Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
February-2023 Volume 62 Issue 2

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2023 Volume 62 Issue 2

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Role of the tumor microenvironment in cancer hallmarks and targeted therapy (Review)

  • Authors:
    • Rayan Naser
    • Isabelle Fakhoury
    • Adam El-Fouani
    • Ralph Abi-Habib
    • Mirvat El-Sibai
  • View Affiliations / Copyright

    Affiliations: Department of Natural Sciences, Lebanese American University, Beirut 1102‑2801, Lebanon
  • Article Number: 23
    |
    Published online on: December 27, 2022
       https://doi.org/10.3892/ijo.2022.5471
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Genetic alterations drive tumor onset and progression. However, the cross‑talk between tumor cells and the benign components of the surrounding stroma can also promote the initiation, progression and metastasis of solid tumors. These cellular and non‑cellular stromal components form the tumor microenvironment (TME), which co‑evolves with tumor cells. Their dynamic and mutualistic interactions are currently considered to be among the distinctive hallmarks of cancer. Biochemical and physical cues from the TME serve an essential role in regulating tumor onset and progression. They are also associated with resistance to treatment and poor prognosis in patients with cancer. Therefore, a deep understanding of the TME is vital for developing potent anticancer therapeutics and improving patient outcomes. The present review aims to review the biology of both cellular and non‑cellular constituents of the TME and novel findings regarding their contribution to core as well as emerging cancer hallmarks. The present review also describes key TME markers that are either targeted in interventional clinical trials or serve as promising potential anticancer therapies. Understanding TME components and their intercellular interactions is key toward identifying the mechanisms of progression and treatment resistance. Such understanding is of utmost significance for personalized and effective cancer therapy strategies.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Cooper GM: The development and causes of cancer, The cell: A molecular approach. 2nd edition. Sunderland (MA): Sinauer Associates; 2000

2 

Balkwill FR, Capasso M and Hagemann T: The tumor microenvironment at a glance. J Cell Sci. 125:5591–5596. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Lu P, Weaver VM and Werb Z: The extracellular matrix: A dynamic niche in cancer progression. J Cell Biol. 196:395–406. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Hanahan D and Coussens LM: Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell. 21:309–322. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Li H, Fan X and Houghton J: Tumor microenvironment: The role of the tumor stroma in cancer. J Cell Biochem. 101:805–815. 2007. View Article : Google Scholar : PubMed/NCBI

7 

Pietras K and Ostman A: Hallmarks of cancer: Interactions with the tumor stroma. Exp Cell Res. 316:1324–1331. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Li H, Zhou L, Zhou J, Li Q and Ji Q: Underlying mechanisms and drug intervention strategies for the tumour microenvironment. J Exp Clin Cancer Res. 40:972021. View Article : Google Scholar : PubMed/NCBI

9 

Joyce JA: Therapeutic targeting of the tumor microenvironment. Cancer Cell. 7:513–520. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Henke E, Nandigama R and Ergün S: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci. 6:1602020. View Article : Google Scholar : PubMed/NCBI

11 

Tsai MJ, Chang WA, Huang MS and Kuo PL: Tumor microenvironment: A new treatment target for cancer. ISRN Biochem. 2014:e3519592014. View Article : Google Scholar : PubMed/NCBI

12 

Willumsen N, Thomsen LB, Bager CL, Jensen C and Karsdal MA: Quantification of altered tissue turnover in a liquid biopsy: A proposed precision medicine tool to assess chronic inflammation and desmoplasia associated with a pro-cancerous niche and response to immuno-therapeutic anti-tumor modalities. Cancer Immunol Immunother. 67:1–12. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, Hu G and Sun Y: New horizons in tumor microenvironment biology: Challenges and opportunities. BMC Med. 13:452015. View Article : Google Scholar : PubMed/NCBI

14 

Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, et al: Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 24:541–550. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Chen X and Song E: Turning foes to friends: Targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 18:99–115. 2019. View Article : Google Scholar : PubMed/NCBI

16 

Brassart-Pasco S, Brézillon S, Brassart B, Ramont L, Oudart JB and Monboisse JC: Tumor microenvironment: Extracellular matrix alterations influence tumor progression. Front Oncol. 10:3972020. View Article : Google Scholar : PubMed/NCBI

17 

Wang Z, Chen JQ, Liu JL and Tian L: Exosomes in tumor microenvironment: Novel transporters and biomarkers. J Transl Med. 14:2972016. View Article : Google Scholar : PubMed/NCBI

18 

Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V and Wargo JA: The microbiome, cancer, and cancer therapy. Nat Med. 25:377–388. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, et al: A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Ganguly D, Chandra R, Karalis J, Teke M, Aguilera T, Maddipati R, Wachsmann MB, Ghersi D, Siravegna G, Zeh HJ III, et al: Cancer-associated fibroblasts: Versatile players in the tumor microenvironment. Cancers (Basel). 12:26522020. View Article : Google Scholar : PubMed/NCBI

21 

Liao Z, Tan ZW, Zhu P and Tan NS: Cancer-associated fibroblasts in tumor microenvironment-accomplices in tumor malignancy. Cell Immunol. 343:1037292019. View Article : Google Scholar : PubMed/NCBI

22 

Arina A, Idel C, Hyjek EM, Alegre ML, Wang Y, Bindokas VP, Weichselbaum RR and Schreiber H: Tumor-associated fibroblasts predominantly come from local and not circulating precursors. Proc Natl Acad Sci USA. 113:7551–7556. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Jung Y, Kim JK, Shiozawa Y, Wang J, Mishra A, Joseph J, Berry JE, McGee S, Lee E, Sun H, et al: Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun. 4:17952013. View Article : Google Scholar : PubMed/NCBI

24 

Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW and Banerjee D: Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 68:4331–4339. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Zhu Q, Zhang X, Zhang L, Li W, Wu H, Yuan X, Mao F, Wang M, Zhu W, Qian H and Xu W: The IL-6-STAT3 axis mediates a reciprocal crosstalk between cancer-derived mesenchymal stem cells and neutrophils to synergistically prompt gastric cancer progression. Cell Death Dis. 5:e12952014. View Article : Google Scholar : PubMed/NCBI

26 

Jotzu C, Alt E, Welte G, Li J, Hennessy BT, Devarajan E, Krishnappa S, Pinilla S, Droll L and Song YH: Adipose tissue-derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor-derived factors. Anal Cell Pathol (Amst). 33:61–79. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Kidd S, Spaeth E, Watson K, Burks J, Lu H, Klopp A, Andreeff M and Marini FC: Origins of the tumor microenvironment: Quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS One. 7:e305632012. View Article : Google Scholar : PubMed/NCBI

28 

Miyazaki Y, Oda T, Mori N and Kida YS: Adipose-derived mesenchymal stem cells differentiate into pancreatic cancer-associated fibroblasts in vitro. FEBS Open Bio. 10:2268–2281. 2020. View Article : Google Scholar : PubMed/NCBI

29 

Nurmik M, Ullmann P, Rodriguez F, Haan S and Letellier E: In search of definitions: Cancer-associated fibroblasts and their markers. Int J Cancer. 146:895–905. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Simon T and Salhia B: Cancer-Associated fibroblast subpopulations with diverse and dynamic roles in the tumor microenvironment. Mol Cancer Res. 20:183–192. 2022. View Article : Google Scholar : PubMed/NCBI

31 

Sebastian A, Hum NR, Martin KA, Gilmore SF, Peran I, Byers SW, Wheeler EK, Coleman MA and Loots GG: Single-cell transcriptomic analysis of tumor-derived fibroblasts and normal tissue-resident fibroblasts reveals fibroblast heterogeneity in breast cancer. Cancers (Basel). 12:13072020. View Article : Google Scholar : PubMed/NCBI

32 

Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, Corbo V, Oni TE, Hearn SA, Lee EJ, et al: Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 214:579–596. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS, et al: Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9:1102–1123. 2019. View Article : Google Scholar : PubMed/NCBI

34 

Cohen N, Shani O, Raz Y, Sharon Y, Hoffman D, Abramovitz L and Erez N: Fibroblasts drive an immunosuppressive and growth-promoting microenvironment in breast cancer via secretion of Chitinase 3-like 1. Oncogene. 36:4457–4468. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Amatangelo MD, Bassi DE, Klein-Szanto AJP and Cukierman E: Stroma-derived three-dimensional matrices are necessary and sufficient to promote desmoplastic differentiation of normal fibroblasts. Am J Pathol. 167:475–488. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Carmeliet P and Jain RK: Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 10:417–427. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Nishida N, Yano H, Nishida T, Kamura T and Kojiro M: Angiogenesis in cancer. Vasc Health Risk Manag. 2:213–219. 2006. View Article : Google Scholar : PubMed/NCBI

38 

Jain RK: Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science. 307:58–62. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Semenza GL: Cancer-stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis. Oncogene. 32:4057–4063. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Weis SM and Cheresh DA: Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat Med. 17:1359–1370. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Hillen F and Griffioen AW: Tumour vascularization: Sprouting angiogenesis and beyond. Cancer Metastasis Rev. 26:489–502. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Italiano JE Jr, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, Ryeom S, Folkman J and Klement GL: Angiogenesis is regulated by a novel mechanism: Pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood. 111:1227–1233. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Armulik A, Genové G and Betsholtz C: Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 21:193–215. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Balta E, Wabnitz GH and Samstag Y: Hijacked immune cells in the tumor microenvironment: Molecular mechanisms of immunosuppression and cues to improve T cell-based immunotherapy of solid tumors. Int J Mol Sci. 22:57362021. View Article : Google Scholar : PubMed/NCBI

45 

Biswas SK and Mantovani A: Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat Immunol. 11:889–896. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, Pamer EG and Li MO: The cellular and molecular origin of tumor-associated macrophages. Science. 344:921–925. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Wu K, Lin K, Li X, Yuan X, Xu P, Ni P and Xu D: Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment. Front Immunol. 11:17312020. View Article : Google Scholar : PubMed/NCBI

48 

Dehne N, Mora J, Namgaladze D, Weigert A and Brüne B: Cancer cell and macrophage cross-talk in the tumor microenvironment. Curr Opin Pharmacol. 35:12–19. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Cassetta L, Fragkogianni S, Sims AH, Swierczak A, Forrester LM, Zhang H, Soong DYH, Cotechini T, Anur P, Lin EY, et al: Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell. 35:588–602.e10. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Costa AC, Santos JMO, Gil da Costa RM and Medeiros R: Impact of immune cells on the hallmarks of cancer: A literature review. Crit Rev Oncol Hematol. 168:1035412021. View Article : Google Scholar : PubMed/NCBI

51 

Roma-Rodrigues C, Mendes R, Baptista PV and Fernandes AR: Targeting tumor microenvironment for cancer therapy. Int J Mol Sci. 20:8402019. View Article : Google Scholar : PubMed/NCBI

52 

Ostrand-Rosenberg S and Sinha P: Myeloid-derived suppressor cells: Linking inflammation and cancer. J Immunol. 182:4499–4506. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Veglia F, Sanseviero E and Gabrilovich DI: Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 21:485–498. 2021. View Article : Google Scholar : PubMed/NCBI

54 

Masucci MT, Minopoli M and Carriero MV: Tumor associated neutrophils. Their role in tumorigenesis, metastasis, prognosis and therapy. Front Oncol. 9:11462019. View Article : Google Scholar : PubMed/NCBI

55 

Ye Y, Gaugler B, Mohty M and Malard F: Plasmacytoid dendritic cell biology and its role in immune-mediated diseases. Clin Transl Immunology. 9:e11392020. View Article : Google Scholar : PubMed/NCBI

56 

Karthaus N, Torensma R and Tel J: Deciphering the message broadcast by tumor-infiltrating dendritic cells. Am J Pathol. 181:733–742. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Benavente S, Sánchez-García A, Naches S, LLeonart ME and Lorente J: Therapy-induced modulation of the tumor microenvironment: New opportunities for cancer therapies. Front Oncol. 10:5828842020. View Article : Google Scholar : PubMed/NCBI

58 

Campbell DJ and Koch MA: Treg cells: Patrolling a dangerous neighborhood. Nat Med. 17:929–930. 2011. View Article : Google Scholar : PubMed/NCBI

59 

Hsieh CS, Lee HM and Lio CWJ: Selection of regulatory T cells in the thymus. Nat Rev Immunol. 12:157–167. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Coronella JA, Telleman P, Kingsbury GA, Truong TD, Hays S and Junghans RP: Evidence for an antigen-driven humoral immune response in medullary ductal breast cancer. Cancer Res. 61:7889–7899. 2001.PubMed/NCBI

61 

Schioppa T, Moore R, Thompson RG, Rosser EC, Kulbe H, Nedospasov S, Mauri C, Coussens LM and Balkwill FR: B regulatory cells and the tumor-promoting actions of TNF-α during squamous carcinogenesis. Proc Natl Acad Sci USA. 108:10662–10667. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Quail DF and Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med. 19:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Wu J and Lanier LL: Natural killer cells and cancer. Adv Cancer Res. 90:127–156. 2003. View Article : Google Scholar : PubMed/NCBI

64 

Hong J, Jin JO, Chen WY, Poggi A and Cheong JH: Editorial: Emerging roles and mechanisms of stromal cells in carcinomas at the molecular level. Front Immunol. 13:10258382022. View Article : Google Scholar : PubMed/NCBI

65 

Koppensteiner L, Mathieson L, O'Connor RA and Akram AR: Cancer associated fibroblasts-an impediment to effective anti-cancer T cell immunity. Front Immunol. 13:8873802022. View Article : Google Scholar : PubMed/NCBI

66 

Mun JY, Leem SH, Lee JH and Kim HS: Dual relationship between stromal cells and immune cells in the tumor microenvironment. Front Immunol. 13:8647392022. View Article : Google Scholar : PubMed/NCBI

67 

Belli C, Antonarelli G, Repetto M, Boscolo Bielo L, Crimini E and Curigliano G: Targeting cellular components of the tumor microenvironment in solid malignancies. Cancers (Basel). 14:42782022. View Article : Google Scholar : PubMed/NCBI

68 

Theocharis AD, Skandalis SS, Gialeli C and Karamanos NK: Extracellular matrix structure. Adv Drug Deliv Rev. 97:4–27. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Badylak SF: The extracellular matrix as a biologic scaffold material. Biomaterials. 28:3587–3593. 2007. View Article : Google Scholar : PubMed/NCBI

70 

Fuhrmann A and Engler AJ: The Cytoskeleton regulates cell attachment strength. Biophys J. 109:57–65. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Kechagia JZ, Ivaska J and Roca-Cusachs P: Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol. 20:457–473. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Romani P, Valcarcel-Jimenez L, Frezza C and Dupont S: Crosstalk between mechanotransduction and metabolism. Nat Rev Mol Cell Biol. 22:22–38. 2021. View Article : Google Scholar : PubMed/NCBI

73 

Cichon MA and Radisky DC: Extracellular matrix as a contextual determinant of transforming growth factor-β signaling in epithelial-mesenchymal transition and in cancer. Cell Adhes Migr. 8:588–594. 2014. View Article : Google Scholar : PubMed/NCBI

74 

Karamanos NK, Piperigkou Z, Passi A, Götte M, Rousselle P and Vlodavsky I: Extracellular matrix-based cancer targeting. Trends Mol Med. 27:1000–1013. 2021. View Article : Google Scholar : PubMed/NCBI

75 

Rilla K, Mustonen AM, Arasu UT, Härkönen K, Matilainen J and Nieminen P: Extracellular vesicles are integral and functional components of the extracellular matrix. Matrix Biol. 75–76. 201–219. 2019.PubMed/NCBI

76 

Apte MV, Yang L, Phillips PA, Xu Z, Kaplan W, Cowley M, Pirola RC and Wilson JS: Extracellular matrix composition significantly influences pancreatic stellate cell gene expression pattern: Role of transgelin in PSC function. Am J Physiol Gastrointest Liver Physiol. 305:G408–G417. 2013. View Article : Google Scholar : PubMed/NCBI

77 

Naba A, Clauser KR, Hoersch S, Liu H, Carr SA and Hynes RO: The matrisome: In silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics. 11:M111.014647. 2012. View Article : Google Scholar : PubMed/NCBI

78 

Musiime M, Chang J, Hansen U, Kadler KE, Zeltz C and Gullberg D: Collagen assembly at the cell surface: Dogmas revisited. Cells. 10:6622021. View Article : Google Scholar : PubMed/NCBI

79 

Eble JA and Niland S: The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis. 36:171–198. 2019. View Article : Google Scholar : PubMed/NCBI

80 

Yue B: Biology of the extracellular matrix: An overview. J Glaucoma. 23 (8 Suppl 1):S20–S23. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Naba A, Pearce OMT, Del Rosario A, Ma D, Ding H, Rajeeve V, Cutillas PR, Balkwill FR and Hynes RO: Characterization of the extracellular matrix of normal and diseased tissues using proteomics. J Proteome Res. 16:3083–3091. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Erdogan B and Webb DJ: Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans. 45:229–236. 2017. View Article : Google Scholar : PubMed/NCBI

83 

Najafi M, Farhood B and Mortezaee K: Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem. 120:2782–2790. 2019. View Article : Google Scholar : PubMed/NCBI

84 

Muncie JM and Weaver VM: The physical and biochemical properties of the extracellular matrix regulate cell fate. Curr Top Dev Biol. 130:1–37. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White JG and Keely PJ: Collagen density promotes mammary tumor initiation and progression. BMC Med. 6:112008. View Article : Google Scholar : PubMed/NCBI

86 

Mammoto T, Jiang A, Jiang E, Panigrahy D, Kieran MW and Mammoto A: Role of collagen matrix in tumor angiogenesis and glioblastoma multiforme progression. Am J Pathol. 183:1293–1305. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, Psaila B, Kaplan RN, Bromberg JF, Kang Y, et al: Pre-metastatic niches: Organ-specific homes for metastases. Nat Rev Cancer. 17:302–317. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Moreira AM, Pereira J, Melo S, Fernandes MS, Carneiro P, Seruca R and Figueiredo J: The extracellular matrix: An accomplice in gastric cancer development and progression. Cells. 9:3942020. View Article : Google Scholar : PubMed/NCBI

89 

Høgdall D, Lewinska M and Andersen JB: Desmoplastic tumor microenvironment and immunotherapy in cholangiocarcinoma. Trends Cancer. 4:239–255. 2018. View Article : Google Scholar : PubMed/NCBI

90 

Ho WJ, Jaffee EM and Zheng L: The tumour microenvironment in pancreatic cancer-clinical challenges and opportunities. Nat Rev Clin Oncol. 17:527–540. 2020. View Article : Google Scholar : PubMed/NCBI

91 

Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, et al: Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 139:891–906. 2009. View Article : Google Scholar : PubMed/NCBI

92 

Damodarasamy M, Vernon RB, Chan CK, Plymate SR, Wight TN and Reed MJ: Hyaluronan in aged collagen matrix increases prostate epithelial cell proliferation. In Vitro Cell Dev Biol Anim. 51:50–58. 2015. View Article : Google Scholar : PubMed/NCBI

93 

Suhovskih AV, Mostovich LA, Kunin IS, Boboev MM, Nepomnyashchikh GI, Aidagulova SV and Grigorieva EV: Proteoglycan expression in normal human prostate tissue and prostate cancer. ISRN Oncol. 2013:6801362013.PubMed/NCBI

94 

Ajeti V, Nadiarnykh O, Ponik SM, Keely PJ, Eliceiri KW and Campagnola PJ: Structural changes in mixed Col I/Col V collagen gels probed by SHG microscopy: Implications for probing stromal alterations in human breast cancer. Biomed Opt Express. 2:2307–2316. 2011. View Article : Google Scholar : PubMed/NCBI

95 

Fang S, Dai Y, Mei Y, Yang M, Hu L, Yang H, Guan X and Li J: Clinical significance and biological role of cancer-derived type I collagen in lung and esophageal cancers. Thorac Cancer. 10:277–288. 2019. View Article : Google Scholar : PubMed/NCBI

96 

Miskolczi Z, Smith MP, Rowling EJ, Ferguson J, Barriuso J and Wellbrock C: Collagen abundance controls melanoma phenotypes through lineage-specific microenvironment sensing. Oncogene. 37:3166–3182. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Rossow L, Veitl S, Vorlová S, Wax JK, Kuhn AE, Maltzahn V, Upcin B, Karl F, Hoffmann H, Gätzner S, et al: LOX-catalyzed collagen stabilization is a proximal cause for intrinsic resistance to chemotherapy. Oncogene. 37:4921–4940. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Guzman A, Ziperstein MJ and Kaufman LJ: The effect of fibrillar matrix architecture on tumor cell invasion of physically challenging environments. Biomaterials. 35:6954–6963. 2014. View Article : Google Scholar : PubMed/NCBI

99 

Xu S, Xu H, Wang W, Li S, Li H, Li T, Zhang W, Yu X and Liu L: The role of collagen in cancer: From bench to bedside. J Transl Med. 17:3092019. View Article : Google Scholar : PubMed/NCBI

100 

Gilkes DM, Semenza GL and Wirtz D: Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat Rev Cancer. 14:430–439. 2014. View Article : Google Scholar : PubMed/NCBI

101 

Allen SC, Widman JA, Datta A and Suggs LJ: Dynamic extracellular matrix stiffening induces a phenotypic transformation and a migratory shift in epithelial cells. Integr Biol (Camb). 12:161–174. 2020. View Article : Google Scholar : PubMed/NCBI

102 

Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, Choi H, El Rayes T, Ryu S, Troeger J, et al: Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 527:472–476. 2015. View Article : Google Scholar : PubMed/NCBI

103 

Han L, Lam EWF and Sun Y: Extracellular vesicles in the tumor microenvironment: Old stories, but new tales. Mol Cancer. 18:592019. View Article : Google Scholar : PubMed/NCBI

104 

Kanada M, Bachmann MH and Contag CH: Signaling by extracellular vesicles advances cancer hallmarks. Trends Cancer. 2:84–94. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Minciacchi VR, Freeman MR and Di Vizio D: Extracellular vesicles in cancer: Exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol. 40:41–51. 2015. View Article : Google Scholar : PubMed/NCBI

106 

Chronopoulos A and Kalluri R: Emerging role of bacterial extracellular vesicles in cancer. Oncogene. 39:6951–6960. 2020. View Article : Google Scholar : PubMed/NCBI

107 

Morad G and Moses MA: Brainwashed by extracellular vesicles: The role of extracellular vesicles in primary and metastatic brain tumour microenvironment. J Extracell Vesicles. 8:16271642019. View Article : Google Scholar : PubMed/NCBI

108 

Parayath NN, Padmakumar S and Amiji MM: Extracellular vesicle-mediated nucleic acid transfer and reprogramming in the tumor microenvironment. Cancer Lett. 482:33–43. 2020. View Article : Google Scholar : PubMed/NCBI

109 

Patras L and Banciu M: Intercellular crosstalk via extracellular vesicles in tumor milieu as emerging therapies for cancer progression. Curr Pharm Des. 25:1980–2006. 2019. View Article : Google Scholar : PubMed/NCBI

110 

Xie C, Ji N, Tang Z, Li J and Chen Q: The role of extracellular vesicles from different origin in the microenvironment of head and neck cancers. Mol Cancer. 18:832019. View Article : Google Scholar : PubMed/NCBI

111 

Caicedo-Carvajal CE, Liu Q and Goy A: Three-dimensional cell culture models for biomarker discoveries and cancer research. Transl Med. 1:1–8. 2012.

112 

Wang HX and Gires O: Tumor-derived extracellular vesicles in breast cancer: From bench to bedside. Cancer Lett. 460:54–64. 2019. View Article : Google Scholar : PubMed/NCBI

113 

Gould SJ and Raposo G: As we wait: Coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2:2013. View Article : Google Scholar : PubMed/NCBI

114 

Beach A, Zhang HG, Ratajczak MZ and Kakar SS: Exosomes: An overview of biogenesis, composition and role in ovarian cancer. J Ovarian Res. 7:142014. View Article : Google Scholar : PubMed/NCBI

115 

Mashouri L, Yousefi H, Aref AR, Ahadi A mohammad, Molaei F and Alahari SK: Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 18:752019. View Article : Google Scholar : PubMed/NCBI

116 

Théry C, Zitvogel L and Amigorena S: Exosomes: Composition, biogenesis and function. Nat Rev Immunol. 2:569–579. 2002. View Article : Google Scholar : PubMed/NCBI

117 

Chang WH, Cerione RA and Antonyak MA: Extracellular Vesicles and their roles in cancer progression. Methods Mol Biol. 2174:143–170. 2021. View Article : Google Scholar : PubMed/NCBI

118 

Menck K, Sivaloganathan S, Bleckmann A and Binder C: Microvesicles in cancer: Small size, large potential. Int J Mol Sci. 21:53732020. View Article : Google Scholar : PubMed/NCBI

119 

Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A and Rak J: Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 10:619–624. 2008. View Article : Google Scholar : PubMed/NCBI

120 

Di Vizio D, Kim J, Hager MH, Morello M, Yang W, Lafargue CJ, True LD, Rubin MA, Adam RM, Beroukhim R, et al: Oncosome formation in prostate cancer: Association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res. 69:5601–5609. 2009. View Article : Google Scholar : PubMed/NCBI

121 

Gurunathan S, Kang MH, Jeyaraj M, Qasim M and Kim JH: Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 8:3072019. View Article : Google Scholar : PubMed/NCBI

122 

Hessvik NP and Llorente A: Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 75:193–208. 2018. View Article : Google Scholar : PubMed/NCBI

123 

Baig AM, Khaleeq A, Ali U and Syeda H: Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 11:995–998. 2020. View Article : Google Scholar : PubMed/NCBI

124 

Li I and Nabet BY: Exosomes in the tumor microenvironment as mediators of cancer therapy resistance. Mol Cancer. 18:322019. View Article : Google Scholar : PubMed/NCBI

125 

Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C, et al: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 18:883–891. 2012. View Article : Google Scholar : PubMed/NCBI

126 

Walbrecq G, Margue C, Behrmann I and Kreis S: Distinct cargos of small extracellular vesicles derived from hypoxic cells and their effect on cancer cells. Int J Mol Sci. 21:50712020. View Article : Google Scholar : PubMed/NCBI

127 

Azulay EE, Cooks T and Elkabets M: Potential oncogenic roles of mutant-p53-derived exosomes in the tumor-host interaction of head and neck cancers. Cancer Immunol Immunother. 69:285–292. 2020. View Article : Google Scholar : PubMed/NCBI

128 

Pavlakis E, Neumann M and Stiewe T: Extracellular vesicles: Messengers of p53 in tumor-stroma communication and cancer metastasis. Int J Mol Sci. 21:96482020. View Article : Google Scholar : PubMed/NCBI

129 

de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G, Schiffelers RM, Gucek M and van Balkom BW: Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles. 1:2012. View Article : Google Scholar : PubMed/NCBI

130 

Drake RR and Kislinger T: The proteomics of prostate cancer exosomes. Expert Rev Proteomics. 11:167–177. 2014. View Article : Google Scholar : PubMed/NCBI

131 

Hamzah RN, Alghazali KM, Biris AS and Griffin RJ: Exosome traceability and cell source dependence on composition and cell-cell cross talk. Int J Mol Sci. 22:53462021. View Article : Google Scholar : PubMed/NCBI

132 

Jelonek K, Widlak P and Pietrowska M: The influence of ionizing radiation on exosome composition, secretion and intercellular communication. Protein Pept Lett. 23:656–663. 2016. View Article : Google Scholar : PubMed/NCBI

133 

Jiao YJ, Jin DD, Jiang F, Liu JX, Qu LS, Ni WK, Liu ZX, Lu CH, Ni RZ, Zhu J and Xiao MB: Characterization and proteomic profiling of pancreatic cancer-derived serum exosomes. J Cell Biochem. 120:988–999. 2019. View Article : Google Scholar : PubMed/NCBI

134 

Hornung T, O'Neill HA, Logie SC, Fowler KM, Duncan JE, Rosenow M, Bondre AS, Tinder T, Maher V, Zarkovic J, et al: ADAPT identifies an ESCRT complex composition that discriminates VCaP from LNCaP prostate cancer cell exosomes. Nucleic Acids Res. 48:4013–4027. 2020. View Article : Google Scholar : PubMed/NCBI

135 

Nabet BY, Qiu Y, Shabason JE, Wu TJ, Yoon T, Kim BC, Benci JL, DeMichele AM, Tchou J, Marcotrigiano J and Minn AJ: Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer. Cell. 170:352–366.e13. 2017. View Article : Google Scholar : PubMed/NCBI

136 

Luo N: Editorial: Tumor microenvironment in cancer hallmarks and therapeutics. Front Mol Biosci. 9:10198302022. View Article : Google Scholar : PubMed/NCBI

137 

Zheng Q, Yu X, Zhang M, Zhang S, Guo W and He Y: Current research progress of the role of LncRNA LEF1-AS1 in a variety of tumors. Front Cell Dev Biol. 9:7500842021. View Article : Google Scholar : PubMed/NCBI

138 

Tu J, Chen W, Zheng L, Fang S, Zhang D, Kong C, Yang Y, Qiu R, Zhao Z, Lu C, et al: Circular RNA Circ0021205 promotes cholangiocarcinoma progression through MiR-204-5p/RAB22A axis. Front Cell Dev Biol. 9:6532072021. View Article : Google Scholar : PubMed/NCBI

139 

Chen L, Wang Y, Lu X, Zhang L and Wang Z: miRNA-7062-5p promoting bone resorption after bone metastasis of colorectal cancer through inhibiting GPR65. Front Cell Dev Biol. 9:6819682021. View Article : Google Scholar : PubMed/NCBI

140 

Xiao J, Liu Y, Yi J and Liu X: LINC02257, an enhancer RNA of prognostic value in colon adenocarcinoma, correlates with multi-omics immunotherapy-related analysis in 33 cancers. Front Mol Biosci. 8:6467862021. View Article : Google Scholar : PubMed/NCBI

141 

Ma J, Lin X, Wang X, Min Q, Wang T and Tang C: Reconstruction and analysis of the immune-related LINC00987/A2M axis in lung adenocarcinoma. Front Mol Biosci. 8:6445572021. View Article : Google Scholar : PubMed/NCBI

142 

Huang K, Fang C, Yi K, Liu X, Qi H, Tan Y, Zhou J, Li Y, Liu M, Zhang Y, et al: The role of PTRF/Cavin1 as a biomarker in both glioma and serum exosomes. Theranostics. 8:1540–1557. 2018. View Article : Google Scholar : PubMed/NCBI

143 

Ayala-Mar S, Donoso-Quezada J and González-Valdez J: Clinical implications of exosomal PD-L1 in cancer immunotherapy. J Immunol Res. 2021:88399782021. View Article : Google Scholar : PubMed/NCBI

144 

Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B, Sun H, et al: Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 560:382–386. 2018. View Article : Google Scholar : PubMed/NCBI

145 

Rai A, Greening DW, Chen M, Xu R, Ji H and Simpson RJ: Exosomes derived from human primary and metastatic colorectal cancer cells contribute to functional heterogeneity of activated fibroblasts by reprogramming their proteome. Proteomics. 19:e18001482019. View Article : Google Scholar : PubMed/NCBI

146 

Berg G, Rybakova D, Fischer D, Cernava T, Vergès MC, Charles T, Chen X, Cocolin L, Eversole K, Corral GH, et al: Microbiome definition re-visited: Old concepts and new challenges. Microbiome. 8:1032020. View Article : Google Scholar : PubMed/NCBI

147 

AlHilli MM and Bae-Jump V: Diet and gut microbiome interactions in gynecologic cancer. Gynecol Oncol. 159:299–308. 2020. View Article : Google Scholar : PubMed/NCBI

148 

Anfossi S and Calin GA: Gut microbiota: A new player in regulating immune- and chemo-therapy efficacy. Cancer Drug Resist. 3:356–370. 2020.PubMed/NCBI

149 

De Almeida CV, de Camargo MR, Russo E and Amedei A: Role of diet and gut microbiota on colorectal cancer immunomodulation. World J Gastroenterol. 25:151–162. 2019. View Article : Google Scholar : PubMed/NCBI

150 

Di Modica M, Gargari G, Regondi V, Bonizzi A, Arioli S, Belmonte B, De Cecco L, Fasano E, Bianchi F, Bertolotti A, et al: Gut microbiota condition the therapeutic efficacy of trastuzumab in HER2-positive breast cancer. Cancer Res. 81:2195–2206. 2021. View Article : Google Scholar : PubMed/NCBI

151 

Liu L, Tabung FK, Zhang X, Nowak JA, Qian ZR, Hamada T, Nevo D, Bullman S, Mima K, Kosumi K, et al: Diets that promote colon inflammation associate with risk of colorectal carcinomas that contain Fusobacterium nucleatum. Clin Gastroenterol Hepatol. 16:1622–1631.e3. 2018. View Article : Google Scholar : PubMed/NCBI

152 

Ponziani FR, Nicoletti A, Gasbarrini A and Pompili M: Diagnostic and therapeutic potential of the gut microbiota in patients with early hepatocellular carcinoma. Ther Adv Med Oncol. 11:17588359198481842019. View Article : Google Scholar : PubMed/NCBI

153 

Rodríguez-García C, Sánchez-Quesada C, Algarra I and Gaforio JJ: The high-fat diet based on extra-virgin olive oil causes dysbiosis linked to colorectal cancer prevention. Nutrients. 12:17052020. View Article : Google Scholar : PubMed/NCBI

154 

Laplane L, Duluc D, Bikfalvi A, Larmonier N and Pradeu T: Beyond the tumour microenvironment. Int J Cancer. 145:2611–2618. 2019. View Article : Google Scholar : PubMed/NCBI

155 

Chakladar J, Kuo SZ, Castaneda G, Li WT, Gnanasekar A, Yu MA, Chang EY, Wang XQ and Ongkeko WM: The pancreatic microbiome is associated with carcinogenesis and worse prognosis in males and smokers. Cancers (Basel). 12:26722020. View Article : Google Scholar : PubMed/NCBI

156 

Chandel D, Sharma M, Chawla V, Sachdeva N and Shukla G: Isolation, characterization and identification of antigenotoxic and anticancerous indigenous probiotics and their prophylactic potential in experimental colon carcinogenesis. Sci Rep. 9:147692019. View Article : Google Scholar : PubMed/NCBI

157 

Clanton R, Saucier D, Ford J and Akabani G: Microbial influences on hormesis, oncogenesis, and therapy: A review of the literature. Environ Res. 142:239–256. 2015. View Article : Google Scholar : PubMed/NCBI

158 

Guo W, Zhang Y, Guo S, Mei Z, Liao H, Dong H, Wu K, Ye H, Zhang Y, Zhu Y, et al: Tumor microbiome contributes to an aggressive phenotype in the basal-like subtype of pancreatic cancer. Commun Biol. 4:10192021. View Article : Google Scholar : PubMed/NCBI

159 

Huang H, Ren Z, Gao X, Hu X, Zhou Y, Jiang J, Lu H, Yin S, Ji J, Zhou L and Zheng S: Integrated analysis of microbiome and host transcriptome reveals correlations between gut microbiota and clinical outcomes in HBV-related hepatocellular carcinoma. Genome Med. 12:1022020. View Article : Google Scholar : PubMed/NCBI

160 

Ingman WV: The gut microbiome: A new player in breast cancer metastasis. Cancer Res. 79:3539–3541. 2019. View Article : Google Scholar : PubMed/NCBI

161 

Jenkins SV, Robeson MS II, Griffin RJ, Quick CM, Siegel ER, Cannon MJ, Vang KB and Dings RPM: Gastrointestinal tract dysbiosis enhances distal tumor progression through suppression of leukocyte trafficking. Cancer Res. 79:5999–6009. 2019. View Article : Google Scholar : PubMed/NCBI

162 

Li L, Deng X, Zou Y, Lv X and Guo Y: Characterization of the nasopharynx microbiota in patients with nasopharyngeal carcinoma vs healthy controls. Braz J Microbiol. 52:1873–1880. 2021. View Article : Google Scholar : PubMed/NCBI

163 

Liu HX, Tao LL, Zhang J, Zhu YG, Zheng Y, Liu D, Zhou M, Ke H, Shi MM and Qu JM: Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects. Int J Cancer. 142:769–778. 2018. View Article : Google Scholar : PubMed/NCBI

164 

Tzeng A, Sangwan N, Jia M, Liu CC, Keslar KS, Downs-Kelly E, Fairchild RL, Al-Hilli Z, Grobmyer SR and Eng C: Human breast microbiome correlates with prognostic features and immunological signatures in breast cancer. Genome Med. 13:602021. View Article : Google Scholar : PubMed/NCBI

165 

Livyatan I, Nejman D, Shental N and Straussman R: Characterization of the human tumor microbiome reveals tumor-type specific intra-cellular bacteria. Oncoimmunology. 9:18009572020. View Article : Google Scholar : PubMed/NCBI

166 

Burns MB, Lynch J, Starr TK, Knights D and Blekhman R: Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment. Genome Med. 7:552015. View Article : Google Scholar : PubMed/NCBI

167 

Burns MB, Montassier E, Abrahante J, Priya S, Niccum DE, Khoruts A, Starr TK, Knights D and Blekhman R: Colorectal cancer mutational profiles correlate with defined microbial communities in the tumor microenvironment. PLoS Genet. 14:e10073762018. View Article : Google Scholar : PubMed/NCBI

168 

Lee JA, Yoo SY, Oh HJ, Jeong S, Cho NY, Kang GH and Kim JH: Differential immune microenvironmental features of microsatellite-unstable colorectal cancers according to Fusobacterium nucleatum status. Cancer Immunol Immunother. 70:47–59. 2021. View Article : Google Scholar : PubMed/NCBI

169 

Liu W, Zhang R, Shu R, Yu J, Li H, Long H, Jin S, Li S, Hu Q, Yao F, et al: Study of the relationship between microbiome and colorectal cancer susceptibility using 16SrRNA sequencing. Biomed Res Int. 2020:78283922020.PubMed/NCBI

170 

Liu X, Shao L, Liu X, Ji F, Mei Y, Cheng Y, Liu F, Yan C, Li L and Ling Z: Alterations of gastric mucosal microbiota across different stomach microhabitats in a cohort of 276 patients with gastric cancer. EBioMedicine. 40:336–348. 2019. View Article : Google Scholar : PubMed/NCBI

171 

Oresta B, Braga D, Lazzeri M, Frego N, Saita A, Faccani C, Fasulo V, Colombo P, Guazzoni G, Hurle R and Rescigno M: The microbiome of catheter collected urine in males with bladder cancer according to disease stage. J Urol. 205:86–93. 2021. View Article : Google Scholar : PubMed/NCBI

172 

Wu P, Zhang G, Zhao J, Chen J, Chen Y, Huang W, Zhong J and Zeng J: Profiling the urinary microbiota in male patients with bladder cancer in China. Front Cell Infect Microbiol. 8:1672018. View Article : Google Scholar : PubMed/NCBI

173 

Yin J, Dong L, Zhao J, Wang H, Li J, Yu A, Chen W and Wei W: Composition and consistence of the bacterial microbiome in upper, middle and lower esophagus before and after Lugol's iodine staining in the esophagus cancer screening. Scand J Gastroenterol. 55:1467–1474. 2020. View Article : Google Scholar : PubMed/NCBI

174 

Minarovits J: Anaerobic bacterial communities associated with oral carcinoma: Intratumoral, surface-biofilm and salivary microbiota. Anaerobe. 68:1023002021. View Article : Google Scholar : PubMed/NCBI

175 

Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J, et al: Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22:292–298. 2012. View Article : Google Scholar : PubMed/NCBI

176 

Thomas AM, Jesus EC, Lopes A, Aguiar S Jr, Begnami MD, Rocha RM, Carpinetti PA, Camargo AA, Hoffmann C, Freitas HC, et al: Tissue-associated bacterial alterations in rectal carcinoma patients revealed by 16S rRNA community profiling. Front Cell Infect Microbiol. 6:1792016. View Article : Google Scholar : PubMed/NCBI

177 

Thompson KJ, Ingle JN, Tang X, Chia N, Jeraldo PR, Walther-Antonio MR, Kandimalla KK, Johnson S, Yao JZ, Harrington SC, et al: A comprehensive analysis of breast cancer microbiota and host gene expression. PLoS One. 12:e01888732017. View Article : Google Scholar : PubMed/NCBI

178 

Cavarretta I, Ferrarese R, Cazzaniga W, Saita D, Lucianò R, Ceresola ER, Locatelli I, Visconti L, Lavorgna G, Briganti A, et al: The microbiome of the prostate tumor microenvironment. Eur Urol. 72:625–631. 2017. View Article : Google Scholar : PubMed/NCBI

179 

Duan H, Chen L, Qu L, Yang H, Song SW, Han Y, Ye M, Chen W, He X and Shou C: Mycoplasma hyorhinis infection promotes NF-κB-dependent migration of gastric cancer cells. Cancer Res. 74:5782–5794. 2014. View Article : Google Scholar : PubMed/NCBI

180 

Duan H, Qu L and Shou C: Mycoplasma hyorhinis induces epithelial-mesenchymal transition in gastric cancer cell MGC803 via TLR4-NF-κB signaling. Cancer Lett. 354:447–454. 2014. View Article : Google Scholar : PubMed/NCBI

181 

Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, Nejman D, Gavert N, Zwang Y, Cooper ZA, Shee K, et al: Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science. 357:1156–1160. 2017. View Article : Google Scholar : PubMed/NCBI

182 

Huang S, Li JY, Wu J, Meng L and Shou CC: Mycoplasma infections and different human carcinomas. World J Gastroenterol. 7:266–269. 2001. View Article : Google Scholar : PubMed/NCBI

183 

Liu D, Hu Y, Guo Y, Zhu Z, Lu B, Wang X and Huang Y: Mycoplasma-associated multidrug resistance of hepatocarcinoma cells requires the interaction of P37 and Annexin A2. PLoS One. 12:e01845782017. View Article : Google Scholar : PubMed/NCBI

184 

Liu X, Rong Z and Shou C: Mycoplasma hyorhinis infection promotes gastric cancer cell motility via β-catenin signaling. Cancer Med. 8:5301–5312. 2019. View Article : Google Scholar : PubMed/NCBI

185 

Xu Y, Li H, Chen W, Yao X, Xing Y, Wang X, Zhong J and Meng G: Mycoplasma hyorhinis activates the NLRP3 inflammasome and promotes migration and invasion of gastric cancer cells. PLoS One. 8:e779552013. View Article : Google Scholar : PubMed/NCBI

186 

Gedye C, Cardwell T, Dimopoulos N, Tan BS, Jackson H, Svobodová S, Anaka M, Behren A, Maher C, Hofmann O, et al: Mycoplasma infection alters cancer stem cell properties in vitro. Stem Cell Rev Rep. 12:156–161. 2016. View Article : Google Scholar : PubMed/NCBI

187 

Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI

188 

Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI

189 

Franco OE, Shaw AK, Strand DW and Hayward SW: Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol. 21:33–39. 2010. View Article : Google Scholar : PubMed/NCBI

190 

Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, Andreeff M and Marini F: Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One. 4:e49922009. View Article : Google Scholar : PubMed/NCBI

191 

Erez N, Truitt M, Olson P, Arron ST and Hanahan D: Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell. 17:135–147. 2010. View Article : Google Scholar : PubMed/NCBI

192 

Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, et al: Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 487:500–504. 2012. View Article : Google Scholar : PubMed/NCBI

193 

Zhou Z, Zhou Q, Wu X, Xu S, Hu X, Tao X, Li B, Peng J, Li D, Shen L, et al: VCAM-1 secreted from cancer-associated fibroblasts enhances the growth and invasion of lung cancer cells through AKT and MAPK signaling. Cancer Lett. 473:62–73. 2020. View Article : Google Scholar : PubMed/NCBI

194 

Li F, Zhao S, Guo T, Li J and Gu C: The nutritional cytokine leptin promotes NSCLC by activating the PI3K/AKT and MAPK/ERK pathways in NSCLC cells in a paracrine manner. Biomed Res Int. 2019:25857432019.PubMed/NCBI

195 

Folkman J, Watson K, Ingber D and Hanahan D: Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature. 339:58–61. 1989. View Article : Google Scholar : PubMed/NCBI

196 

Hanahan D and Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 86:353–364. 1996. View Article : Google Scholar : PubMed/NCBI

197 

Butler JM, Kobayashi H and Rafii S: Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer. 10:138–146. 2010. View Article : Google Scholar : PubMed/NCBI

198 

Balkwill F, Charles KA and Mantovani A: Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 7:211–217. 2005. View Article : Google Scholar : PubMed/NCBI

199 

Lu P, Takai K, Weaver VM and Werb Z: Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 3:a0050582011. View Article : Google Scholar : PubMed/NCBI

200 

Pontiggia O, Sampayo R, Raffo D, Motter A, Xu R, Bissell MJ, Joffé EB and Simian M: The tumor microenvironment modulates tamoxifen resistance in breast cancer: A role for soluble stromal factors and fibronectin through β1 integrin. Breast Cancer Res Treat. 133:459–471. 2012. View Article : Google Scholar : PubMed/NCBI

201 

Mohamed MM and Sloane BF: Cysteine cathepsins: Multifunctional enzymes in cancer. Nat Rev Cancer. 6:764–775. 2006. View Article : Google Scholar : PubMed/NCBI

202 

Xu R, Boudreau A and Bissell MJ: Tissue architecture and function: Dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev. 28:167–176. 2009. View Article : Google Scholar : PubMed/NCBI

203 

Goulet CR and Pouliot F: TGFβ signaling in the tumor microenvironment. Adv Exp Med Biol. 1270:89–105. 2021. View Article : Google Scholar : PubMed/NCBI

204 

Hou W, Kaczorowski A, Lantwin P, Kippenberger M, Schütz V, Franke D, Dieffenbacher SC, Hohenfellner M and Duensing S: Microenvironment-derived FGF-2 stimulates renal cell carcinoma cell proliferation through modulation of p27Kip1: Implications for spatial niche formation and functional intratumoral heterogeneity. Pathobiology. 87:114–124. 2020. View Article : Google Scholar : PubMed/NCBI

205 

Zou F, Zhang ZH, Zhang YT, Zhao JQ, Zhang XL, Wen CL, Song XY and Zhou WM: Cancer-associated-fibroblasts regulate the chemoresistance of lung cancer cell line A549 via SDF-1 secretion. Zhonghua Zhong Liu Za Zhi. 39:339–343. 2017.(In Chinese). PubMed/NCBI

206 

Wang H, Huang H, Wang L, Liu Y, Wang M, Zhao S, Lu G and Kang X: Cancer-associated fibroblasts secreted miR-103a-3p suppresses apoptosis and promotes cisplatin resistance in non-small cell lung cancer. Aging (Albany NY). 13:14456–14468. 2021. View Article : Google Scholar : PubMed/NCBI

207 

Sun X and Chen Z: Cancer-associated fibroblast-derived CCL5 contributes to cisplatin resistance in A549 NSCLC cells partially through upregulation of lncRNA HOTAIR expression. Oncol Lett. 22:6962021. View Article : Google Scholar : PubMed/NCBI

208 

Tao L, Huang G, Wang R, Pan Y, He Z, Chu X, Song H and Chen L: Cancer-associated fibroblasts treated with cisplatin facilitates chemoresistance of lung adenocarcinoma through IL-11/IL-11R/STAT3 signaling pathway. Sci Rep. 6:384082016. View Article : Google Scholar : PubMed/NCBI

209 

Bian L, Sun X, Jin K and He Y: Oral cancer-associated fibroblasts inhibit heat-induced apoptosis in Tca8113 cells through upregulated expression of Bcl-2 through the Mig/CXCR3 axis. Oncol Rep. 28:2063–2068. 2012. View Article : Google Scholar : PubMed/NCBI

210 

Daenen LG, Shaked Y, Man S, Xu P, Voest EE, Hoffman RM, Chaplin DJ and Kerbel RS: Low-dose metronomic cyclophosphamide combined with vascular disrupting therapy induces potent antitumor activity in preclinical human tumor xenograft models. Mol Cancer Ther. 8:2872–2881. 2009. View Article : Google Scholar : PubMed/NCBI

211 

Chen Q, Zhang XHF and Massagué J: Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell. 20:538–549. 2011. View Article : Google Scholar : PubMed/NCBI

212 

Yang C, He L, He P, Liu Y, Wang W, He Y, Du Y and Gao F: Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway. Med Oncol. 32:3522015. View Article : Google Scholar : PubMed/NCBI

213 

Harley CB, Kim NW, Prowse KR, Weinrich SL, Hirsch KS, West MD, Bacchetti S, Hirte HW, Counter CM, Greider CW, et al: Telomerase, cell immortality, and cancer. Cold Spring Harb Symp Quant Biol. 59:307–315. 1994. View Article : Google Scholar : PubMed/NCBI

214 

Jäger K and Walter M: Therapeutic targeting of telomerase. Genes (Basel). 7:392016. View Article : Google Scholar : PubMed/NCBI

215 

Ge Y, Wu S, Xue Y, Tao J, Li F, Chen Y, Liu H, Ma W, Huang J and Zhao Y: Preferential extension of short telomeres induced by low extracellular pH. Nucleic Acids Res. 44:8086–8096. 2016. View Article : Google Scholar : PubMed/NCBI

216 

Li S, Jiang Y, Li A, Liu X, Xing X, Guo Y, Xu Y, Hao Y and Zheng C: Telomere length is positively associated with the expression of IL-6 and MIP-1α in bone marrow mesenchymal stem cells of multiple myeloma. Mol Med Rep. 16:2497–2504. 2017. View Article : Google Scholar : PubMed/NCBI

217 

Lin EY, Li JF, Bricard G, Wang W, Deng Y, Sellers R, Porcelli SA and Pollard JW: Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Mol Oncol. 1:288–302. 2007. View Article : Google Scholar : PubMed/NCBI

218 

Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z and Hanahan D: Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2:737–744. 2000. View Article : Google Scholar : PubMed/NCBI

219 

Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z, Caughey GH and Hanahan D: Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 13:1382–1397. 1999. View Article : Google Scholar : PubMed/NCBI

220 

Khazaie K, Blatner NR, Khan MW, Gounari F, Gounaris E, Dennis K, Bonertz A, Tsai FN, Strouch MJ, Cheon E, et al: The significant role of mast cells in cancer. Cancer Metastasis Rev. 30:45–60. 2011. View Article : Google Scholar : PubMed/NCBI

221 

Huang B, Huang M and Li Q: Cancer-associated fibroblasts promote angiogenesis of hepatocellular carcinoma by VEGF-mediated EZH2/VASH1 pathway. Technol Cancer Res Treat. 18:15330338198799052019. View Article : Google Scholar : PubMed/NCBI

222 

Räsänen K and Vaheri A: Activation of fibroblasts in cancer stroma. Exp Cell Res. 316:2713–2722. 2010. View Article : Google Scholar : PubMed/NCBI

223 

Huizer K, Zhu C, Chirifi I, Krist B, Zorgman D, van der Weiden M, van den Bosch TPP, Dumas J, Cheng C, Kros JM and Mustafa DA: Periostin is expressed by pericytes and is crucial for angiogenesis in glioma. J Neuropathol Exp Neurol. 79:863–872. 2020. View Article : Google Scholar : PubMed/NCBI

224 

Xian X, Håkansson J, Ståhlberg A, Lindblom P, Betsholtz C, Gerhardt H and Semb H: Pericytes limit tumor cell metastasis. J Clin Invest. 116:642–651. 2006. View Article : Google Scholar : PubMed/NCBI

225 

Branco-Price C, Zhang N, Schnelle M, Evans C, Katschinski DM, Liao D, Ellies L and Johnson RS: Endothelial cell HIF-1α and HIF-2α differentially regulate metastatic success. Cancer Cell. 21:52–65. 2012. View Article : Google Scholar : PubMed/NCBI

226 

Navarro R, Tapia-Galisteo A, Martín-García L, Tarín C, Corbacho C, Gómez-López G, Sánchez-Tirado E, Campuzano S, González-Cortés A, Yáñez-Sedeño P, et al: TGF-β-induced IGFBP-3 is a key paracrine factor from activated pericytes that promotes colorectal cancer cell migration and invasion. Mol Oncol. 14:2609–2628. 2020. View Article : Google Scholar : PubMed/NCBI

227 

Pirilä E, Ramamurthy NS, Sorsa T, Salo T, Hietanen J and Maisi P: Gelatinase A (MMP-2), collagenase-2 (MMP-8), and laminin-5 gamma2-chain expression in murine inflammatory bowel disease (ulcerative colitis). Dig Dis Sci. 48:93–98. 2003. View Article : Google Scholar : PubMed/NCBI

228 

Vasiljeva O, Papazoglou A, Krüger A, Brodoefel H, Korovin M, Deussing J, Augustin N, Nielsen BS, Almholt K, Bogyo M, et al: Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res. 66:5242–5250. 2006. View Article : Google Scholar : PubMed/NCBI

229 

Balkwill F: Tumour necrosis factor and cancer. Nat Rev Cancer. 9:361–371. 2009. View Article : Google Scholar : PubMed/NCBI

230 

Abraham S, Zhang W, Greenberg N and Zhang M: Maspin functions as tumor suppressor by increasing cell adhesion to extracellular matrix in prostate tumor cells. J Urol. 169:1157–1161. 2003. View Article : Google Scholar : PubMed/NCBI

231 

Gorden DL, Fingleton B, Crawford HC, Jansen DE, Lepage M and Matrisian LM: Resident stromal cell-derived MMP-9 promotes the growth of colorectal metastases in the liver microenvironment. Int J Cancer. 121:495–500. 2007. View Article : Google Scholar : PubMed/NCBI

232 

Labelle M, Begum S and Hynes RO: Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 20:576–590. 2011. View Article : Google Scholar : PubMed/NCBI

233 

Chaffer CL and Weinberg RA: A perspective on cancer cell metastasis. Science. 331:1559–1564. 2011. View Article : Google Scholar : PubMed/NCBI

234 

Zhang XHF, Jin X, Malladi S, Zou Y, Wen YH, Brogi E, Smid M, Foekens JA and Massagué J: Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell. 154:1060–1073. 2013. View Article : Google Scholar : PubMed/NCBI

235 

Duda DG, Duyverman AMMJ, Kohno M, Snuderl M, Steller EJA, Fukumura D and Jain RK: Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci USA. 107:21677–21682. 2010. View Article : Google Scholar : PubMed/NCBI

236 

Lappano R, Rigiracciolo DC, Belfiore A, Maggiolini M and De Francesco EM: Cancer associated fibroblasts: Role in breast cancer and potential as therapeutic targets. Expert Opin Ther Targets. 24:559–572. 2020. View Article : Google Scholar : PubMed/NCBI

237 

Onrust SV, Hartl PM, Rosen SD and Hanahan D: Modulation of L-selectin ligand expression during an immune response accompanying tumorigenesis in transgenic mice. J Clin Invest. 97:54–64. 1996. View Article : Google Scholar : PubMed/NCBI

238 

Fisher DT, Chen Q, Skitzki JJ, Muhitch JB, Zhou L, Appenheimer MM, Vardam TD, Weis EL, Passanese J, Wang WC, et al: IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells. J Clin Invest. 121:3846–3859. 2011. View Article : Google Scholar : PubMed/NCBI

239 

Manzur M, Hamzah J and Ganss R: Modulation of the ‘blood-tumor’ barrier improves immunotherapy. Cell Cycle. 7:2452–2455. 2008. View Article : Google Scholar : PubMed/NCBI

240 

Turley SJ, Cremasco V and Astarita JL: Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 15:669–682. 2015. View Article : Google Scholar : PubMed/NCBI

241 

Stover DG, Bierie B and Moses HL: A delicate balance: TGF-beta and the tumor microenvironment. J Cell Biochem. 101:851–861. 2007. View Article : Google Scholar : PubMed/NCBI

242 

DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, et al: Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1:54–67. 2011. View Article : Google Scholar : PubMed/NCBI

243 

Qian BZ and Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell. 141:39–51. 2010. View Article : Google Scholar : PubMed/NCBI

244 

Topalian SL, Drake CG and Pardoll DM: Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol. 24:207–212. 2012. View Article : Google Scholar : PubMed/NCBI

245 

Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, et al: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 10:942–949. 2004. View Article : Google Scholar : PubMed/NCBI

246 

van der Vliet HJJ, Koon HB, Atkins MB, Balk SP and Exley MA: Exploiting regulatory T-cell populations for the immunotherapy of cancer. J Immunother. 30:591–595. 2007. View Article : Google Scholar : PubMed/NCBI

247 

Schmidt A, Oberle N and Krammer P: Molecular mechanisms of treg-mediated T cell suppression. Front Immunol. 3:512012. View Article : Google Scholar : PubMed/NCBI

248 

Kalyanaraman B: Teaching the basics of cancer metabolism: Developing antitumor strategies by exploiting the differences between normal and cancer cell metabolism. Redox Biol. 12:833–842. 2017. View Article : Google Scholar : PubMed/NCBI

249 

Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, Jiang L, Ko B, Skelton R, Loudat L, et al: Metabolic heterogeneity in human lung tumors. Cell. 164:681–694. 2016. View Article : Google Scholar : PubMed/NCBI

250 

Yu TJ, Ma D, Liu YY, Xiao Y, Gong Y, Jiang YZ, Shao ZM, Hu X and Di GH: Bulk and single-cell transcriptome profiling reveal the metabolic heterogeneity in human breast cancers. Mol Ther. 29:2350–2365. 2021. View Article : Google Scholar : PubMed/NCBI

251 

Hao X, Ren Y, Feng M, Wang Q and Wang Y: Metabolic reprogramming due to hypoxia in pancreatic cancer: Implications for tumor formation, immunity, and more. Biomed Pharmacother. 141:1117982021. View Article : Google Scholar : PubMed/NCBI

252 

Kim J and DeBerardinis RJ: Mechanisms and implications of metabolic heterogeneity in cancer. Cell Metab. 30:434–446. 2019. View Article : Google Scholar : PubMed/NCBI

253 

Xiao Z, Dai Z and Locasale JW: Metabolic landscape of the tumor microenvironment at single cell resolution. Nat Commun. 10:37632019. View Article : Google Scholar : PubMed/NCBI

254 

Stadlbauer A, Oberndorfer S, Zimmermann M, Renner B, Buchfelder M, Heinz G, Doerfler A, Kleindienst A and Roessler K: Physiologic MR imaging of the tumor microenvironment revealed switching of metabolic phenotype upon recurrence of glioblastoma in humans. J Cereb Blood Flow Metab. 40:528–538. 2020. View Article : Google Scholar : PubMed/NCBI

255 

Gupta S, Roy A and Dwarakanath BS: Metabolic cooperation and competition in the tumor microenvironment: Implications for therapy. Front Oncol. 7:682017. View Article : Google Scholar : PubMed/NCBI

256 

Martinez-Outschoorn U, Sotgia F and Lisanti MP: Tumor microenvironment and metabolic synergy in breast cancers: Critical importance of mitochondrial fuels and function. Semin Oncol. 41:1952014. View Article : Google Scholar : PubMed/NCBI

257 

Ocaña MC, Martínez-Poveda B, Quesada AR and Medina MÁ: Metabolism within the tumor microenvironment and its implication on cancer progression: An ongoing therapeutic target. Med Res Rev. 39:70–113. 2019. View Article : Google Scholar : PubMed/NCBI

258 

Wang YA, Li XL, Mo YZ, Fan CM, Tang L, Xiong F, Guo C, Xiang B, Zhou M, Ma J, et al: Effects of tumor metabolic microenvironment on regulatory T cells. Mol Cancer. 17:1682018. View Article : Google Scholar : PubMed/NCBI

259 

Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, et al: The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 8:3984–4001. 2009. View Article : Google Scholar : PubMed/NCBI

260 

Reina-Campos M, Moscat J and Diaz-Meco M: Metabolism shapes the tumor microenvironment. Curr Opin Cell Biol. 48:47–53. 2017. View Article : Google Scholar : PubMed/NCBI

261 

Dietl K, Renner K, Dettmer K, Timischl B, Eberhart K, Dorn C, Hellerbrand C, Kastenberger M, Kunz-Schughart LA, Oefner PJ, et al: Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J Immunol. 184:1200–1209. 2010. View Article : Google Scholar : PubMed/NCBI

262 

Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, Ertel A, Flomenberg N, Witkiewicz AK, Birbe RC, Howell A, Pavlides S, Gandara R, et al: Evidence for a stromal-epithelial ‘lactate shuttle’ in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle. 10:1772–1783. 2011. View Article : Google Scholar : PubMed/NCBI

263 

Alberts B, Johnson A, Lewis J, Raff M, Roberts K and Walter P: Molecular biology of the cell. 4th edition. New York: Garland Science; 2002

264 

Deberardinis RJ, Sayed N, Ditsworth D and Thompson CB: Brick by brick: Metabolism and tumor cell growth. Curr Opin Genet Dev. 18:54–61. 2008. View Article : Google Scholar : PubMed/NCBI

265 

Yoshida GJ: Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res. 34:1112015. View Article : Google Scholar : PubMed/NCBI

266 

Koundouros N and Poulogiannis G: Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 122:4–22. 2020. View Article : Google Scholar : PubMed/NCBI

267 

Michalopoulou E, Bulusu V and Kamphorst JJ: Metabolic scavenging by cancer cells: When the going gets tough, the tough keep eating. Br J Cancer. 115:635–640. 2016. View Article : Google Scholar : PubMed/NCBI

268 

Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI

269 

Dey P, Kimmelman AC and DePinho RA: Metabolic codependencies in the tumor microenvironment. Cancer Discov. 11:1067–1081. 2021. View Article : Google Scholar : PubMed/NCBI

270 

Bailey KM, Wojtkowiak JW, Hashim AI and Gillies RJ: Targeting the metabolic microenvironment of tumors. Adv Pharmacol. 65:63–107. 2012. View Article : Google Scholar : PubMed/NCBI

271 

Sormendi S and Wielockx B: Hypoxia pathway proteins as central mediators of metabolism in the tumor cells and their microenvironment. Front Immunol. 9:402018. View Article : Google Scholar : PubMed/NCBI

272 

Devic S: Warburg effect-a consequence or the cause of carcinogenesis? J Cancer. 7:817–822. 2016. View Article : Google Scholar : PubMed/NCBI

273 

Cairns RA: Drivers of the Warburg phenotype. Cancer J. 21:56–61. 2015. View Article : Google Scholar : PubMed/NCBI

274 

El Hassouni B, Granchi C, Vallés-Martí A, Supadmanaba IGP, Bononi G, Tuccinardi T, Funel N, Jimenez CR, Peters GJ, Giovannetti E and Minutolo F: The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies. Semin Cancer Biol. 60:238–248. 2020. View Article : Google Scholar : PubMed/NCBI

275 

Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ, et al: Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 162:1229–1241. 2015. View Article : Google Scholar : PubMed/NCBI

276 

DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S and Thompson CB: Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA. 104:19345–19350. 2007. View Article : Google Scholar : PubMed/NCBI

277 

Carito V, Bonuccelli G, Martinez-Outschoorn UE, Whitaker-Menezes D, Caroleo MC, Cione E, Howell A, Pestell RG, Lisanti MP and Sotgia F: Metabolic remodeling of the tumor microenvironment: Migration factor (MSF) reprograms myofibroblasts toward lactate production, fueling anabolic tumor growthstimulating. Cell Cycle. 11:3403–3414. 2012. View Article : Google Scholar : PubMed/NCBI

278 

Manning BD and Toker A: AKT/PKB signaling: Navigating the network. Cell. 169:381–405. 2017. View Article : Google Scholar : PubMed/NCBI

279 

Dang CV: MYC on the path to cancer. Cell. 149:22–35. 2012. View Article : Google Scholar : PubMed/NCBI

280 

Stine ZE, Walton ZE, Altman BJ, Hsieh AL and Dang CV: MYC, metabolism, and cancer. Cancer Discov. 5:1024–1039. 2015. View Article : Google Scholar : PubMed/NCBI

281 

Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, Xu Y, Wonsey D, Lee LA and Dang CV: Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem. 275:21797–21800. 2000. View Article : Google Scholar : PubMed/NCBI

282 

Zhao X, Petrashen AP, Sanders JA, Peterson AL and Sedivy JM: SLC1A5 glutamine transporter is a target of MYC and mediates reduced mTORC1 signaling and increased fatty acid oxidation in long-lived Myc hypomorphic mice. Aging Cell. 18:e129472019. View Article : Google Scholar : PubMed/NCBI

283 

Sasaki H, Shitara M, Yokota K, Hikosaka Y, Moriyama S, Yano M and Fujii Y: Overexpression of GLUT1 correlates with Kras mutations in lung carcinomas. Mol Med Rep. 5:599–602. 2012.PubMed/NCBI

284 

Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, et al: Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 149:656–670. 2012. View Article : Google Scholar : PubMed/NCBI

285 

Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, Perera RM, Ferrone CR, Mullarky E, Shyh-Chang N, et al: Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 496:101–105. 2013. View Article : Google Scholar : PubMed/NCBI

286 

Baek G, Tse YF, Hu Z, Cox D, Buboltz N, McCue P, Yeo CJ, White MA, DeBerardinis RJ, Knudsen ES and Witkiewicz AK: MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies. Cell Rep. 9:2233–2249. 2014. View Article : Google Scholar : PubMed/NCBI

287 

Dey P, Li J, Zhang J, Chaurasiya S, Strom A, Wang H, Liao WT, Cavallaro F, Denz P, Bernard V, et al: Oncogenic KRAS-driven metabolic reprogramming in pancreatic cancer cells utilizes cytokines from the tumor microenvironment. Cancer Discov. 10:608–625. 2020. View Article : Google Scholar : PubMed/NCBI

288 

Amendola CR, Mahaffey JP, Parker SJ, Ahearn IM, Chen WC, Zhou M, Court H, Shi J, Mendoza SL, Morten MJ, et al: KRAS4A directly regulates hexokinase 1. Nature. 576:482–486. 2019. View Article : Google Scholar : PubMed/NCBI

289 

Zhang Y and Commisso C: Macropinocytosis in cancer: A complex signaling network. Trends Cancer. 5:332–334. 2019. View Article : Google Scholar : PubMed/NCBI

290 

Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M, Drebin JA, Thompson CB, et al: Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 497:633–637. 2013. View Article : Google Scholar : PubMed/NCBI

291 

Schwartzenberg-Bar-Yoseph F, Armoni M and Karnieli E: The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 64:2627–2633. 2004. View Article : Google Scholar : PubMed/NCBI

292 

Wang L, Xiong H, Wu F, Zhang Y, Wang J, Zhao L, Guo X, Chang LJ, Zhang Y, You MJ, et al: Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth. Cell Rep. 8:1461–1474. 2014. View Article : Google Scholar : PubMed/NCBI

293 

Yahagi N, Shimano H, Matsuzaka T, Najima Y, Sekiya M, Nakagawa Y, Ide T, Tomita S, Okazaki H, Tamura Y, et al: p53 activation in adipocytes of obese mice. J Biol Chem. 278:25395–25400. 2003. View Article : Google Scholar : PubMed/NCBI

294 

Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E and Vousden KH: TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 126:107–120. 2006. View Article : Google Scholar : PubMed/NCBI

295 

Sonugür FG and Akbulut H: The role of tumor microenvironment in genomic instability of malignant tumors. Front Genet. 10:10632019. View Article : Google Scholar : PubMed/NCBI

296 

Nakamura H, Tanimoto K, Hiyama K, Yunokawa M, Kawamoto T, Kato Y, Yoshiga K, Poellinger L, Hiyama E and Nishiyama M: Human mismatch repair gene, MLH1, is transcriptionally repressed by the hypoxia-inducible transcription factors, DEC1 and DEC2. Oncogene. 27:4200–4209. 2008. View Article : Google Scholar : PubMed/NCBI

297 

Rodríguez-Jiménez FJ, Moreno-Manzano V, Lucas-Dominguez R and Sánchez-Puelles JM: Hypoxia causes downregulation of mismatch repair system and genomic instability in stem cells. Stem Cells. 26:2052–2062. 2008. View Article : Google Scholar : PubMed/NCBI

298 

Ren Z, Wang Z, Gu D, Ma H, Zhu Y, Cai M and Zhang J: Genome instability and long noncoding RNA reveal biomarkers for immunotherapy and prognosis and novel competing endogenous RNA mechanism in colon adenocarcinoma. Front Cell Dev Biol. 9:7404552021. View Article : Google Scholar : PubMed/NCBI

299 

Guo JN, Xia TY, Deng SH, Xue WN, Cui BB and Liu YL: Prognostic immunity and therapeutic sensitivity analyses based on differential genomic instability-associated LncRNAs in left- and right-sided colon adenocarcinoma. Front Mol Biosci. 8:6688882021. View Article : Google Scholar : PubMed/NCBI

300 

Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS and Albelda SM: Polarization of tumor-associated neutrophil phenotype by TGF-beta: ‘N1’ versus ‘N2’ TAN. Cancer Cell. 16:183–194. 2009. View Article : Google Scholar : PubMed/NCBI

301 

DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N and Coussens LM: CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 16:91–102. 2009. View Article : Google Scholar : PubMed/NCBI

302 

Schoppmann SF, Birner P, Stöckl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K, Alitalo K and Kerjaschki D: Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol. 161:947–956. 2002. View Article : Google Scholar : PubMed/NCBI

303 

Celis JE, Gromov P, Cabezón T, Moreira JM, Ambartsumian N, Sandelin K, Rank F and Gromova I: Proteomic characterization of the interstitial fluid perfusing the breast tumor microenvironment: A novel resource for biomarker and therapeutic target discovery. Mol Cell Proteomics. 3:327–344. 2004. View Article : Google Scholar : PubMed/NCBI

304 

Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, Wang YY, Meulle A, Salles B, Le Gonidec S, et al: Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 71:2455–2465. 2011. View Article : Google Scholar : PubMed/NCBI

305 

Ershaid N, Sharon Y, Doron H, Raz Y, Shani O, Cohen N, Monteran L, Leider-Trejo L, Ben-Shmuel A, Yassin M, et al: NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. Nat Commun. 10:43752019. View Article : Google Scholar : PubMed/NCBI

306 

Wu X, Tao P, Zhou Q, Li J, Yu Z, Wang X, Li J, Li C, Yan M, Zhu Z, et al: IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget. 8:20741–20750. 2017. View Article : Google Scholar : PubMed/NCBI

307 

Davidson S, Efremova M, Riedel A, Mahata B, Pramanik J, Huuhtanen J, Kar G, Vento-Tormo R, Hagai T, Chen X, et al: Single-cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth. Cell Rep. 31:1076282020. View Article : Google Scholar : PubMed/NCBI

308 

Erez N, Glanz S, Raz Y, Avivi C and Barshack I: Cancer associated fibroblasts express pro-inflammatory factors in human breast and ovarian tumors. Biochem Biophys Res Commun. 437:397–402. 2013. View Article : Google Scholar : PubMed/NCBI

309 

De Monte L, Reni M, Tassi E, Clavenna D, Papa I, Recalde H, Braga M, Di Carlo V, Doglioni C and Protti MP: Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med. 208:469–478. 2011. View Article : Google Scholar : PubMed/NCBI

310 

Bejarano L, Jordāo MJC and Joyce JA: Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11:933–959. 2021. View Article : Google Scholar : PubMed/NCBI

311 

Lieu CH, Tan AC, Leong S, Diamond JR and Eckhardt SG: From bench to bedside: Lessons learned in translating preclinical studies in cancer drug development. J Natl Cancer Inst. 105:1441–1456. 2013. View Article : Google Scholar : PubMed/NCBI

312 

Syed M, Flechsig P, Liermann J, Windisch P, Staudinger F, Akbaba S, Koerber SA, Freudlsperger C, Plinkert PK, Debus J, et al: Fibroblast activation protein inhibitor (FAPI) PET for diagnostics and advanced targeted radiotherapy in head and neck cancers. Eur J Nucl Med Mol Imaging. 47:2836–2845. 2020. View Article : Google Scholar : PubMed/NCBI

313 

Chen H, Pang Y, Wu J, Zhao L, Hao B, Wu J, Wei J, Wu S, Zhao L, Luo Z, et al: Comparison of [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer. Eur J Nucl Med Mol Imaging. 47:1820–1832. 2020. View Article : Google Scholar : PubMed/NCBI

314 

Melero I, Sanmamed MF, Calvo E, Moreno I, Moreno V, Hernandez Guerrero TC, Martinez-Garcia M, Rodriguez-Vida A, Tabernero J, Azaro Pedrazzoli AB, et al: 1025MO first-in-human (FIH) phase I study of RO7122290 (RO), a novel FAP-targeted 4-1BB agonist, administered as single agent and in combination with atezolizumab (ATZ) to patients with advanced solid tumours. Ann Oncol. 31 (Suppl 4):S7072020. View Article : Google Scholar

315 

Sounni NE and Noel A: Targeting the tumor microenvironment for cancer therapy. Clin Chem. 59:85–93. 2013. View Article : Google Scholar : PubMed/NCBI

316 

Lamberts LE, Koch M, de Jong JS, Adams ALL, Glatz J, Kranendonk MEG, Terwisscha van Scheltinga AGT, Jansen L, de Vries J, Lub-de Hooge MN, et al: Tumor-specific uptake of fluorescent bevacizumab-IRDye800CW microdosing in patients with primary breast cancer: A phase I feasibility study. Clin Cancer Res. 23:2730–2741. 2017. View Article : Google Scholar : PubMed/NCBI

317 

Harlaar NJ, Koller M, de Jongh SJ, van Leeuwen BL, Hemmer PH, Kruijff S, van Ginkel RJ, Been LB, de Jong JS, Kats-Ugurlu G, et al: Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: A single-centre feasibility study. Lancet Gastroenterol Hepatol. 1:283–290. 2016. View Article : Google Scholar : PubMed/NCBI

318 

Nakano K, Funauchi Y, Hayakawa K, Tanizawa T, Ae K, Matsumoto S and Takahashi S: Relative dose intensity of induction-phase pazopanib treatment of soft tissue sarcoma: Its relationship with prognoses of pazopanib responders. J Clin Med. 8:602019. View Article : Google Scholar : PubMed/NCBI

319 

Noda S, Yoshida T, Hira D, Murai R, Tomita K, Tsuru T, Kageyama S, Kawauchi A, Ikeda Y, Morita SY and Terada T: Exploratory investigation of target pazopanib concentration range for patients with renal cell carcinoma. Clin Genitourin Cancer. 17:e306–e313. 2019. View Article : Google Scholar : PubMed/NCBI

320 

Wang S, Lu J, You Q, Huang H, Chen Y and Liu K: The mTOR/AP-1/VEGF signaling pathway regulates vascular endothelial cell growth. Oncotarget. 7:53269–53276. 2016. View Article : Google Scholar : PubMed/NCBI

321 

Komohara Y, Fujiwara Y, Ohnishi K and Takeya M: Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev. 99:180–185. 2016. View Article : Google Scholar : PubMed/NCBI

322 

Bak SP, Walters JJ, Takeya M, Conejo-Garcia JR and Berwin BL: Scavenger receptor-A-targeted leukocyte depletion inhibits peritoneal ovarian tumor progression. Cancer Res. 67:4783–4789. 2007. View Article : Google Scholar : PubMed/NCBI

323 

Nagai T, Tanaka M, Tsuneyoshi Y, Xu B, Michie SA, Hasui K, Hirano H, Arita K and Matsuyama T: Targeting tumor-associated macrophages in an experimental glioma model with a recombinant immunotoxin to folate receptor beta. Cancer Immunol Immunother. 58:1577–1586. 2009. View Article : Google Scholar : PubMed/NCBI

324 

Naser R, Dilabazian H, Bahr H, Barakat A and El-Sibai M: A guide through conventional and modern cancer treatment modalities: A specific focus on glioblastoma cancer therapy (review). Oncol Rep. 48:1902022. View Article : Google Scholar : PubMed/NCBI

325 

Liu Y and Zheng P: Preserving the CTLA-4 checkpoint for safer and more effective cancer immunotherapy. Trends Pharmacol Sci. 41:4–12. 2020. View Article : Google Scholar : PubMed/NCBI

326 

Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, Sevillano M, Ibiza S, Cañellas A, Hernando-Momblona X, et al: TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 554:538–543. 2018. View Article : Google Scholar : PubMed/NCBI

327 

Greten FR, Arkan MC, Bollrath J, Hsu LC, Goode J, Miething C, Göktuna SI, Neuenhahn M, Fierer J, Paxian S, et al: NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell. 130:918–931. 2007. View Article : Google Scholar : PubMed/NCBI

328 

Marsh JL, Jackman CP, Tang SN, Shankar S and Srivastava RK: Embelin suppresses pancreatic cancer growth by modulating tumor immune microenvironment. Front Biosci (Landmark Ed). 19:113–125. 2014. View Article : Google Scholar : PubMed/NCBI

329 

Xu CL, Zheng B, Pei JH, Shen SJ and Wang JZ: Embelin induces apoptosis of human gastric carcinoma through inhibition of p38 MAPK and NF-κB signaling pathways. Mol Med Rep. 14:307–312. 2016. View Article : Google Scholar : PubMed/NCBI

330 

Waldmann TA: Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol. 10:a0284722018. View Article : Google Scholar : PubMed/NCBI

331 

Rosenberg SA, Restifo NP, Yang JC, Morgan RA and Dudley ME: Adoptive cell transfer: A clinical path to effective cancer immunotherapy. Nat Rev Cancer. 8:299–308. 2008. View Article : Google Scholar : PubMed/NCBI

332 

Redeker A and Arens R: Improving adoptive T cell therapy: The particular role of T cell costimulation, cytokines, and post-transfer vaccination. Front Immunol. 7:3452016. View Article : Google Scholar : PubMed/NCBI

333 

Chruściel E, Urban-Wójciuk Z, Arcimowicz Ł, Kurkowiak M, Kowalski J, Gliwiński M, Marjański T, Rzyman W, Biernat W, Dziadziuszko R, et al: Adoptive cell therapy-harnessing antigen-specific T cells to target solid tumours. Cancers (Basel). 12:6832020. View Article : Google Scholar : PubMed/NCBI

334 

Benmebarek MR, Karches CH, Cadilha BL, Lesch S, Endres S and Kobold S: Killing mechanisms of chimeric antigen receptor (CAR) T cells. Int J Mol Sci. 20:12832019. View Article : Google Scholar : PubMed/NCBI

335 

Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, Naranjo A, Starr R, Wagner J, Wright C, et al: Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res. 21:4062–4072. 2015. View Article : Google Scholar : PubMed/NCBI

336 

Xu S, Tang L, Li X, Fan F and Liu Z: Immunotherapy for glioma: Current management and future application. Cancer Lett. 476:1–12. 2020. View Article : Google Scholar : PubMed/NCBI

337 

Liu J, Fu M, Wang M, Wan D, Wei Y and Wei X: Cancer vaccines as promising immuno-therapeutics: Platforms and current progress. J Hematol Oncol. 15:282022. View Article : Google Scholar : PubMed/NCBI

338 

Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, Felt K, Gjini E, et al: Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 565:234–239. 2019. View Article : Google Scholar : PubMed/NCBI

339 

Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, Platten M, Tabatabai G, Dutoit V, van der Burg SH, et al: Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature. 565:240–245. 2019. View Article : Google Scholar : PubMed/NCBI

340 

Hollingsworth RE and Jansen K: Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 4:72019. View Article : Google Scholar : PubMed/NCBI

341 

Rüttinger D, Winter H, van den Engel NK, Hatz R, Jauch KW, Fox BA and Weber JS: Immunotherapy of cancer: Key findings and commentary on the third tegernsee conference. Oncologist. 15:112–118. 2010. View Article : Google Scholar : PubMed/NCBI

342 

AIVITA, Biomedical Inc., . AIVITA biomedical's phase 2 glioblastoma trial shows improved progression free survival. 2021.

343 

Busby J, McMenamin Ú, Spence A, Johnston BT, Hughes C and Cardwell CR: Angiotensin receptor blocker use and gastro-oesophageal cancer survival: A population-based cohort study. Aliment Pharmacol Ther. 47:279–288. 2018. View Article : Google Scholar : PubMed/NCBI

344 

Murphy JE, Wo JY, Ryan DP, Clark JW, Jiang W, Yeap BY, Drapek LC, Ly L, Baglini CV, Blaszkowsky LS, et al: Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: A phase 2 clinical trial. JAMA Oncol. 5:1020–1027. 2019. View Article : Google Scholar : PubMed/NCBI

345 

Fennell DA, Baas P, Taylor P, Nowak AK, Gilligan D, Nakano T, Pachter JA, Weaver DT, Scherpereel A, Pavlakis N, et al: Maintenance defactinib versus placebo after first-line chemotherapy in patients with merlin-stratified pleural mesothelioma: COMMAND-A double-blind, randomized, phase II study. J Clin Oncol. 37:790–798. 2019. View Article : Google Scholar : PubMed/NCBI

346 

Wang-Gillam A: Targeting stroma: A tale of caution. J Clin Oncol. 37:1041–1043. 2019. View Article : Google Scholar : PubMed/NCBI

347 

Ulisse S, Baldini E, Sorrenti S and D'Armiento M: The urokinase plasminogen activator system: A target for anti-cancer therapy. Curr Cancer Drug Targets. 9:32–71. 2009. View Article : Google Scholar : PubMed/NCBI

348 

Feng S, Agoulnik IU, Bogatcheva NV, Kamat AA, Kwabi-Addo B, Li R, Ayala G, Ittmann MM and Agoulnik AI: Relaxin promotes prostate cancer progression. Clin Cancer Res. 13:1695–1702. 2007. View Article : Google Scholar : PubMed/NCBI

349 

Raue R, Frank AC, Syed SN and Brüne B: Therapeutic targeting of MicroRNAs in the tumor microenvironment. Int J Mol Sci. 22:22102021. View Article : Google Scholar : PubMed/NCBI

350 

Huang S, Zhang J, Lai X, Zhuang L and Wu J: Identification of novel tumor microenvironment-related long noncoding RNAs to determine the prognosis and response to immunotherapy of hepatocellular carcinoma patients. Front Mol Biosci. 8:7813072021. View Article : Google Scholar : PubMed/NCBI

351 

Ting NLN, Lau HCH and Yu J: Cancer pharmacomicrobiomics: Targeting microbiota to optimise cancer therapy outcomes. Gut. 71:1412–1425. 2022. View Article : Google Scholar : PubMed/NCBI

352 

Spanogiannopoulos P, Bess EN, Carmody RN and Turnbaugh PJ: The microbial pharmacists within us: A metagenomic view of xenobiotic metabolism. Nat Rev Microbiol. 14:273–287. 2016. View Article : Google Scholar : PubMed/NCBI

353 

Imai H, Saijo K, Komine K, Otsuki Y, Ohuchi K, Sato Y, Okita A, Takahashi M, Takahashi S, Shirota H, et al: Antibiotic therapy augments the efficacy of gemcitabine-containing regimens for advanced cancer: A retrospective study. Cancer Manag Res. 11:7953–7965. 2019. View Article : Google Scholar : PubMed/NCBI

354 

Nakano S, Komatsu Y, Kawamoto Y, Saito R, Ito K, Nakatsumi H, Yuki S and Sakamoto N: Association between the use of antibiotics and efficacy of gemcitabine plus nab-paclitaxel in advanced pancreatic cancer. Medicine (Baltimore). 99:e222502020. View Article : Google Scholar : PubMed/NCBI

355 

Sunakawa Y, Arai H, Izawa N, Mizukami T, Horie Y, Doi A, Hirakawa M, Ogura T, Tsuda T and Nakajima TE: Antibiotics may enhance the efficacy of gemcitabine treatment for advanced pancreatic cancer. Ann Oncol. 29 (Suppl 8):viii251–viii252. 2018. View Article : Google Scholar

356 

Frankel AE, Coughlin LA, Kim J, Froehlich TW, Xie Y, Frenkel EP and Koh AY: Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia. 19:848–855. 2017. View Article : Google Scholar : PubMed/NCBI

357 

Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al: Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 359:91–97. 2018. View Article : Google Scholar : PubMed/NCBI

358 

Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ and Gajewski TF: The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 359:104–108. 2018. View Article : Google Scholar : PubMed/NCBI

359 

Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al: Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 359:97–103. 2018. View Article : Google Scholar : PubMed/NCBI

360 

Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, et al: Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 350:1079–1084. 2015. View Article : Google Scholar : PubMed/NCBI

361 

Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, et al: Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 350:1084–1089. 2015. View Article : Google Scholar : PubMed/NCBI

362 

Khalesi S, Bellissimo N, Vandelanotte C, Williams S, Stanley D and Irwin C: A review of probiotic supplementation in healthy adults: Helpful or hype? Eur J Clin Nutr. 73:24–37. 2019. View Article : Google Scholar : PubMed/NCBI

363 

Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A, Mohan N, Aykut B, Usyk M, Torres LE, et al: The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8:403–416. 2018. View Article : Google Scholar : PubMed/NCBI

364 

Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, Qian Y, Kryczek I, Sun D, Nagarsheth N, et al: Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 170:548–563.e16. 2017. View Article : Google Scholar : PubMed/NCBI

365 

Zheng JH, Nguyen VH, Jiang SN, Park SH, Tan W, Hong SH, Shin MG, Chung IJ, Hong Y, Bom HS, et al: Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci Transl Med. 9:eaak95372017. View Article : Google Scholar : PubMed/NCBI

366 

Juul FE, Garborg K, Bretthauer M, Skudal H, Øines MN, Wiig H, Rose Ø, Seip B, Lamont JT, Midtvedt T, et al: Fecal microbiota transplantation for primary clostridium difficile infection. N Engl J Med. 378:2535–2536. 2018. View Article : Google Scholar : PubMed/NCBI

367 

van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF, Tijssen JG, et al: Duodenal infusion of donor feces for recurrent clostridium difficile. N Engl J Med. 368:407–415. 2013. View Article : Google Scholar : PubMed/NCBI

368 

Arbel LT, Hsu E and McNally K: Cost-effectiveness of fecal microbiota transplantation in the treatment of recurrent clostridium difficile infection: A literature review. Cureus. 9:e15992017.PubMed/NCBI

369 

Bayat Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B and Yeger H: Combination therapy in combating cancer. Oncotarget. 8:38022–38043. 2017. View Article : Google Scholar : PubMed/NCBI

370 

Lane D: Designer combination therapy for cancer. Nat Biotechnol. 24:163–164. 2006. View Article : Google Scholar : PubMed/NCBI

371 

Allen E, Jabouille A, Rivera LB, Lodewijckx I, Missiaen R, Steri V, Feyen K, Tawney J, Hanahan D, Michael IP and Bergers G: Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci Transl Med. 9:eaak96792017. View Article : Google Scholar : PubMed/NCBI

372 

Aparicio LMA, Fernandez IP and Cassinello J: Tyrosine kinase inhibitors reprogramming immunity in renal cell carcinoma: Rethinking cancer immunotherapy. Clin Transl Oncol. 19:1175–1182. 2017. View Article : Google Scholar : PubMed/NCBI

373 

Duchnowska R, Loibl S and Jassem J: Tyrosine kinase inhibitors for brain metastases in HER2-positive breast cancer. Cancer Treat Rev. 67:71–77. 2018. View Article : Google Scholar : PubMed/NCBI

374 

Ntanasis-Stathopoulos I, Fotopoulos G, Tzanninis IG and Kotteas EA: The emerging role of tyrosine kinase inhibitors in ovarian cancer treatment: A systematic review. Cancer Invest. 34:313–339. 2016. View Article : Google Scholar : PubMed/NCBI

375 

Bożyk A, Wojas-Krawczyk K, Krawczyk P and Milanowski J: Tumor microenvironment-a short review of cellular and interaction diversity. Biology (Basel). 11:9292022.PubMed/NCBI

376 

Russo M and Nastasi C: Targeting the tumor microenvironment: A close up of tumor-associated macrophages and neutrophils. Front Oncol. 12:8715132022. View Article : Google Scholar : PubMed/NCBI

377 

Mao D, Xu R, Chen H, Chen X, Li D, Song S, He Y, Wei Z and Zhang C: Cross-talk of focal adhesion-related gene defines prognosis and the immune microenvironment in gastric cancer. Front Cell Dev Biol. 9:7164612021. View Article : Google Scholar : PubMed/NCBI

378 

Qian H, Li H, Xie J, Lu X, Li F, Wang W, Tang X, Shi M, Jiang L, Li H, et al: Immunity-related gene signature identifies subtypes benefitting from adjuvant chemotherapy or potentially responding to PD1/PD-L1 blockage in pancreatic cancer. Front Cell Dev Biol. 9:6822612021. View Article : Google Scholar : PubMed/NCBI

379 

Zhou S, Sun Y, Chen T, Wang J, He J, Lyu J, Shen Y, Chen X and Yang R: The landscape of the tumor microenvironment in skin cutaneous melanoma reveals a prognostic and immunotherapeutically relevant gene signature. Front Cell Dev Biol. 9:7395942021. View Article : Google Scholar : PubMed/NCBI

380 

Wu J, Zhou J, Xu Q, Foley R..Guo J, Zhang X, Tian C, Mu M, Xing Y, Liu Y, et al: Identification of key genes driving tumor associated macrophage migration and polarization based on immune fingerprints of lung adenocarcinoma. Front Cell Dev Biol. 9:7518002021. View Article : Google Scholar : PubMed/NCBI

381 

Haibe Y, Kreidieh M, El Hajj H, Khalifeh I, Mukherji D, Temraz S and Shamseddine A: Resistance mechanisms to anti-angiogenic therapies in cancer. Front Oncol. 10:2212020. View Article : Google Scholar : PubMed/NCBI

382 

Navab R, Strumpf D, To C, Pasko E, Kim KS, Park CJ, Hai J, Liu J, Jonkman J, Barczyk M, et al: Integrin α11β1 regulates cancer stromal stiffness and promotes tumorigenicity and metastasis in non-small cell lung cancer. Oncogene. 35:1899–1908. 2016. View Article : Google Scholar : PubMed/NCBI

383 

Junttila MR and de Sauvage FJ: Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 501:346–354. 2013. View Article : Google Scholar : PubMed/NCBI

384 

Giuliano S and Pagès G: Mechanisms of resistance to anti-angiogenesis therapies. Biochimie. 95:1110–1119. 2013. View Article : Google Scholar : PubMed/NCBI

385 

Flaherty KT, Manola JB, Pins M, McDermott DF, Atkins MB, Dutcher JJ, George DJ, Margolin KA and DiPaola RS: BEST: A randomized phase II study of vascular endothelial growth factor, RAF kinase, and mammalian target of rapamycin combination targeted therapy with bevacizumab, sorafenib, and temsirolimus in advanced renal cell carcinoma-a trial of the ECOG-ACRIN cancer research group (E2804). J Clin Oncol. 33:2384–2391. 2015. View Article : Google Scholar : PubMed/NCBI

386 

Wang J, Li Y, Nie G and Zhao Y: Precise design of nanomedicines: Perspectives for cancer treatment. Natl Sci Rev. 6:1107–1110. 2019. View Article : Google Scholar : PubMed/NCBI

387 

Atat OE, Farzaneh Z, Pourhamzeh M, Taki F, Abi-Habib R, Vosough M and El-Sibai M: 3D modeling in cancer studies. Hum Cell. 35:23–36. 2022. View Article : Google Scholar : PubMed/NCBI

388 

Selek L, Seigneuret E, Nugue G, Wion D, Nissou MF, Salon C, Seurin MJ, Carozzo C, Ponce F, Roger T and Berger F: Imaging and histological characterization of a human brain xenograft in pig: the first induced glioma model in a large animal. J Neurosci Methods. 221:159–165. 2014. View Article : Google Scholar : PubMed/NCBI

389 

Khoshnevis M, Carozzo C, Bonnefont-Rebeix C, Belluco S, Leveneur O, Chuzel T, Pillet-Michelland E, Dreyfus M, Roger T, Berger F and Ponce F: Development of induced glioblastoma by implantation of a human xenograft in Yucatan minipig as a large animal model. J Neurosci Methods. 282:61–68. 2017. View Article : Google Scholar : PubMed/NCBI

390 

Khoshnevis M, Carozzo C, Brown R, Bardiès M, Bonnefont-Rebeix C, Belluco S, Nennig C, Marcon L, Tillement O, Gehan H, et al: Feasibility of intratumoral 165Holmium siloxane delivery to induced U87 glioblastoma in a large animal model, the Yucatan minipig. PLoS One. 15:e02347722020. View Article : Google Scholar : PubMed/NCBI

391 

Mackenzie NJ, Nicholls C, Templeton AR, Perera MP, Jeffery PL, Zimmermann K, Kulasinghe A, Kenna TJ, Vela I, Williams ED and Thomas PB: Modelling the tumor immune microenvironment for precision immunotherapy. Clin Transl Immunology. 11:e14002022. View Article : Google Scholar : PubMed/NCBI

392 

Mendes N, Dias Carvalho P, Martins F, Mendonça S, Malheiro AR, Ribeiro A, Carvalho J and Velho S: Animal models to study cancer and its microenvironment. Adv Exp Med Biol. 1219:389–401. 2020. View Article : Google Scholar : PubMed/NCBI

393 

Hsu JF, Chu SM, Liao CC, Wang CJ, Wang YS, Lai MY, Wang HC, Huang HR and Tsai MH: Nanotechnology and nanocarrier-based drug delivery as the potential therapeutic strategy for glioblastoma multiforme: An update. Cancers (Basel). 13:1952021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Naser R, Fakhoury I, El-Fouani A, Abi-Habib R and El-Sibai M: Role of the tumor microenvironment in cancer hallmarks and targeted therapy (Review). Int J Oncol 62: 23, 2023.
APA
Naser, R., Fakhoury, I., El-Fouani, A., Abi-Habib, R., & El-Sibai, M. (2023). Role of the tumor microenvironment in cancer hallmarks and targeted therapy (Review). International Journal of Oncology, 62, 23. https://doi.org/10.3892/ijo.2022.5471
MLA
Naser, R., Fakhoury, I., El-Fouani, A., Abi-Habib, R., El-Sibai, M."Role of the tumor microenvironment in cancer hallmarks and targeted therapy (Review)". International Journal of Oncology 62.2 (2023): 23.
Chicago
Naser, R., Fakhoury, I., El-Fouani, A., Abi-Habib, R., El-Sibai, M."Role of the tumor microenvironment in cancer hallmarks and targeted therapy (Review)". International Journal of Oncology 62, no. 2 (2023): 23. https://doi.org/10.3892/ijo.2022.5471
Copy and paste a formatted citation
x
Spandidos Publications style
Naser R, Fakhoury I, El-Fouani A, Abi-Habib R and El-Sibai M: Role of the tumor microenvironment in cancer hallmarks and targeted therapy (Review). Int J Oncol 62: 23, 2023.
APA
Naser, R., Fakhoury, I., El-Fouani, A., Abi-Habib, R., & El-Sibai, M. (2023). Role of the tumor microenvironment in cancer hallmarks and targeted therapy (Review). International Journal of Oncology, 62, 23. https://doi.org/10.3892/ijo.2022.5471
MLA
Naser, R., Fakhoury, I., El-Fouani, A., Abi-Habib, R., El-Sibai, M."Role of the tumor microenvironment in cancer hallmarks and targeted therapy (Review)". International Journal of Oncology 62.2 (2023): 23.
Chicago
Naser, R., Fakhoury, I., El-Fouani, A., Abi-Habib, R., El-Sibai, M."Role of the tumor microenvironment in cancer hallmarks and targeted therapy (Review)". International Journal of Oncology 62, no. 2 (2023): 23. https://doi.org/10.3892/ijo.2022.5471
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team