang XHF, Jin X, Malladi S, Zou Y, Wen YH, Brogi E, Smid M, Foekens JA and Massagué J: Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell. 154:1060–1073. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Duda DG, Duyverman AMMJ, Kohno M, Snuderl M, Steller EJA, Fukumura D and Jain RK: Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci USA. 107:21677–21682. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Lappano R, Rigiracciolo DC, Belfiore A, Maggiolini M and De Francesco EM: Cancer associated fibroblasts: Role in breast cancer and potential as therapeutic targets. Expert Opin Ther Targets. 24:559–572. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Onrust SV, Hartl PM, Rosen SD and Hanahan D: Modulation of L-selectin ligand expression during an immune response accompanying tumorigenesis in transgenic mice. J Clin Invest. 97:54–64. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Fisher DT, Chen Q, Skitzki JJ, Muhitch JB, Zhou L, Appenheimer MM, Vardam TD, Weis EL, Passanese J, Wang WC, et al: IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells. J Clin Invest. 121:3846–3859. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Manzur M, Hamzah J and Ganss R: Modulation of the ‘blood-tumor’ barrier improves immunotherapy. Cell Cycle. 7:2452–2455. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Turley SJ, Cremasco V and Astarita JL: Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 15:669–682. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Stover DG, Bierie B and Moses HL: A delicate balance: TGF-beta and the tumor microenvironment. J Cell Biochem. 101:851–861. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, et al: Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1:54–67. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Qian BZ and Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell. 141:39–51. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Topalian SL, Drake CG and Pardoll DM: Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol. 24:207–212. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, et al: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 10:942–949. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
van der Vliet HJJ, Koon HB, Atkins MB, Balk SP and Exley MA: Exploiting regulatory T-cell populations for the immunotherapy of cancer. J Immunother. 30:591–595. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Schmidt A, Oberle N and Krammer P: Molecular mechanisms of treg-mediated T cell suppression. Front Immunol. 3:512012. View Article : Google Scholar : PubMed/NCBI | |
|
Kalyanaraman B: Teaching the basics of cancer metabolism: Developing antitumor strategies by exploiting the differences between normal and cancer cell metabolism. Redox Biol. 12:833–842. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, Jiang L, Ko B, Skelton R, Loudat L, et al: Metabolic heterogeneity in human lung tumors. Cell. 164:681–694. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yu TJ, Ma D, Liu YY, Xiao Y, Gong Y, Jiang YZ, Shao ZM, Hu X and Di GH: Bulk and single-cell transcriptome profiling reveal the metabolic heterogeneity in human breast cancers. Mol Ther. 29:2350–2365. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hao X, Ren Y, Feng M, Wang Q and Wang Y: Metabolic reprogramming due to hypoxia in pancreatic cancer: Implications for tumor formation, immunity, and more. Biomed Pharmacother. 141:1117982021. View Article : Google Scholar : PubMed/NCBI | |
|
Kim J and DeBerardinis RJ: Mechanisms and implications of metabolic heterogeneity in cancer. Cell Metab. 30:434–446. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao Z, Dai Z and Locasale JW: Metabolic landscape of the tumor microenvironment at single cell resolution. Nat Commun. 10:37632019. View Article : Google Scholar : PubMed/NCBI | |
|
Stadlbauer A, Oberndorfer S, Zimmermann M, Renner B, Buchfelder M, Heinz G, Doerfler A, Kleindienst A and Roessler K: Physiologic MR imaging of the tumor microenvironment revealed switching of metabolic phenotype upon recurrence of glioblastoma in humans. J Cereb Blood Flow Metab. 40:528–538. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gupta S, Roy A and Dwarakanath BS: Metabolic cooperation and competition in the tumor microenvironment: Implications for therapy. Front Oncol. 7:682017. View Article : Google Scholar : PubMed/NCBI | |
|
Martinez-Outschoorn U, Sotgia F and Lisanti MP: Tumor microenvironment and metabolic synergy in breast cancers: Critical importance of mitochondrial fuels and function. Semin Oncol. 41:1952014. View Article : Google Scholar : PubMed/NCBI | |
|
Ocaña MC, Martínez-Poveda B, Quesada AR and Medina MÁ: Metabolism within the tumor microenvironment and its implication on cancer progression: An ongoing therapeutic target. Med Res Rev. 39:70–113. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang YA, Li XL, Mo YZ, Fan CM, Tang L, Xiong F, Guo C, Xiang B, Zhou M, Ma J, et al: Effects of tumor metabolic microenvironment on regulatory T cells. Mol Cancer. 17:1682018. View Article : Google Scholar : PubMed/NCBI | |
|
Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, et al: The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 8:3984–4001. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Reina-Campos M, Moscat J and Diaz-Meco M: Metabolism shapes the tumor microenvironment. Curr Opin Cell Biol. 48:47–53. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Dietl K, Renner K, Dettmer K, Timischl B, Eberhart K, Dorn C, Hellerbrand C, Kastenberger M, Kunz-Schughart LA, Oefner PJ, et al: Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J Immunol. 184:1200–1209. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, Ertel A, Flomenberg N, Witkiewicz AK, Birbe RC, Howell A, Pavlides S, Gandara R, et al: Evidence for a stromal-epithelial ‘lactate shuttle’ in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle. 10:1772–1783. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Alberts B, Johnson A, Lewis J, Raff M, Roberts K and Walter P: Molecular biology of the cell. 4th edition. New York: Garland Science; 2002 | |
|
Deberardinis RJ, Sayed N, Ditsworth D and Thompson CB: Brick by brick: Metabolism and tumor cell growth. Curr Opin Genet Dev. 18:54–61. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshida GJ: Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res. 34:1112015. View Article : Google Scholar : PubMed/NCBI | |
|
Koundouros N and Poulogiannis G: Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 122:4–22. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Michalopoulou E, Bulusu V and Kamphorst JJ: Metabolic scavenging by cancer cells: When the going gets tough, the tough keep eating. Br J Cancer. 115:635–640. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Dey P, Kimmelman AC and DePinho RA: Metabolic codependencies in the tumor microenvironment. Cancer Discov. 11:1067–1081. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Bailey KM, Wojtkowiak JW, Hashim AI and Gillies RJ: Targeting the metabolic microenvironment of tumors. Adv Pharmacol. 65:63–107. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Sormendi S and Wielockx B: Hypoxia pathway proteins as central mediators of metabolism in the tumor cells and their microenvironment. Front Immunol. 9:402018. View Article : Google Scholar : PubMed/NCBI | |
|
Devic S: Warburg effect-a consequence or the cause of carcinogenesis? J Cancer. 7:817–822. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Cairns RA: Drivers of the Warburg phenotype. Cancer J. 21:56–61. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
El Hassouni B, Granchi C, Vallés-Martí A, Supadmanaba IGP, Bononi G, Tuccinardi T, Funel N, Jimenez CR, Peters GJ, Giovannetti E and Minutolo F: The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies. Semin Cancer Biol. 60:238–248. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ, et al: Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 162:1229–1241. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S and Thompson CB: Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA. 104:19345–19350. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Carito V, Bonuccelli G, Martinez-Outschoorn UE, Whitaker-Menezes D, Caroleo MC, Cione E, Howell A, Pestell RG, Lisanti MP and Sotgia F: Metabolic remodeling of the tumor microenvironment: Migration factor (MSF) reprograms myofibroblasts toward lactate production, fueling anabolic tumor growthstimulating. Cell Cycle. 11:3403–3414. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Manning BD and Toker A: AKT/PKB signaling: Navigating the network. Cell. 169:381–405. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Dang CV: MYC on the path to cancer. Cell. 149:22–35. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Stine ZE, Walton ZE, Altman BJ, Hsieh AL and Dang CV: MYC, metabolism, and cancer. Cancer Discov. 5:1024–1039. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, Xu Y, Wonsey D, Lee LA and Dang CV: Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem. 275:21797–21800. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao X, Petrashen AP, Sanders JA, Peterson AL and Sedivy JM: SLC1A5 glutamine transporter is a target of MYC and mediates reduced mTORC1 signaling and increased fatty acid oxidation in long-lived Myc hypomorphic mice. Aging Cell. 18:e129472019. View Article : Google Scholar : PubMed/NCBI | |
|
Sasaki H, Shitara M, Yokota K, Hikosaka Y, Moriyama S, Yano M and Fujii Y: Overexpression of GLUT1 correlates with Kras mutations in lung carcinomas. Mol Med Rep. 5:599–602. 2012.PubMed/NCBI | |
|
Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, et al: Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 149:656–670. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, Perera RM, Ferrone CR, Mullarky E, Shyh-Chang N, et al: Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 496:101–105. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Baek G, Tse YF, Hu Z, Cox D, Buboltz N, McCue P, Yeo CJ, White MA, DeBerardinis RJ, Knudsen ES and Witkiewicz AK: MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies. Cell Rep. 9:2233–2249. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Dey P, Li J, Zhang J, Chaurasiya S, Strom A, Wang H, Liao WT, Cavallaro F, Denz P, Bernard V, et al: Oncogenic KRAS-driven metabolic reprogramming in pancreatic cancer cells utilizes cytokines from the tumor microenvironment. Cancer Discov. 10:608–625. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Amendola CR, Mahaffey JP, Parker SJ, Ahearn IM, Chen WC, Zhou M, Court H, Shi J, Mendoza SL, Morten MJ, et al: KRAS4A directly regulates hexokinase 1. Nature. 576:482–486. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y and Commisso C: Macropinocytosis in cancer: A complex signaling network. Trends Cancer. 5:332–334. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M, Drebin JA, Thompson CB, et al: Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 497:633–637. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Schwartzenberg-Bar-Yoseph F, Armoni M and Karnieli E: The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 64:2627–2633. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Xiong H, Wu F, Zhang Y, Wang J, Zhao L, Guo X, Chang LJ, Zhang Y, You MJ, et al: Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth. Cell Rep. 8:1461–1474. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yahagi N, Shimano H, Matsuzaka T, Najima Y, Sekiya M, Nakagawa Y, Ide T, Tomita S, Okazaki H, Tamura Y, et al: p53 activation in adipocytes of obese mice. J Biol Chem. 278:25395–25400. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E and Vousden KH: TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 126:107–120. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Sonugür FG and Akbulut H: The role of tumor microenvironment in genomic instability of malignant tumors. Front Genet. 10:10632019. View Article : Google Scholar : PubMed/NCBI | |
|
Nakamura H, Tanimoto K, Hiyama K, Yunokawa M, Kawamoto T, Kato Y, Yoshiga K, Poellinger L, Hiyama E and Nishiyama M: Human mismatch repair gene, MLH1, is transcriptionally repressed by the hypoxia-inducible transcription factors, DEC1 and DEC2. Oncogene. 27:4200–4209. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Rodríguez-Jiménez FJ, Moreno-Manzano V, Lucas-Dominguez R and Sánchez-Puelles JM: Hypoxia causes downregulation of mismatch repair system and genomic instability in stem cells. Stem Cells. 26:2052–2062. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ren Z, Wang Z, Gu D, Ma H, Zhu Y, Cai M and Zhang J: Genome instability and long noncoding RNA reveal biomarkers for immunotherapy and prognosis and novel competing endogenous RNA mechanism in colon adenocarcinoma. Front Cell Dev Biol. 9:7404552021. View Article : Google Scholar : PubMed/NCBI | |
|
Guo JN, Xia TY, Deng SH, Xue WN, Cui BB and Liu YL: Prognostic immunity and therapeutic sensitivity analyses based on differential genomic instability-associated LncRNAs in left- and right-sided colon adenocarcinoma. Front Mol Biosci. 8:6688882021. View Article : Google Scholar : PubMed/NCBI | |
|
Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS and Albelda SM: Polarization of tumor-associated neutrophil phenotype by TGF-beta: ‘N1’ versus ‘N2’ TAN. Cancer Cell. 16:183–194. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N and Coussens LM: CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 16:91–102. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Schoppmann SF, Birner P, Stöckl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K, Alitalo K and Kerjaschki D: Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol. 161:947–956. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Celis JE, Gromov P, Cabezón T, Moreira JM, Ambartsumian N, Sandelin K, Rank F and Gromova I: Proteomic characterization of the interstitial fluid perfusing the breast tumor microenvironment: A novel resource for biomarker and therapeutic target discovery. Mol Cell Proteomics. 3:327–344. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, Wang YY, Meulle A, Salles B, Le Gonidec S, et al: Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 71:2455–2465. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Ershaid N, Sharon Y, Doron H, Raz Y, Shani O, Cohen N, Monteran L, Leider-Trejo L, Ben-Shmuel A, Yassin M, et al: NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. Nat Commun. 10:43752019. View Article : Google Scholar : PubMed/NCBI | |
|
Wu X, Tao P, Zhou Q, Li J, Yu Z, Wang X, Li J, Li C, Yan M, Zhu Z, et al: IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget. 8:20741–20750. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Davidson S, Efremova M, Riedel A, Mahata B, Pramanik J, Huuhtanen J, Kar G, Vento-Tormo R, Hagai T, Chen X, et al: Single-cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth. Cell Rep. 31:1076282020. View Article : Google Scholar : PubMed/NCBI | |
|
Erez N, Glanz S, Raz Y, Avivi C and Barshack I: Cancer associated fibroblasts express pro-inflammatory factors in human breast and ovarian tumors. Biochem Biophys Res Commun. 437:397–402. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
De Monte L, Reni M, Tassi E, Clavenna D, Papa I, Recalde H, Braga M, Di Carlo V, Doglioni C and Protti MP: Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med. 208:469–478. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Bejarano L, Jordāo MJC and Joyce JA: Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11:933–959. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lieu CH, Tan AC, Leong S, Diamond JR and Eckhardt SG: From bench to bedside: Lessons learned in translating preclinical studies in cancer drug development. J Natl Cancer Inst. 105:1441–1456. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Syed M, Flechsig P, Liermann J, Windisch P, Staudinger F, Akbaba S, Koerber SA, Freudlsperger C, Plinkert PK, Debus J, et al: Fibroblast activation protein inhibitor (FAPI) PET for diagnostics and advanced targeted radiotherapy in head and neck cancers. Eur J Nucl Med Mol Imaging. 47:2836–2845. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen H, Pang Y, Wu J, Zhao L, Hao B, Wu J, Wei J, Wu S, Zhao L, Luo Z, et al: Comparison of [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer. Eur J Nucl Med Mol Imaging. 47:1820–1832. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Melero I, Sanmamed MF, Calvo E, Moreno I, Moreno V, Hernandez Guerrero TC, Martinez-Garcia M, Rodriguez-Vida A, Tabernero J, Azaro Pedrazzoli AB, et al: 1025MO first-in-human (FIH) phase I study of RO7122290 (RO), a novel FAP-targeted 4-1BB agonist, administered as single agent and in combination with atezolizumab (ATZ) to patients with advanced solid tumours. Ann Oncol. 31 (Suppl 4):S7072020. View Article : Google Scholar | |
|
Sounni NE and Noel A: Targeting the tumor microenvironment for cancer therapy. Clin Chem. 59:85–93. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lamberts LE, Koch M, de Jong JS, Adams ALL, Glatz J, Kranendonk MEG, Terwisscha van Scheltinga AGT, Jansen L, de Vries J, Lub-de Hooge MN, et al: Tumor-specific uptake of fluorescent bevacizumab-IRDye800CW microdosing in patients with primary breast cancer: A phase I feasibility study. Clin Cancer Res. 23:2730–2741. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Harlaar NJ, Koller M, de Jongh SJ, van Leeuwen BL, Hemmer PH, Kruijff S, van Ginkel RJ, Been LB, de Jong JS, Kats-Ugurlu G, et al: Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: A single-centre feasibility study. Lancet Gastroenterol Hepatol. 1:283–290. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Nakano K, Funauchi Y, Hayakawa K, Tanizawa T, Ae K, Matsumoto S and Takahashi S: Relative dose intensity of induction-phase pazopanib treatment of soft tissue sarcoma: Its relationship with prognoses of pazopanib responders. J Clin Med. 8:602019. View Article : Google Scholar : PubMed/NCBI | |
|
Noda S, Yoshida T, Hira D, Murai R, Tomita K, Tsuru T, Kageyama S, Kawauchi A, Ikeda Y, Morita SY and Terada T: Exploratory investigation of target pazopanib concentration range for patients with renal cell carcinoma. Clin Genitourin Cancer. 17:e306–e313. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Lu J, You Q, Huang H, Chen Y and Liu K: The mTOR/AP-1/VEGF signaling pathway regulates vascular endothelial cell growth. Oncotarget. 7:53269–53276. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Komohara Y, Fujiwara Y, Ohnishi K and Takeya M: Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev. 99:180–185. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bak SP, Walters JJ, Takeya M, Conejo-Garcia JR and Berwin BL: Scavenger receptor-A-targeted leukocyte depletion inhibits peritoneal ovarian tumor progression. Cancer Res. 67:4783–4789. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Nagai T, Tanaka M, Tsuneyoshi Y, Xu B, Michie SA, Hasui K, Hirano H, Arita K and Matsuyama T: Targeting tumor-associated macrophages in an experimental glioma model with a recombinant immunotoxin to folate receptor beta. Cancer Immunol Immunother. 58:1577–1586. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Naser R, Dilabazian H, Bahr H, Barakat A and El-Sibai M: A guide through conventional and modern cancer treatment modalities: A specific focus on glioblastoma cancer therapy (review). Oncol Rep. 48:1902022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y and Zheng P: Preserving the CTLA-4 checkpoint for safer and more effective cancer immunotherapy. Trends Pharmacol Sci. 41:4–12. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, Sevillano M, Ibiza S, Cañellas A, Hernando-Momblona X, et al: TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 554:538–543. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Greten FR, Arkan MC, Bollrath J, Hsu LC, Goode J, Miething C, Göktuna SI, Neuenhahn M, Fierer J, Paxian S, et al: NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell. 130:918–931. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Marsh JL, Jackman CP, Tang SN, Shankar S and Srivastava RK: Embelin suppresses pancreatic cancer growth by modulating tumor immune microenvironment. Front Biosci (Landmark Ed). 19:113–125. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Xu CL, Zheng B, Pei JH, Shen SJ and Wang JZ: Embelin induces apoptosis of human gastric carcinoma through inhibition of p38 MAPK and NF-κB signaling pathways. Mol Med Rep. 14:307–312. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Waldmann TA: Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol. 10:a0284722018. View Article : Google Scholar : PubMed/NCBI | |
|
Rosenberg SA, Restifo NP, Yang JC, Morgan RA and Dudley ME: Adoptive cell transfer: A clinical path to effective cancer immunotherapy. Nat Rev Cancer. 8:299–308. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Redeker A and Arens R: Improving adoptive T cell therapy: The particular role of T cell costimulation, cytokines, and post-transfer vaccination. Front Immunol. 7:3452016. View Article : Google Scholar : PubMed/NCBI | |
|
Chruściel E, Urban-Wójciuk Z, Arcimowicz Ł, Kurkowiak M, Kowalski J, Gliwiński M, Marjański T, Rzyman W, Biernat W, Dziadziuszko R, et al: Adoptive cell therapy-harnessing antigen-specific T cells to target solid tumours. Cancers (Basel). 12:6832020. View Article : Google Scholar : PubMed/NCBI | |
|
Benmebarek MR, Karches CH, Cadilha BL, Lesch S, Endres S and Kobold S: Killing mechanisms of chimeric antigen receptor (CAR) T cells. Int J Mol Sci. 20:12832019. View Article : Google Scholar : PubMed/NCBI | |
|
Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, Naranjo A, Starr R, Wagner J, Wright C, et al: Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res. 21:4062–4072. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Xu S, Tang L, Li X, Fan F and Liu Z: Immunotherapy for glioma: Current management and future application. Cancer Lett. 476:1–12. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Fu M, Wang M, Wan D, Wei Y and Wei X: Cancer vaccines as promising immuno-therapeutics: Platforms and current progress. J Hematol Oncol. 15:282022. View Article : Google Scholar : PubMed/NCBI | |
|
Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, Felt K, Gjini E, et al: Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 565:234–239. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, Platten M, Tabatabai G, Dutoit V, van der Burg SH, et al: Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature. 565:240–245. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hollingsworth RE and Jansen K: Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 4:72019. View Article : Google Scholar : PubMed/NCBI | |
|
Rüttinger D, Winter H, van den Engel NK, Hatz R, Jauch KW, Fox BA and Weber JS: Immunotherapy of cancer: Key findings and commentary on the third tegernsee conference. Oncologist. 15:112–118. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
AIVITA, Biomedical Inc., . AIVITA biomedical's phase 2 glioblastoma trial shows improved progression free survival. 2021. | |
|
Busby J, McMenamin Ú, Spence A, Johnston BT, Hughes C and Cardwell CR: Angiotensin receptor blocker use and gastro-oesophageal cancer survival: A population-based cohort study. Aliment Pharmacol Ther. 47:279–288. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Murphy JE, Wo JY, Ryan DP, Clark JW, Jiang W, Yeap BY, Drapek LC, Ly L, Baglini CV, Blaszkowsky LS, et al: Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: A phase 2 clinical trial. JAMA Oncol. 5:1020–1027. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fennell DA, Baas P, Taylor P, Nowak AK, Gilligan D, Nakano T, Pachter JA, Weaver DT, Scherpereel A, Pavlakis N, et al: Maintenance defactinib versus placebo after first-line chemotherapy in patients with merlin-stratified pleural mesothelioma: COMMAND-A double-blind, randomized, phase II study. J Clin Oncol. 37:790–798. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang-Gillam A: Targeting stroma: A tale of caution. J Clin Oncol. 37:1041–1043. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ulisse S, Baldini E, Sorrenti S and D'Armiento M: The urokinase plasminogen activator system: A target for anti-cancer therapy. Curr Cancer Drug Targets. 9:32–71. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Feng S, Agoulnik IU, Bogatcheva NV, Kamat AA, Kwabi-Addo B, Li R, Ayala G, Ittmann MM and Agoulnik AI: Relaxin promotes prostate cancer progression. Clin Cancer Res. 13:1695–1702. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Raue R, Frank AC, Syed SN and Brüne B: Therapeutic targeting of MicroRNAs in the tumor microenvironment. Int J Mol Sci. 22:22102021. View Article : Google Scholar : PubMed/NCBI | |
|
Huang S, Zhang J, Lai X, Zhuang L and Wu J: Identification of novel tumor microenvironment-related long noncoding RNAs to determine the prognosis and response to immunotherapy of hepatocellular carcinoma patients. Front Mol Biosci. 8:7813072021. View Article : Google Scholar : PubMed/NCBI | |
|
Ting NLN, Lau HCH and Yu J: Cancer pharmacomicrobiomics: Targeting microbiota to optimise cancer therapy outcomes. Gut. 71:1412–1425. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Spanogiannopoulos P, Bess EN, Carmody RN and Turnbaugh PJ: The microbial pharmacists within us: A metagenomic view of xenobiotic metabolism. Nat Rev Microbiol. 14:273–287. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Imai H, Saijo K, Komine K, Otsuki Y, Ohuchi K, Sato Y, Okita A, Takahashi M, Takahashi S, Shirota H, et al: Antibiotic therapy augments the efficacy of gemcitabine-containing regimens for advanced cancer: A retrospective study. Cancer Manag Res. 11:7953–7965. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Nakano S, Komatsu Y, Kawamoto Y, Saito R, Ito K, Nakatsumi H, Yuki S and Sakamoto N: Association between the use of antibiotics and efficacy of gemcitabine plus nab-paclitaxel in advanced pancreatic cancer. Medicine (Baltimore). 99:e222502020. View Article : Google Scholar : PubMed/NCBI | |
|
Sunakawa Y, Arai H, Izawa N, Mizukami T, Horie Y, Doi A, Hirakawa M, Ogura T, Tsuda T and Nakajima TE: Antibiotics may enhance the efficacy of gemcitabine treatment for advanced pancreatic cancer. Ann Oncol. 29 (Suppl 8):viii251–viii252. 2018. View Article : Google Scholar | |
|
Frankel AE, Coughlin LA, Kim J, Froehlich TW, Xie Y, Frenkel EP and Koh AY: Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia. 19:848–855. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al: Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 359:91–97. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ and Gajewski TF: The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 359:104–108. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al: Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 359:97–103. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, et al: Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 350:1079–1084. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, et al: Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 350:1084–1089. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Khalesi S, Bellissimo N, Vandelanotte C, Williams S, Stanley D and Irwin C: A review of probiotic supplementation in healthy adults: Helpful or hype? Eur J Clin Nutr. 73:24–37. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A, Mohan N, Aykut B, Usyk M, Torres LE, et al: The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8:403–416. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, Qian Y, Kryczek I, Sun D, Nagarsheth N, et al: Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 170:548–563.e16. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng JH, Nguyen VH, Jiang SN, Park SH, Tan W, Hong SH, Shin MG, Chung IJ, Hong Y, Bom HS, et al: Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci Transl Med. 9:eaak95372017. View Article : Google Scholar : PubMed/NCBI | |
|
Juul FE, Garborg K, Bretthauer M, Skudal H, Øines MN, Wiig H, Rose Ø, Seip B, Lamont JT, Midtvedt T, et al: Fecal microbiota transplantation for primary clostridium difficile infection. N Engl J Med. 378:2535–2536. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF, Tijssen JG, et al: Duodenal infusion of donor feces for recurrent clostridium difficile. N Engl J Med. 368:407–415. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Arbel LT, Hsu E and McNally K: Cost-effectiveness of fecal microbiota transplantation in the treatment of recurrent clostridium difficile infection: A literature review. Cureus. 9:e15992017.PubMed/NCBI | |
|
Bayat Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B and Yeger H: Combination therapy in combating cancer. Oncotarget. 8:38022–38043. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lane D: Designer combination therapy for cancer. Nat Biotechnol. 24:163–164. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Allen E, Jabouille A, Rivera LB, Lodewijckx I, Missiaen R, Steri V, Feyen K, Tawney J, Hanahan D, Michael IP and Bergers G: Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci Transl Med. 9:eaak96792017. View Article : Google Scholar : PubMed/NCBI | |
|
Aparicio LMA, Fernandez IP and Cassinello J: Tyrosine kinase inhibitors reprogramming immunity in renal cell carcinoma: Rethinking cancer immunotherapy. Clin Transl Oncol. 19:1175–1182. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Duchnowska R, Loibl S and Jassem J: Tyrosine kinase inhibitors for brain metastases in HER2-positive breast cancer. Cancer Treat Rev. 67:71–77. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ntanasis-Stathopoulos I, Fotopoulos G, Tzanninis IG and Kotteas EA: The emerging role of tyrosine kinase inhibitors in ovarian cancer treatment: A systematic review. Cancer Invest. 34:313–339. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bożyk A, Wojas-Krawczyk K, Krawczyk P and Milanowski J: Tumor microenvironment-a short review of cellular and interaction diversity. Biology (Basel). 11:9292022.PubMed/NCBI | |
|
Russo M and Nastasi C: Targeting the tumor microenvironment: A close up of tumor-associated macrophages and neutrophils. Front Oncol. 12:8715132022. View Article : Google Scholar : PubMed/NCBI | |
|
Mao D, Xu R, Chen H, Chen X, Li D, Song S, He Y, Wei Z and Zhang C: Cross-talk of focal adhesion-related gene defines prognosis and the immune microenvironment in gastric cancer. Front Cell Dev Biol. 9:7164612021. View Article : Google Scholar : PubMed/NCBI | |
|
Qian H, Li H, Xie J, Lu X, Li F, Wang W, Tang X, Shi M, Jiang L, Li H, et al: Immunity-related gene signature identifies subtypes benefitting from adjuvant chemotherapy or potentially responding to PD1/PD-L1 blockage in pancreatic cancer. Front Cell Dev Biol. 9:6822612021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou S, Sun Y, Chen T, Wang J, He J, Lyu J, Shen Y, Chen X and Yang R: The landscape of the tumor microenvironment in skin cutaneous melanoma reveals a prognostic and immunotherapeutically relevant gene signature. Front Cell Dev Biol. 9:7395942021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Zhou J, Xu Q, Foley R..Guo J, Zhang X, Tian C, Mu M, Xing Y, Liu Y, et al: Identification of key genes driving tumor associated macrophage migration and polarization based on immune fingerprints of lung adenocarcinoma. Front Cell Dev Biol. 9:7518002021. View Article : Google Scholar : PubMed/NCBI | |
|
Haibe Y, Kreidieh M, El Hajj H, Khalifeh I, Mukherji D, Temraz S and Shamseddine A: Resistance mechanisms to anti-angiogenic therapies in cancer. Front Oncol. 10:2212020. View Article : Google Scholar : PubMed/NCBI | |
|
Navab R, Strumpf D, To C, Pasko E, Kim KS, Park CJ, Hai J, Liu J, Jonkman J, Barczyk M, et al: Integrin α11β1 regulates cancer stromal stiffness and promotes tumorigenicity and metastasis in non-small cell lung cancer. Oncogene. 35:1899–1908. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Junttila MR and de Sauvage FJ: Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 501:346–354. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Giuliano S and Pagès G: Mechanisms of resistance to anti-angiogenesis therapies. Biochimie. 95:1110–1119. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Flaherty KT, Manola JB, Pins M, McDermott DF, Atkins MB, Dutcher JJ, George DJ, Margolin KA and DiPaola RS: BEST: A randomized phase II study of vascular endothelial growth factor, RAF kinase, and mammalian target of rapamycin combination targeted therapy with bevacizumab, sorafenib, and temsirolimus in advanced renal cell carcinoma-a trial of the ECOG-ACRIN cancer research group (E2804). J Clin Oncol. 33:2384–2391. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Li Y, Nie G and Zhao Y: Precise design of nanomedicines: Perspectives for cancer treatment. Natl Sci Rev. 6:1107–1110. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Atat OE, Farzaneh Z, Pourhamzeh M, Taki F, Abi-Habib R, Vosough M and El-Sibai M: 3D modeling in cancer studies. Hum Cell. 35:23–36. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Selek L, Seigneuret E, Nugue G, Wion D, Nissou MF, Salon C, Seurin MJ, Carozzo C, Ponce F, Roger T and Berger F: Imaging and histological characterization of a human brain xenograft in pig: the first induced glioma model in a large animal. J Neurosci Methods. 221:159–165. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Khoshnevis M, Carozzo C, Bonnefont-Rebeix C, Belluco S, Leveneur O, Chuzel T, Pillet-Michelland E, Dreyfus M, Roger T, Berger F and Ponce F: Development of induced glioblastoma by implantation of a human xenograft in Yucatan minipig as a large animal model. J Neurosci Methods. 282:61–68. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Khoshnevis M, Carozzo C, Brown R, Bardiès M, Bonnefont-Rebeix C, Belluco S, Nennig C, Marcon L, Tillement O, Gehan H, et al: Feasibility of intratumoral 165Holmium siloxane delivery to induced U87 glioblastoma in a large animal model, the Yucatan minipig. PLoS One. 15:e02347722020. View Article : Google Scholar : PubMed/NCBI | |
|
Mackenzie NJ, Nicholls C, Templeton AR, Perera MP, Jeffery PL, Zimmermann K, Kulasinghe A, Kenna TJ, Vela I, Williams ED and Thomas PB: Modelling the tumor immune microenvironment for precision immunotherapy. Clin Transl Immunology. 11:e14002022. View Article : Google Scholar : PubMed/NCBI | |
|
Mendes N, Dias Carvalho P, Martins F, Mendonça S, Malheiro AR, Ribeiro A, Carvalho J and Velho S: Animal models to study cancer and its microenvironment. Adv Exp Med Biol. 1219:389–401. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hsu JF, Chu SM, Liao CC, Wang CJ, Wang YS, Lai MY, Wang HC, Huang HR and Tsai MH: Nanotechnology and nanocarrier-based drug delivery as the potential therapeutic strategy for glioblastoma multiforme: An update. Cancers (Basel). 13:1952021. View Article : Google Scholar : PubMed/NCBI |