Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
October-2023 Volume 63 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2023 Volume 63 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Tumour follower cells: A novel driver of leader cells in collective invasion (Review)

  • Authors:
    • Xiao-Chen Wang
    • Ya-Ling Tang
    • Xin-Hua Liang
  • View Affiliations / Copyright

    Affiliations: Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China, Department of Oral Pathology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 115
    |
    Published online on: August 22, 2023
       https://doi.org/10.3892/ijo.2023.5563
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Collective cellular invasion in malignant tumours is typically characterized by the cooperative migration of multiple cells in close proximity to each other. Follower cells are led away from the tumour by specialized leader cells, and both cell populations play a crucial role in collective invasion. Follower cells form the main body of the migration system and depend on intercellular contact for migration, whereas leader cells indicate the direction for the entire cell population. Although collective invasion can occur in epithelial and non‑epithelial malignant neoplasms, such as medulloblastoma and rhabdomyosarcoma, the present review mainly provided an extensive analysis of epithelial tumours. In the present review, the cooperative mechanisms of contact inhibition locomotion between follower and leader cells, where follower cells coordinate and direct collective movement through physical (mechanical) and chemical (signalling) interactions, is summarised. In addition, the molecular mechanisms of follower cell invasion and metastasis during remodelling and degradation of the extracellular matrix and how chemotaxis and lateral inhibition mediate follower cell behaviour were analysed. It was also demonstrated that follower cells exhibit genetic and metabolic heterogeneity during invasion, unlike leader cells.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Place AE, Jin Huh S and Polyak K: The microenvironment in breast cancer progression: Biology and implications for treatment. Breast Cancer Res. 13:2272011. View Article : Google Scholar : PubMed/NCBI

2 

Almendro V, Marusyk A and Polyak K: Cellular heterogeneity and molecular evolution in cancer. Annu Rev Pathol. 8:277–302. 2013. View Article : Google Scholar

3 

Friedl P, Locker J, Sahai E and Segall JE: Classifying collective cancer cell invasion. Nat Cell Biol. 14:777–783. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Haeger A, Wolf K, Zegers MM and Friedl P: Collective cell migration: Guidance principles and hierarchies. Trends Cell Biol. 25:556–566. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Westcott JM, Prechtl AM, Maine EA, Dang TT, Esparza MA, Sun H, Zhou Y, Xie Y and Pearson GW: An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J Clin Invest. 125:1927–1943. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Pandya P, Orgaz JL and Sanz-Moreno V: Actomyosin contractility and collective migration: May the force be with you. Curr Opin Cell Biol. 48:87–96. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Poujade M Grasland-Mongrain E, Hertzog A, Jouanneau J, Chavrier P, Ladoux B, Buguin A and Silberzan P: Collective migration of an epithelial monolayer in response to a model wound. Proc Natl Acad Sci USA. 104:15988–15993. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Park J and Chronopolous A: Abstract B029: Flip-flopping of fusion-positive rhabdomyosarcoma regulating intratumoral heterogeneity for metastasis. Clin Cancer Res. 28(18 Suppl): B0292022. View Article : Google Scholar

9 

Yamamoto E, Kohama G, Sunakawa H, Iwai M and Hiratsuka H: Mode of invasion, bleomycin sensitivity, and clinical course in squamous cell carcinoma of the oral cavity. Cancer. 51:2175–2180. 1983. View Article : Google Scholar : PubMed/NCBI

10 

Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K and Sahai E: Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol. 9:1392–1400. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Konen J, Summerbell E, Dwivedi B, Galior K, Hou Y, Rusnak L, Chen A, Saltz J, Zhou W, Boise LH, et al: Image-guided genomics of phenotypically heterogeneous populations reveals vascular signalling during symbiotic collective cancer invasion. Nat Commun. 8:150782017. View Article : Google Scholar : PubMed/NCBI

12 

Zoeller EL, Pedro B, Konen J, Dwivedi B, Rupji M, Sundararaman N, Wang L, Horton JR, Zhong C, Barwick BG, et al: Genetic heterogeneity within collective invasion packs drives leader and follower cell phenotypes. J Cell Sci. 132:jcs2315142019. View Article : Google Scholar : PubMed/NCBI

13 

Riahi R, Sun J, Wang S, Long M, Zhang DD and Wong PK: Notch1-Dll4 signalling and mechanical force regulate leader cell formation during collective cell migration. Nat Commun. 6:65562015. View Article : Google Scholar : PubMed/NCBI

14 

Tse JM, Cheng G, Tyrrell JA, Wilcox-Adelman SA, Boucher Y, Jain RK and Munn LL: Mechanical compression drives cancer cells toward invasive phenotype. Proc Natl Acad Sci USA. 109:911–916. 2012. View Article : Google Scholar :

15 

Farooqui R and Fenteany G: Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement. J Cell Sci. 118:51–63. 2005. View Article : Google Scholar

16 

Reffay M, Parrini MC, Cochet-Escartin O, Ladoux B, Buguin A, Coscoy S, Amblard F, Camonis J and Silberzan P: Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells. Nat Cell Biol. 16:217–223. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Yamaguchi N, Mizutani T, Kawabata K and Haga H: Leader cells regulate collective cell migration via Rac activation in the downstream signaling of integrin β1 and PI3K. Sci Rep. 5:76562015. View Article : Google Scholar

18 

Mayor R and Etienne-Manneville S: The front and rear of collective cell migration. Nat Rev Mol Cell Biol. 17:97–109. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Zhang J, Goliwas KF, Wang W, Taufalele PV, Bordeleau F and Reinhart-King CA: Energetic regulation of coordinated leader-follower dynamics during collective invasion of breast cancer cells. Proc Natl Acad Sci USA. 116:7867–7872. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Wolf K, Wu YI, Liu Y, Geiger J, Tam E, Overall C, Stack MS and Friedl P: Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol. 9:893–904. 2007. View Article : Google Scholar : PubMed/NCBI

21 

Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, Hanash SM, Bapat SA, Rangarajan A and Levine H: Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther. 194:161–184. 2019. View Article : Google Scholar

22 

Mayor R and Carmona-Fontaine C: Keeping in touch with contact inhibition of locomotion. Trends Cell Biol. 20:319–328. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Stramer B and Mayor R: Mechanisms and in vivo functions of contact inhibition of locomotion. Nat Rev Mol Cell Biol. 18:43–55. 2017. View Article : Google Scholar

24 

Wendt MK, Taylor MA, Schiemann BJ and Schiemann WP: Down-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancer. Mol Biol Cell. 22:2423–2435. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Abercrombie M: Contact inhibition and malignancy. Nature. 281:259–262. 1979. View Article : Google Scholar : PubMed/NCBI

26 

Rørth P: Fellow travellers: Emergent properties of collective cell migration. EMBO Rep. 13:984–991. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Khalil AA and de Rooij J: Cadherin mechanotransduction in leader-follower cell specification during collective migration. Exp Cell Res. 376:86–91. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Rorth P: Collective cell migration. Annu Rev Cell Dev Biol. 25:407–429. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Qin L, Yang D, Yi W, Cao H and Xiao G: Roles of leader and follower cells in collective cell migration. Mol Biol Cell. 32:1267–1272. 2021. View Article : Google Scholar : PubMed/NCBI

30 

Camand E, Peglion F, Osmani N, Sanson M and Etienne-Manneville S: N-cadherin expression level modulates integrin-mediated polarity and strongly impacts on the speed and directionality of glial cell migration. J Cell Sci. 125:844–857. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Ladoux B, Mège RM and Trepat X: Front-rear polarization by mechanical cues: From single cells to tissues. Trends Cell Biol. 26:420–433. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Abbruzzese G, Becker SF, Kashef J and Alfandari D: ADAM13 cleavage of cadherin-11 promotes CNC migration independently of the homophilic binding site. Dev Biol. 415:383–390. 2016. View Article : Google Scholar :

33 

Quan Q, Wang X, Lu C, Ma W, Wang Y, Xia G, Wang C and Yang G: Cancer stem-like cells with hybrid epithelial/mesenchymal phenotype leading the collective invasion. Cancer Sci. 111:467–476. 2020. View Article : Google Scholar :

34 

Ye X and Weinberg RA: Epithelial-mesenchymal plasticity: A central regulator of cancer progression. Trends Cell Biol. 25:675–686. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Padmanaban V, Krol I, Suhail Y, Szczerba BM, Aceto N, Bader JS and Ewald AJ: E-cadherin is required for metastasis in multiple models of breast cancer. Nature. 573:439–444. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Scarpa E, Szabó A, Bibonne A, Theveneau E, Parsons M and Mayor R: Cadherin switch during EMT in neural crest cells leads to contact inhibition of locomotion via repolarization of forces. Dev Cell. 34:421–434. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Moriwaki K, Wada M, Kuwabara H, Ayani Y, Terada T, Higashino M, Kawata R and Asahi M: BDNF/TRKB axis provokes EMT progression to induce cell aggressiveness via crosstalk with cancer-associated fibroblasts in human parotid gland cancer. Sci Rep. 12:175532022. View Article : Google Scholar : PubMed/NCBI

38 

Shih W and Yamada S: N-cadherin-mediated cell-cell adhesion promotes cell migration in a three-dimensional matrix. J Cell Sci. 125:3661–3670. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Thiery JP, Acloque H, Huang RYJ and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Saénz-de-Santa-María I, Celada L and Chiara MD: The leader position of mesenchymal cells expressing N-cadherin in the collective migration of epithelial cancer. Cells. 9:7312020. View Article : Google Scholar : PubMed/NCBI

41 

Labernadie A, Kato T, Brugués A, Serra-Picamal X, Derzsi S, Arwert E, Weston A, González-Tarragó V, Elosegui-Artola A, Albertazzi L, et al: A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat Cell Biol. 19:224–237. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Van den Bossche J, Bogaert P, van Hengel J, Guérin CJ, Berx G, Movahedi K, Van den Bergh R, Pereira-Fernandes A, Geuns JM, Pircher H, et al: Alternatively activated macrophages engage in homotypic and heterotypic interactions through IL-4 and polyamine-induced E-cadherin/catenin complexes. Blood. 114:4664–4674. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Takai Y, Irie K, Shimizu K, Sakisaka T and Ikeda W: Nectins and nectin-like molecules: Roles in cell adhesion, migration, and polarization. Cancer Sci. 94:655–667. 2003. View Article : Google Scholar : PubMed/NCBI

44 

Izumi G, Sakisaka T, Baba T, Tanaka S, Morimoto K and Takai Y: Endocytosis of E-cadherin regulated by Rac and Cdc42 small G proteins through IQGAP1 and actin filaments. J Cell Biol. 166:237–248. 2004. View Article : Google Scholar : PubMed/NCBI

45 

Takai Y, Miyoshi J, Ikeda W and Ogita H: Nectins and nectin-like molecules: Roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol. 9:603–615. 2008. View Article : Google Scholar : PubMed/NCBI

46 

Ikeda W, Kakunaga S, Takekuni K, Shingai T, Satoh K, Morimoto K, Takeuchi M, Imai T and Takai Y: Nectin-like molecule-5/Tage4 enhances cell migration in an integrin-dependent, Nectin-3-independent manner. J Biol Chem. 279:18015–18025. 2004. View Article : Google Scholar : PubMed/NCBI

47 

Bevelacqua V, Bevelacqua Y, Candido S, Skarmoutsou E, Amoroso A, Guarneri C, Strazzanti A, Gangemi P, Mazzarino MC, D'Amico F, et al: Nectin like-5 overexpression correlates with the malignant phenotype in cutaneous melanoma. Oncotarget. 3:882–892. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Nakai R, Maniwa Y, Tanaka Y, Nishio W, Yoshimura M, Okita Y, Ohbayashi C, Satoh N, Ogita H, Takai Y and Hayashi Y: Overexpression of Necl-5 correlates with unfavorable prognosis in patients with lung adenocarcinoma. Cancer Sci. 101:1326–1330. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Kania A and Klein R: Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat Rev Mol Cell Biol. 17:240–256. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Astin JW, Batson J, Kadir S, Charlet J, Persad RA, Gillatt D, Oxley JD and Nobes CD: Competition amongst Eph receptors regulates contact inhibition of locomotion and invasiveness in prostate cancer cells. Nat Cell Biol. 12:1194–1204. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Batson J, Astin JW and Nobes CD: Regulation of contact inhibition of locomotion by Eph-ephrin signalling. J Microsc. 251:232–241. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Matthews HK, Marchant L, Carmona-Fontaine C, Kuriyama S, Larraín J, Holt MR, Parsons M and Mayor R: Directional migration of neural crest cells in vivo is regulated by Syndecan-4/Rac1 and non-canonical Wnt signaling/RhoA. Development. 135:1771–1780. 2008. View Article : Google Scholar : PubMed/NCBI

53 

Kurayoshi M, Oue N, Yamamoto H, Kishida M, Inoue A, Asahara T, Yasui W and Kikuchi A: Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res. 66:10439–10448. 2006. View Article : Google Scholar : PubMed/NCBI

54 

VanderVorst K, Dreyer CA, Konopelski SE, Lee H, Ho HH and Carraway KL III: Wnt/PCP signaling contribution to carcinoma collective cell migration and metastasis. Cancer Res. 79:1719–1729. 2019. View Article : Google Scholar : PubMed/NCBI

55 

Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M and Wrana JL: Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 151:1542–1556. 2012. View Article : Google Scholar : PubMed/NCBI

56 

Halbleib JM and Nelson WJ: Cadherins in development: Cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 20:3199–3214. 2006. View Article : Google Scholar : PubMed/NCBI

57 

Wheeler AP and Ridley AJ: Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Exp Cell Res. 301:43–49. 2004. View Article : Google Scholar : PubMed/NCBI

58 

Theveneau E, Marchant L, Kuriyama S, Gull M, Moepps B, Parsons M and Mayor R: Collective chemotaxis requires contact-dependent cell polarity. Dev Cell. 19:39–53. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Drees F, Pokutta S, Yamada S, Nelson WJ and Weis WI: Alpha-catenin is a molecula r switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell. 123:903–915. 2005. View Article : Google Scholar : PubMed/NCBI

60 

Anastasiadis PZ and Reynolds AB: Regulation of Rho GTPases by p120-catenin. Curr Opin Cell Biol. 13:604–610. 2001. View Article : Google Scholar : PubMed/NCBI

61 

Macpherson IR, Hooper S, Serrels A, McGarry L, Ozanne BW, Harrington K, Frame MC, Sahai E and Brunton VG: p120-catenin is required for the collective invasion of squamous cell carcinoma cells via a phosphorylation-independent mechanism. Oncogene. 26:5214–5228. 2007. View Article : Google Scholar : PubMed/NCBI

62 

Noren NK, Liu BP, Burridge K and Kreft B: p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J Cell Biol. 150:567–580. 2000. View Article : Google Scholar : PubMed/NCBI

63 

Nobes CD and Hall A: Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 81:53–62. 1995. View Article : Google Scholar : PubMed/NCBI

64 

Kurokawa K and Matsuda M: Localized RhoA activation as a requirement for the induction of membrane ruffling. Mol Biol Cell. 16:4294–4303. 2005. View Article : Google Scholar : PubMed/NCBI

65 

Krause M and Gautreau A: Steering cell migration: Lamellipodium dynamics and the regulation of directional persistence. Nat Rev Mol Cell Biol. 15:577–590. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Haga RB and Ridley AJ: Rho GTPases: Regulation and roles in cancer cell biology. Small GTPases. 7:207–221. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Kim SY, Lee S, Lee E, Lim H, Shin JY, Jung J, Kim SG and Moon A: Sex-biased differences in the correlation between epithelial-to-mesenchymal transition-associated genes in cancer cell lines. Oncol Lett. 18:6852–6868. 2019.PubMed/NCBI

68 

Hidalgo-Carcedo C, Hooper S, Chaudhry SI, Williamson P, Harrington K, Leitinger B and Sahai E: Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat Cell Biol. 13:49–58. 2011. View Article : Google Scholar :

69 

Zaritsky A, Tseng YY, Rabadán MA, Krishna S, Overholtzer M, Danuser G and Hall A: Diverse roles of guanine nucleotide exchange factors in regulating collective cell migration. J Cell Biol. 216:1543–1556. 2017. View Article : Google Scholar : PubMed/NCBI

70 

Runkle EA and Mu D: Tight junction proteins: From barrier to tumorigenesis. Cancer Lett. 337:41–48. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Kummer D, Steinbacher T, Thölmann S, Schwietzer MF, Hartmann C, Horenkamp S, Demuth S, Peddibhotla SSD, Brinkmann F, Kemper B, et al: A JAM-A-tetraspanin-αvβ5 integrin complex regulates contact inhibition of locomotion. J Cell Biol. 221:e2021051472022. View Article : Google Scholar

72 

Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Davis JR, Luchici A, Mosis F, Thackery J, Salazar JA, Mao Y, Dunn GA, Betz T, Miodownik M and Stramer BM: Inter-cellular forces orchestrate contact inhibition of locomotion. Cell. 161:361–373. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Davis JR, Huang CY, Zanet J, Harrison S, Rosten E, Cox S, Soong DY, Dunn GA and Stramer BM: Emergence of embryonic pattern through contact inhibition of locomotion. Development. 139:4555–4560. 2012. View Article : Google Scholar : PubMed/NCBI

75 

Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, et al: Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J. 88:3689–3698. 2005. View Article : Google Scholar : PubMed/NCBI

76 

Mialhe A, Lafanechère L, Treilleux I, Peloux N, Dumontet C, Brémond A, Panh MH, Payan R, Wehland J, Margolis RL and Job D: Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res. 61:5024–5027. 2001.PubMed/NCBI

77 

Daub H, Gevaert K, Vandekerckhove J, Sobel A and Hall A: Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16. J Biol Chem. 276:1677–1680. 2001. View Article : Google Scholar

78 

Moore R, Theveneau E, Pozzi S, Alexandre P, Richardson J, Merks A, Parsons M, Kashef J, Linker C and Mayor R: Par3 controls neural crest migration by promoting microtubule catastrophe during contact inhibition of locomotion. Development. 140:4763–4775. 2013. View Article : Google Scholar : PubMed/NCBI

79 

Cramer LP: Forming the cell rear first: Breaking cell symmetry to trigger directed cell migration. Nat Cell Biol. 12:628–632. 2010. View Article : Google Scholar : PubMed/NCBI

80 

Yam PT, Wilson CA, Ji L, Hebert B, Barnhart EL, Dye NA, Wiseman PW, Danuser G and Theriot JA: Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. J Cell Biol. 178:1207–1221. 2007. View Article : Google Scholar : PubMed/NCBI

81 

Olson HM and Nechiporuk AV: Using zebrafish to study collective cell migration in development and disease. Front Cell Dev Biol. 6:832018. View Article : Google Scholar : PubMed/NCBI

82 

Ozawa M, Hiver S, Yamamoto T, Shibata T, Upadhyayula S, Mimori-Kiyosue Y and Takeichi M: Adherens junction regulates cryptic lamellipodia formation for epithelial cell migration. J Cell Biol. 219:e2020061962020. View Article : Google Scholar : PubMed/NCBI

83 

Yokoyama S, Matsui TS and Deguchi S: New wrinkling substrate assay reveals traction force fields of leader and follower cells undergoing collective migration. Biochem Biophys Res Commun. 482:975–979. 2017. View Article : Google Scholar

84 

Jakobsson L, Franco CA, Bentley K, Collins RT, Ponsioen B, Aspalter IM, Rosewell I, Busse M, Thurston G, Medvinsky A, et al: Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol. 12:943–953. 2010. View Article : Google Scholar : PubMed/NCBI

85 

Ghabrial AS and Krasnow MA: Social interactions among epithelial cells during tracheal branching morphogenesis. Nature. 441:746–749. 2006. View Article : Google Scholar : PubMed/NCBI

86 

Nguyen-Ngoc KV, Cheung KJ, Brenot A, Shamir ER, Gray RS, Hines WC, Yaswen P, Werb Z and Ewald AJ: ECM microenvironment regulates collective migration and local dissemination in normal and malignant mammary epithelium. Proc Natl Acad Sci USA. 109:E2595–E2604. 2012. View Article : Google Scholar : PubMed/NCBI

87 

Cheung KJ, Gabrielson E, Werb Z and Ewald AJ: Collective invasion in breast cancer requires a conserved basal epithelial program. Cell. 155:1639–1651. 2013. View Article : Google Scholar : PubMed/NCBI

88 

Cai D, Chen SC, Prasad M, He L, Wang X, Choesmel-Cadamuro V, Sawyer JK, Danuser G and Montell DJ: Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell. 157:1146–1159. 2014. View Article : Google Scholar : PubMed/NCBI

89 

Inaki M, Vishnu S, Cliffe A and Rørth P: Effective guidance of collective migration based on differences in cell states. Proc Natl Acad Sci USA. 109:2027–2032. 2012. View Article : Google Scholar : PubMed/NCBI

90 

Okimura C, Iwanaga M, Sakurai T, Ueno T, Urano Y and Iwadate Y: Leading-edge elongation by follower cell interruption in advancing epithelial cell sheets. Proc Natl Acad Sci USA. 119:e21199031192022. View Article : Google Scholar : PubMed/NCBI

91 

Vishwakarma M, Di Russo J, Probst D, Schwarz US, Das T and Spatz JP: Mechanical interactions among followers determine the emergence of leaders in migrating epithelial cell collectives. Nat Commun. 9:34692018. View Article : Google Scholar : PubMed/NCBI

92 

Bocci F, Onuchic JN and Jolly MK: Understanding the principles of pattern formation driven by notch signaling by integrating experiments and theoretical models. Front Physiol. 11:9292020. View Article : Google Scholar : PubMed/NCBI

93 

DeMali KA and Burridge K: Coupling membrane protrusion and cell adhesion. J Cell Sci. 116:2389–2397. 2003. View Article : Google Scholar : PubMed/NCBI

94 

DeCamp SJ, Tsuda VMK, Ferruzzi J, Koehler SA, Giblin JT, Roblyer D, Zaman MH, Weiss ST, Kılıç A, De Marzio M, et al: Epithelial layer unjamming shifts energy metabolism toward glycolysis. Sci Rep. 10:183022020. View Article : Google Scholar : PubMed/NCBI

95 

Weber GF, Bjerke MA and DeSimone DW: A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev Cell. 22:104–115. 2012. View Article : Google Scholar :

96 

Chen T, Saw TB, Mège RM and Ladoux B: Mechanical forces in cell monolayers. J Cell Sci. 131:jcs2181562018. View Article : Google Scholar : PubMed/NCBI

97 

Tambe DT, Hardin CC, Angelini TE, Rajendran K, Park CY, Serra-Picamal X, Zhou EH, Zaman MH, Butler JP, Weitz DA, et al: Collective cell guidance by cooperative intercellular forces. Nat Mater. 10:469–475. 2011. View Article : Google Scholar : PubMed/NCBI

98 

Trepat X, Wasserman MR, Angelini TE, Millet E, Weitz DA, Butler JP and Fredberg JJ: Physical forces during collective cell migration. Nat Phys. 5:426–430. 2009. View Article : Google Scholar

99 

Gayrard C, Bernaudin C, Déjardin T, Seiler C and Borghi N: Src- and confinement-dependent FAK activation causes E-cadherin relaxation and β-catenin activity. J Cell Biol. 217:1063–1077. 2018. View Article : Google Scholar : PubMed/NCBI

100 

Desai RA, Gopal SB, Chen S and Chen CS: Contact inhibition of locomotion probabilities drive solitary versus collective cell migration. J R Soc Interface. 10:201307172013. View Article : Google Scholar : PubMed/NCBI

101 

Thomas WA, Boscher C, Chu YS, Cuvelier D, Martinez-Rico C, Seddiki R, Heysch J, Ladoux B, Thiery JP, Mege RM and Dufour S: α-Catenin and vinculin cooperate to promote high E-cadherin-based adhesion strength. J Biol Chem. 288:4957–4969. 2013. View Article : Google Scholar

102 

Seddiki R, Narayana GHNS, Strale PO, Balcioglu HE, Peyret G, Yao M, Le AP, Teck Lim C, Yan J, Ladoux B and Mège RM: Force-dependent binding of vinculin to α-catenin regulates cell-cell contact stability and collective cell behavior. Mol Biol Cell. 29:380–388. 2018. View Article : Google Scholar :

103 

Matsuzawa K, Himoto T, Mochizuki Y and Ikenouchi J: α-Catenin controls the anisotropy of force distribution at cell-cell junctions during collective cell migration. Cell Rep. 23:3447–3456. 2018. View Article : Google Scholar : PubMed/NCBI

104 

Bazellières E, Conte V, Elosegui-Artola A, Serra-Picamal X, Bintanel-Morcillo M, Roca-Cusachs P, Muñoz JJ, Sales-Pardo M, Guimerà R and Trepat X: Control of cell-cell forces and collective cell dynamics by the intercellular adhesome. Nat Cell Biol. 17:409–420. 2015. View Article : Google Scholar : PubMed/NCBI

105 

Plutoni C, Bazellieres E, Le Borgne-Rochet M, Comunale F, Brugues A, Séveno M, Planchon D, Thuault S, Morin N, Bodin S, et al: P-cadherin promotes collective cell migration via a Cdc42-mediated increase in mechanical forces. J Cell Biol. 212:199–217. 2016. View Article : Google Scholar : PubMed/NCBI

106 

Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, Nelson CM and Chen CS: Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci USA. 107:9944–9949. 2010. View Article : Google Scholar : PubMed/NCBI

107 

Crawford AJ, Gomez-Cruz C, Russo GC, Huang W, Bhorkar I, uñoz-Barrutia A, Wirtz D and Garcia-Gonzalez D: Tumor proliferation and invasion are coupled through cell-extracellular matrix friction. bioRxiv. 2022.2011:2015.5165482022.

108 

Lee MH, Russo G, Rahmanto YS, Du W, Crawford AJ, Wu PH, Gilkes D, Kiemen A, Miyamoto T, Yu Y, et al: Multi-compartment tumor organoids. Mater Today. 61:104–116. 2022. View Article : Google Scholar

109 

Russo GC, Crawford AJ, Clark D, Cui J, Carney R, Karl MN, Su B, Starich B, Lih T, Kamat P, et al: E-cadherin interacts with EGFR resulting in hyper-activation of ERK in multiple models of breast cancer. bioRxiv. 2020.

110 

Muhamed I, Wu J, Sehgal P, Kong X, Tajik A, Wang N and Leckband DE: E-cadherin-mediated force transduction signals regulate global cell mechanics. J Cell Sci. 129:1843–1854. 2016.PubMed/NCBI

111 

Barry AK, Tabdili H, Muhamed I, Wu J, Shashikanth N, Gomez GA, Yap AS, Gottardi CJ, de Rooij J, Wang N and Leckband DE: α-catenin cytomechanics-role in cadherin-dependent adhesion and mechanotransduction. J Cell Sci. 127:1779–1791. 2014. View Article : Google Scholar : PubMed/NCBI

112 

Benham-Pyle BW, Pruitt BL and Nelson WJ: Cell adhesion. Mechanical strain induces E-cadherin-dependent Yap1 and β-catenin activation to drive cell cycle entry. Science. 348:1024–1027. 2015. View Article : Google Scholar : PubMed/NCBI

113 

Röper JC, Mitrossilis D, Stirnemann G, Waharte F, Brito I, Fernandez-Sanchez ME, Baaden M, Salamero J and Farge E: The major β-catenin/E-cadherin junctional binding site is a primary molecular mechano-transductor of differentiation in vivo. Elife. 7:e333812018. View Article : Google Scholar

114 

Fernández-Sánchez ME, Barbier S, Whitehead J, Béalle G, Michel A, Latorre-Ossa H, Rey C, Fouassier L, Claperon A, Brullé L, et al: Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure. Nature. 523:92–95. 2015. View Article : Google Scholar

115 

Hino N, Rossetti L, Marín-Llauradó A, Aoki K, Trepat X, Matsuda M and Hirashima T: ERK-mediated mechanochemical waves direct collective cell polarization. Dev Cell. 53:646–660.e8. 2020. View Article : Google Scholar : PubMed/NCBI

116 

Coló GP, Hernández-Varas P, Lock J, Bartolomé RA, Arellano-Sánchez N, Strömblad S and Teixidó J: Focal adhesion disassembly is regulated by a RIAM to MEK-1 pathway. J Cell Sci. 125:5338–5352. 2012.PubMed/NCBI

117 

Das T, Safferling K, Rausch S, Grabe N, Boehm H and Spatz JP: A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nat Cell Biol. 17:276–287. 2015. View Article : Google Scholar : PubMed/NCBI

118 

Colak-Champollion T, Lan L, Jadhav AR, Yamaguchi N, Venkiteswaran G, Patel H, Cammer M, Meier-Schellersheim M and Knaut H: Cadherin-mediated cell coupling coordinates chemokine sensing across collectively migrating cells. Curr Biol. 29:2570–2579.e7. 2019. View Article : Google Scholar : PubMed/NCBI

119 

Heneberg P: Paracrine tumor signaling induces transdifferentiation of surrounding fibroblasts. Crit Rev Oncol Hematol. 97:303–311. 2016. View Article : Google Scholar

120 

Barbazán J and Matic Vignjevic D: Cancer associated fibroblasts: Is the force the path to the dark side? Curr Opin Cell Biol. 56:71–79. 2019. View Article : Google Scholar

121 

Ishii G, Ochiai A and Neri S: Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev. 99:186–196. 2016. View Article : Google Scholar

122 

Attaran S, Skoko JJ, Hopkins BL, Wright MK, Wood LE, Asan A, Woo HA, Feinberg A and Neumann CA: Peroxiredoxin-1 Tyr194 phosphorylation regulates LOX-dependent extracellular matrix remodelling in breast cancer. Br J Cancer. 125:1146–1157. 2021. View Article : Google Scholar : PubMed/NCBI

123 

Winkler J, Abisoye-Ogunniyan A, Metcalf KJ and Werb Z: Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun. 11:51202020. View Article : Google Scholar : PubMed/NCBI

124 

Kai F, Drain AP and Weaver VM: The extracellular matrix modulates the metastatic journey. Dev Cell. 49:332–346. 2019. View Article : Google Scholar : PubMed/NCBI

125 

Poltavets V, Kochetkova M, Pitson SM and Samuel MS: The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity. Front Oncol. 8:4312018. View Article : Google Scholar : PubMed/NCBI

126 

Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, et al: Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 139:891–906. 2009. View Article : Google Scholar : PubMed/NCBI

127 

Elosegui-Artola A, Oria R, Chen Y, Kosmalska A, Pérez-González C, Castro N, Zhu C, Trepat X and Roca-Cusachs P: Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat Cell Biol. 18:540–548. 2016. View Article : Google Scholar : PubMed/NCBI

128 

Miranti CK and Brugge JS: Sensing the environment: A historical perspective on integrin signal transduction. Nat Cell Biol. 4:E83–E90. 2002. View Article : Google Scholar : PubMed/NCBI

129 

Maritzen T, Schachtner H and Legler DF: On the move: Endocytic trafficking in cell migration. Cell Mol Life Sci. 72:2119–2134. 2015. View Article : Google Scholar : PubMed/NCBI

130 

Sawada Y, Tamada M, Dubin-Thaler BJ, Cherniavskaya O, Sakai R, Tanaka S and Sheetz MP: Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell. 127:1015–1026. 2006. View Article : Google Scholar : PubMed/NCBI

131 

Tamada M, Sheetz MP and Sawada Y: Activation of a signaling cascade by cytoskeleton stretch. Dev Cell. 7:709–718. 2004. View Article : Google Scholar : PubMed/NCBI

132 

Van Helvert S, Storm C and Friedl P: Mechanoreciprocity in cell migration. Nat Cell Biol. 20:8–20. 2018. View Article : Google Scholar :

133 

Keating M, Kurup A, Alvarez-Elizondo M, Levine AJ and Botvinick E: Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility. Acta Biomater. 57:304–312. 2017. View Article : Google Scholar : PubMed/NCBI

134 

Bi D, Lopez JH, Schwarz JM and Manning ML: A density-independent rigidity transition in biological tissues. Nat Phys. 11:1074–1079. 2015. View Article : Google Scholar

135 

Wolf K, Te Lindert M, Krause M, Alexander S, Te Riet J, Willis AL, Hoffman RM, Figdor CG, Weiss SJ and Friedl P: Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol. 201:1069–1084. 2013. View Article : Google Scholar : PubMed/NCBI

136 

Han YL, Ronceray P, Xu G, Malandrino A, Kamm RD, Lenz M, Broedersz CP and Guo M: Cell contraction induces long-ranged stress stiffening in the extracellular matrix. Proc Natl Acad Sci USA. 115:4075–4080. 2018. View Article : Google Scholar : PubMed/NCBI

137 

Roomi MW, Monterrey JC, Kalinovsky T, Rath M and Niedzwiecki A: Patterns of MMP-2 and MMP-9 expression in human cancer cell lines. Oncol Rep. 21:1323–1333. 2009.PubMed/NCBI

138 

Isomursu A, Park KY, Hou J, Cheng B, Mathieu M, Shamsan GA, Fuller B, Kasim J, Mahmoodi MM, Lu TJ, et al: Directed cell migration towards softer environments. Nat Mater. 21:1081–1090. 2022. View Article : Google Scholar : PubMed/NCBI

139 

Sunyer R, Conte V, Escribano J, Elosegui-Artola A, Labernadie A, Valon L, Navajas D, García-Aznar JM, Muñoz JJ, Roca-Cusachs P and Trepat X: Collective cell durotaxis emerges from long-range intercellular force transmission. Science. 353:1157–1161. 2016. View Article : Google Scholar : PubMed/NCBI

140 

Gilkes DM, Bajpai S, Chaturvedi P, Wirtz D and Semenza GL: Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J Biol Chem. 288:10819–10829. 2013. View Article : Google Scholar : PubMed/NCBI

141 

Chandler EM, Saunders MP, Yoon CJ, Gourdon D and Fischbach C: Adipose progenitor cells increase fibronectin matrix strain and unfolding in breast tumors. Phys Biol. 8:0150082011. View Article : Google Scholar : PubMed/NCBI

142 

Guiet R, Van Goethem E, Cougoule C, Balor S, Valette A, Al Saati T, Lowell CA, Le Cabec V and Maridonneau-Parini I: The process of macrophage migration promotes matrix metalloproteinase-independent invasion by tumor cells. J Immunol. 187:3806–3814. 2011. View Article : Google Scholar : PubMed/NCBI

143 

Vilchez Mercedes SA, Bocci F, Levine H, Onuchic JN, Jolly MK and Wong PK: Decoding leader cells in collective cancer invasion. Nat Rev Cancer. 21:592–604. 2021. View Article : Google Scholar : PubMed/NCBI

144 

Artym VV, Zhang Y, Seillier-Moiseiwitsch F, Yamada KM and Mueller SC: Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: Defining the stages of invadopodia formation and function. Cancer Res. 66:3034–3043. 2006. View Article : Google Scholar : PubMed/NCBI

145 

Hoshino D, Kirkbride KC, Costello K, Clark ES, Sinha S, Grega-Larson N, Tyska MJ and Weaver AM: Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep. 5:1159–1168. 2013. View Article : Google Scholar : PubMed/NCBI

146 

Han T, Kang D, Ji D, Wang X, Zhan W, Fu M, Xin HB and Wang JB: How does cancer cell metabolism affect tumor migration and invasion? Cell Adh Migr. 7:395–403. 2013. View Article : Google Scholar : PubMed/NCBI

147 

Kim KS, Sengupta S, Berk M, Kwak YG, Escobar PF, Belinson J, Mok SC and Xu Y: Hypoxia enhances lysophosphatidic acid responsiveness in ovarian cancer cells and lysophosphatidic acid induces ovarian tumor metastasis in vivo. Cancer Res. 66:7983–7990. 2006. View Article : Google Scholar : PubMed/NCBI

148 

Egeblad M, Rasch MG and Weaver VM: Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol. 22:697–706. 2010. View Article : Google Scholar : PubMed/NCBI

149 

Rofstad EK, Mathiesen B, Kindem K and Galappathi K: Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res. 66:6699–6707. 2006. View Article : Google Scholar : PubMed/NCBI

150 

Pedron S, Becka E and Harley BA: Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid. Biomaterials. 34:7408–7417. 2013. View Article : Google Scholar : PubMed/NCBI

151 

Cha J, Kang SG and Kim P: Strategies of mesenchymal invasion of patient-derived brain tumors: Microenvironmental adaptation. Sci Rep. 6:249122016. View Article : Google Scholar : PubMed/NCBI

152 

Kim Y and Kumar S: CD44-mediated adhesion to hyaluronic acid contributes to mechanosensing and invasive motility. Mol Cancer Res. 12:1416–1429. 2014. View Article : Google Scholar : PubMed/NCBI

153 

Belousov A, Titov S, Shved N, Garbuz M, Malykin G, Gulaia V, Kagansky A and Kumeiko V: The extracellular matrix and biocompatible materials in glioblastoma treatment. Front Bioeng Biotechnol. 7:3412019. View Article : Google Scholar : PubMed/NCBI

154 

Serres E, Debarbieux F, Stanchi F, Maggiorella L, Grall D, Turchi L, Burel-Vandenbos F, Figarella-Branger D, Virolle T, Rougon G and Van Obberghen-Schilling E: Fibronectin expression in glioblastomas promotes cell cohesion, collective invasion of basement membrane in vitro and orthotopic tumor growth in mice. Oncogene. 33:3451–3462. 2014. View Article : Google Scholar

155 

Condeelis J, Singer RH and Segall JE: The great escape: When cancer cells hijack the genes for chemotaxis and motility. Annu Rev Cell Dev Biol. 21:695–718. 2005. View Article : Google Scholar : PubMed/NCBI

156 

Tweedy L, Thomason PA, Paschke PI, Martin K, Machesky LM, Zagnoni M and Insall RH: Seeing around corners: Cells solve mazes and respond at a distance using attractant breakdown. Science. 369:eaay97922020. View Article : Google Scholar : PubMed/NCBI

157 

Susanto O, Koh YWH, Morrice N, Tumanov S, Thomason PA, Nielson M, Tweedy L, Muinonen-Martin AJ, Kamphorst JJ, Mackay GM and Insall RH: LPP3 mediates self-generation of chemotactic LPA gradients by melanoma cells. J Cell Sci. 130:3455–3466. 2017.PubMed/NCBI

158 

Tweedy L, Knecht DA, Mackay GM and Insall RH: Self-generated chemoattractant gradients: Attractant depletion extends the range and robustness of chemotaxis. PLoS Biol. 14:e10024042016. View Article : Google Scholar : PubMed/NCBI

159 

Scherber C, Aranyosi AJ, Kulemann B, Thayer SP, Toner M, Iliopoulos O and Irimia D: Epithelial cell guidance by self-generated EGF gradients. Integr Biol (Camb). 4:259–269. 2012. View Article : Google Scholar : PubMed/NCBI

160 

Muinonen-Martin AJ, Susanto O, Zhang Q, Smethurst E, Faller WJ, Veltman DM, Kalna G, Lindsay C, Bennett DC, Sansom OJ, et al: Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal. PLoS Biol. 12:e10019662014. View Article : Google Scholar : PubMed/NCBI

161 

Sobolik T, Su YJ, Wells S, Ayers GD, Cook RS and Richmond A: CXCR4 drives the metastatic phenotype in breast cancer through induction of CXCR2 and activation of MEK and PI3K pathways. Mol Biol Cell. 25:566–582. 2014. View Article : Google Scholar : PubMed/NCBI

162 

Malet-Engra G, Yu W, Oldani A, Rey-Barroso J, Gov NS, Scita G and Dupré L: Collective cell motility promotes chemotactic prowess and resistance to chemorepulsion. Curr Biol. 25:242–250. 2015. View Article : Google Scholar : PubMed/NCBI

163 

Boucharaba A, Serre CM, Grès S, Saulnier-Blache JS, Bordet JC, Guglielmi J, Clézardin P and Peyruchaud O: Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest. 114:1714–1725. 2004. View Article : Google Scholar : PubMed/NCBI

164 

Zhao C, Sardella A, Chun J, Poubelle PE, Fernandes MJ and Bourgoin SG: TNF-alpha promotes LPA1- and LPA3-mediated recruitment of leukocytes in vivo through CXCR2 ligand chemokines. J Lipid Res. 52:1307–1318. 2011. View Article : Google Scholar : PubMed/NCBI

165 

Juin A, Spence HJ, Martin KJ, McGhee E, Neilson M, Cutiongco MFA, Gadegaard N, Mackay G, Fort L, Lilla S, et al: N-WASP control of LPAR1 trafficking establishes response to self-Generated LPA gradients to promote pancreatic cancer cell metastasis. Dev Cell. 51:431–445.e7. 2019. View Article : Google Scholar : PubMed/NCBI

166 

Tweedy L and Insall RH: Self-generated gradients yield exceptionally robust steering cues. Front Cell Dev Biol. 8:1332020. View Article : Google Scholar : PubMed/NCBI

167 

Bray SJ: Notch signalling in context. Nat Rev Mol Cell Biol. 17:722–735. 2016. View Article : Google Scholar : PubMed/NCBI

168 

Bocci F, Gearhart-Serna L, Boareto M, Ribeiro M, Ben-Jacob E, Devi GR, Levine H, Onuchic JN and Jolly MK: Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc Natl Acad Sci USA. 116:148–157. 2019. View Article : Google Scholar :

169 

Lewis J: Notch signalling and the control of cell fate choices in vertebrates. Semin Cell Dev Biol. 9:583–589. 1998. View Article : Google Scholar

170 

Tashima Y and Okajima T: Congenital diseases caused by defective O-glycosylation of notch receptors. Nagoya J Med Sci. 80:299–307. 2018.PubMed/NCBI

171 

Shimojo H, Ohtsuka T and Kageyama R: Dynamic expression of notch signaling genes in neural stem/progenitor cells. Front Neurosci. 5:782011. View Article : Google Scholar : PubMed/NCBI

172 

Manderfield LJ, High FA, Engleka KA, Liu F, Li L, Rentschler S and Epstein JA: Notch activation of Jagged1 contributes to the assembly of the arterial wall. Circulation. 125:314–323. 2012. View Article : Google Scholar :

173 

Boareto M, Jolly MK, Lu M, Onuchic JN, Clementi C and Ben-Jacob E: Jagged-Delta asymmetry in notch signaling can give rise to a sender/receiver hybrid phenotype. Proc Natl Acad Sci USA. 112:E402–E409. 2015. View Article : Google Scholar : PubMed/NCBI

174 

Luca VC, Jude KM, Pierce NW, Nachury MV, Fischer S and Garcia KC: Structural biology. Structural basis for Notch1 engagement of Delta-like 4. Science. 347:847–853. 2015. View Article : Google Scholar : PubMed/NCBI

175 

Rana NA and Haltiwanger RS: Fringe benefits: Functional and structural impacts of O-glycosylation on the extracellular domain of notch receptors. Curr Opin Struct Biol. 21:583–589. 2011. View Article : Google Scholar : PubMed/NCBI

176 

Jolly MK, Boareto M, Lu M, Onuchic JN, Clementi C and Ben-Jacob E: Operating principles of Notch-Delta-Jagged module of cell-cell communication. New J Phys. 17:0550212015. View Article : Google Scholar

177 

Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C and Shima DT: Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev. 16:2684–2698. 2002. View Article : Google Scholar : PubMed/NCBI

178 

Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD and Wiegand SJ: Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA. 104:3219–3224. 2007. View Article : Google Scholar : PubMed/NCBI

179 

Benedito R, Rocha SF, Woeste M, Zamykal M, Radtke F, Casanovas O, Duarte A, Pytowski B and Adams RH: Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature. 484:110–114. 2012. View Article : Google Scholar : PubMed/NCBI

180 

Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, Lin HC, Yancopoulos GD and Thurston G: Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature. 444:1032–1037. 2006. View Article : Google Scholar : PubMed/NCBI

181 

Han M, Xu W, Cheng P, Jin H and Wang X: Histone demethylase lysine demethylase 5B in development and cancer. Oncotarget. 8:8980–8991. 2017. View Article : Google Scholar :

182 

Zheng YC, Chang J, Wang LC, Ren HM, Pang JR and Liu HM: Lysine demethylase 5B (KDM5B): A potential anti-cancer drug target. Eur J Med Chem. 161:131–140. 2019. View Article : Google Scholar

183 

Horton JR, Engstrom A, Zoeller EL, Liu X, Shanks JR, Zhang X, Johns MA, Vertino PM, Fu H and Cheng X: Characterization of a linked jumonji domain of the KDM5/JARID1 family of histone H3 lysine 4 demethylases. J Biol Chem. 291:2631–2646. 2016. View Article : Google Scholar :

184 

Hinohara K, Wu HJ, Vigneau S, McDonald TO, Igarashi KJ, Yamamoto KN, Madsen T, Fassl A, Egri SB, Papanastasiou M, et al: KDM5 histone demethylase activity links cellular transcriptomic heterogeneity to therapeutic resistance. Cancer Cell. 34:939–953.e9. 2018. View Article : Google Scholar : PubMed/NCBI

185 

Goley ED and Welch MD: The ARP2/3 complex: An actin nucleator comes of age. Nat Rev Mol Cell Biol. 7:713–726. 2006. View Article : Google Scholar : PubMed/NCBI

186 

Hsu PP and Sabatini DM: Cancer cell metabolism: Warburg and beyond. Cell. 134:703–707. 2008. View Article : Google Scholar : PubMed/NCBI

187 

Faubert B, Solmonson A and DeBerardinis RJ: Metabolic reprogramming and cancer progression. Science. 368:eaaw54732020. View Article : Google Scholar : PubMed/NCBI

188 

Warhurg O, Posener K and Negelein E: Über den Stoffwechsel der Carcinomzelle. Naturwissenschaften. 12:1131–1137. 1924. View Article : Google Scholar

189 

Zanotelli MR, Rahman-Zaman A, VanderBurgh JA, Taufalele PV, Jain A, Erickson D, Bordeleau F and Reinhart-King CA: Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making. Nat Commun. 10:41852019. View Article : Google Scholar : PubMed/NCBI

190 

Commander R, Wei C, Sharma A, Mouw JK, Burton LJ, Summerbell E, Mahboubi D, Peterson RJ, Konen J, Zhou W, et al: Subpopulation targeting of pyruvate dehydrogenase and GLUT1 decouples metabolic heterogeneity during collective cancer cell invasion. Nat Commun. 11:15332020. View Article : Google Scholar : PubMed/NCBI

191 

Tan Z, Yang C, Zhang X, Zheng P and Shen W: Expression of glucose transporter 1 and prognosis in non-small cell lung cancer: A pooled analysis of 1665 patients. Oncotarget. 8:609542017. View Article : Google Scholar : PubMed/NCBI

192 

Yu M, Yongzhi H, Chen S, Luo X, Lin Y, Zhou Y, Jin H, Hou B, Deng Y, Tu L and Jian Z: The prognostic value of GLUT1 in cancers: A systematic review and meta-analysis. Oncotarget. 8:43356–43367. 2017. View Article : Google Scholar : PubMed/NCBI

193 

Carvalho KC, Cunha IW, Rocha RM, Ayala FR, Cajaíba MM, Begnami MD, Vilela RS, Paiva GR, Andrade RG and Soares FA: GLUT1 expression in malignant tumors and its use as an immunodiagnostic marker. Clinics (Sao Paulo). 66:965–972. 2011. View Article : Google Scholar : PubMed/NCBI

194 

Bos R, van Der Hoeven JJ, van Der Wall E, van Der Groep P, van Diest PJ, Comans EF, Joshi U, Semenza GL, Hoekstra OS, Lammertsma AA and Molthoff CF: Biologic correlates of (18) fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol. 20:379–387. 2002. View Article : Google Scholar : PubMed/NCBI

195 

Schwartzenberg-Bar-Yoseph F, Armoni M and Karnieli E: The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 64:2627–2633. 2004. View Article : Google Scholar : PubMed/NCBI

196 

Chen C, Pore N, Behrooz A, Ismail-Beigi F and Maity A: Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem. 276:9519–9525. 2001. View Article : Google Scholar

197 

Tanegashima K, Sato-Miyata Y, Funakoshi M, Nishito Y, Aigaki T and Hara T: Epigenetic regulation of the glucose transporter gene Slc2a1 by β-hydroxybutyrate underlies preferential glucose supply to the brain of fasted mice. Genes Cells. 22:71–83. 2017. View Article : Google Scholar

198 

Barthel A, Okino ST, Liao J, Nakatani K, Li J, Whitlock JP Jr and Roth RA: Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1. J Biol Chem. 274:20281–20286. 1999. View Article : Google Scholar : PubMed/NCBI

199 

Cunniff B, McKenzie AJ, Heintz NH and Howe AK: AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion. Mol Biol Cell. 27:2662–2674. 2016. View Article : Google Scholar : PubMed/NCBI

200 

Alert R and Trepat X: Physical models of collective cell migration. Annu Rev Condens Matter Phys. 11:77–101. 2020. View Article : Google Scholar

201 

Merino-Casallo F, Gomez-Benito MJ, Hervas-Raluy S and Garcia-Aznar JM: Unravelling cell migration: Defining movement from the cell surface. Cell Adh Migr. 16:25–64. 2022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang X, Tang Y and Liang X: Tumour follower cells: A novel driver of leader cells in collective invasion (Review). Int J Oncol 63: 115, 2023.
APA
Wang, X., Tang, Y., & Liang, X. (2023). Tumour follower cells: A novel driver of leader cells in collective invasion (Review). International Journal of Oncology, 63, 115. https://doi.org/10.3892/ijo.2023.5563
MLA
Wang, X., Tang, Y., Liang, X."Tumour follower cells: A novel driver of leader cells in collective invasion (Review)". International Journal of Oncology 63.4 (2023): 115.
Chicago
Wang, X., Tang, Y., Liang, X."Tumour follower cells: A novel driver of leader cells in collective invasion (Review)". International Journal of Oncology 63, no. 4 (2023): 115. https://doi.org/10.3892/ijo.2023.5563
Copy and paste a formatted citation
x
Spandidos Publications style
Wang X, Tang Y and Liang X: Tumour follower cells: A novel driver of leader cells in collective invasion (Review). Int J Oncol 63: 115, 2023.
APA
Wang, X., Tang, Y., & Liang, X. (2023). Tumour follower cells: A novel driver of leader cells in collective invasion (Review). International Journal of Oncology, 63, 115. https://doi.org/10.3892/ijo.2023.5563
MLA
Wang, X., Tang, Y., Liang, X."Tumour follower cells: A novel driver of leader cells in collective invasion (Review)". International Journal of Oncology 63.4 (2023): 115.
Chicago
Wang, X., Tang, Y., Liang, X."Tumour follower cells: A novel driver of leader cells in collective invasion (Review)". International Journal of Oncology 63, no. 4 (2023): 115. https://doi.org/10.3892/ijo.2023.5563
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team