![Open Access](/resources/images/iconopenaccess.png)
Tumour follower cells: A novel driver of leader cells in collective invasion (Review)
- Authors:
- Xiao-Chen Wang
- Ya-Ling Tang
- Xin-Hua Liang
-
Affiliations: Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China, Department of Oral Pathology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China - Published online on: August 22, 2023 https://doi.org/10.3892/ijo.2023.5563
- Article Number: 115
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Place AE, Jin Huh S and Polyak K: The microenvironment in breast cancer progression: Biology and implications for treatment. Breast Cancer Res. 13:2272011. View Article : Google Scholar : PubMed/NCBI | |
Almendro V, Marusyk A and Polyak K: Cellular heterogeneity and molecular evolution in cancer. Annu Rev Pathol. 8:277–302. 2013. View Article : Google Scholar | |
Friedl P, Locker J, Sahai E and Segall JE: Classifying collective cancer cell invasion. Nat Cell Biol. 14:777–783. 2012. View Article : Google Scholar : PubMed/NCBI | |
Haeger A, Wolf K, Zegers MM and Friedl P: Collective cell migration: Guidance principles and hierarchies. Trends Cell Biol. 25:556–566. 2015. View Article : Google Scholar : PubMed/NCBI | |
Westcott JM, Prechtl AM, Maine EA, Dang TT, Esparza MA, Sun H, Zhou Y, Xie Y and Pearson GW: An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J Clin Invest. 125:1927–1943. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pandya P, Orgaz JL and Sanz-Moreno V: Actomyosin contractility and collective migration: May the force be with you. Curr Opin Cell Biol. 48:87–96. 2017. View Article : Google Scholar : PubMed/NCBI | |
Poujade M Grasland-Mongrain E, Hertzog A, Jouanneau J, Chavrier P, Ladoux B, Buguin A and Silberzan P: Collective migration of an epithelial monolayer in response to a model wound. Proc Natl Acad Sci USA. 104:15988–15993. 2007. View Article : Google Scholar : PubMed/NCBI | |
Park J and Chronopolous A: Abstract B029: Flip-flopping of fusion-positive rhabdomyosarcoma regulating intratumoral heterogeneity for metastasis. Clin Cancer Res. 28(18 Suppl): B0292022. View Article : Google Scholar | |
Yamamoto E, Kohama G, Sunakawa H, Iwai M and Hiratsuka H: Mode of invasion, bleomycin sensitivity, and clinical course in squamous cell carcinoma of the oral cavity. Cancer. 51:2175–2180. 1983. View Article : Google Scholar : PubMed/NCBI | |
Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K and Sahai E: Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol. 9:1392–1400. 2007. View Article : Google Scholar : PubMed/NCBI | |
Konen J, Summerbell E, Dwivedi B, Galior K, Hou Y, Rusnak L, Chen A, Saltz J, Zhou W, Boise LH, et al: Image-guided genomics of phenotypically heterogeneous populations reveals vascular signalling during symbiotic collective cancer invasion. Nat Commun. 8:150782017. View Article : Google Scholar : PubMed/NCBI | |
Zoeller EL, Pedro B, Konen J, Dwivedi B, Rupji M, Sundararaman N, Wang L, Horton JR, Zhong C, Barwick BG, et al: Genetic heterogeneity within collective invasion packs drives leader and follower cell phenotypes. J Cell Sci. 132:jcs2315142019. View Article : Google Scholar : PubMed/NCBI | |
Riahi R, Sun J, Wang S, Long M, Zhang DD and Wong PK: Notch1-Dll4 signalling and mechanical force regulate leader cell formation during collective cell migration. Nat Commun. 6:65562015. View Article : Google Scholar : PubMed/NCBI | |
Tse JM, Cheng G, Tyrrell JA, Wilcox-Adelman SA, Boucher Y, Jain RK and Munn LL: Mechanical compression drives cancer cells toward invasive phenotype. Proc Natl Acad Sci USA. 109:911–916. 2012. View Article : Google Scholar : | |
Farooqui R and Fenteany G: Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement. J Cell Sci. 118:51–63. 2005. View Article : Google Scholar | |
Reffay M, Parrini MC, Cochet-Escartin O, Ladoux B, Buguin A, Coscoy S, Amblard F, Camonis J and Silberzan P: Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells. Nat Cell Biol. 16:217–223. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi N, Mizutani T, Kawabata K and Haga H: Leader cells regulate collective cell migration via Rac activation in the downstream signaling of integrin β1 and PI3K. Sci Rep. 5:76562015. View Article : Google Scholar | |
Mayor R and Etienne-Manneville S: The front and rear of collective cell migration. Nat Rev Mol Cell Biol. 17:97–109. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Goliwas KF, Wang W, Taufalele PV, Bordeleau F and Reinhart-King CA: Energetic regulation of coordinated leader-follower dynamics during collective invasion of breast cancer cells. Proc Natl Acad Sci USA. 116:7867–7872. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wolf K, Wu YI, Liu Y, Geiger J, Tam E, Overall C, Stack MS and Friedl P: Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol. 9:893–904. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, Hanash SM, Bapat SA, Rangarajan A and Levine H: Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther. 194:161–184. 2019. View Article : Google Scholar | |
Mayor R and Carmona-Fontaine C: Keeping in touch with contact inhibition of locomotion. Trends Cell Biol. 20:319–328. 2010. View Article : Google Scholar : PubMed/NCBI | |
Stramer B and Mayor R: Mechanisms and in vivo functions of contact inhibition of locomotion. Nat Rev Mol Cell Biol. 18:43–55. 2017. View Article : Google Scholar | |
Wendt MK, Taylor MA, Schiemann BJ and Schiemann WP: Down-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancer. Mol Biol Cell. 22:2423–2435. 2011. View Article : Google Scholar : PubMed/NCBI | |
Abercrombie M: Contact inhibition and malignancy. Nature. 281:259–262. 1979. View Article : Google Scholar : PubMed/NCBI | |
Rørth P: Fellow travellers: Emergent properties of collective cell migration. EMBO Rep. 13:984–991. 2012. View Article : Google Scholar : PubMed/NCBI | |
Khalil AA and de Rooij J: Cadherin mechanotransduction in leader-follower cell specification during collective migration. Exp Cell Res. 376:86–91. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rorth P: Collective cell migration. Annu Rev Cell Dev Biol. 25:407–429. 2009. View Article : Google Scholar : PubMed/NCBI | |
Qin L, Yang D, Yi W, Cao H and Xiao G: Roles of leader and follower cells in collective cell migration. Mol Biol Cell. 32:1267–1272. 2021. View Article : Google Scholar : PubMed/NCBI | |
Camand E, Peglion F, Osmani N, Sanson M and Etienne-Manneville S: N-cadherin expression level modulates integrin-mediated polarity and strongly impacts on the speed and directionality of glial cell migration. J Cell Sci. 125:844–857. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ladoux B, Mège RM and Trepat X: Front-rear polarization by mechanical cues: From single cells to tissues. Trends Cell Biol. 26:420–433. 2016. View Article : Google Scholar : PubMed/NCBI | |
Abbruzzese G, Becker SF, Kashef J and Alfandari D: ADAM13 cleavage of cadherin-11 promotes CNC migration independently of the homophilic binding site. Dev Biol. 415:383–390. 2016. View Article : Google Scholar : | |
Quan Q, Wang X, Lu C, Ma W, Wang Y, Xia G, Wang C and Yang G: Cancer stem-like cells with hybrid epithelial/mesenchymal phenotype leading the collective invasion. Cancer Sci. 111:467–476. 2020. View Article : Google Scholar : | |
Ye X and Weinberg RA: Epithelial-mesenchymal plasticity: A central regulator of cancer progression. Trends Cell Biol. 25:675–686. 2015. View Article : Google Scholar : PubMed/NCBI | |
Padmanaban V, Krol I, Suhail Y, Szczerba BM, Aceto N, Bader JS and Ewald AJ: E-cadherin is required for metastasis in multiple models of breast cancer. Nature. 573:439–444. 2019. View Article : Google Scholar : PubMed/NCBI | |
Scarpa E, Szabó A, Bibonne A, Theveneau E, Parsons M and Mayor R: Cadherin switch during EMT in neural crest cells leads to contact inhibition of locomotion via repolarization of forces. Dev Cell. 34:421–434. 2015. View Article : Google Scholar : PubMed/NCBI | |
Moriwaki K, Wada M, Kuwabara H, Ayani Y, Terada T, Higashino M, Kawata R and Asahi M: BDNF/TRKB axis provokes EMT progression to induce cell aggressiveness via crosstalk with cancer-associated fibroblasts in human parotid gland cancer. Sci Rep. 12:175532022. View Article : Google Scholar : PubMed/NCBI | |
Shih W and Yamada S: N-cadherin-mediated cell-cell adhesion promotes cell migration in a three-dimensional matrix. J Cell Sci. 125:3661–3670. 2012. View Article : Google Scholar : PubMed/NCBI | |
Thiery JP, Acloque H, Huang RYJ and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI | |
Saénz-de-Santa-María I, Celada L and Chiara MD: The leader position of mesenchymal cells expressing N-cadherin in the collective migration of epithelial cancer. Cells. 9:7312020. View Article : Google Scholar : PubMed/NCBI | |
Labernadie A, Kato T, Brugués A, Serra-Picamal X, Derzsi S, Arwert E, Weston A, González-Tarragó V, Elosegui-Artola A, Albertazzi L, et al: A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat Cell Biol. 19:224–237. 2017. View Article : Google Scholar : PubMed/NCBI | |
Van den Bossche J, Bogaert P, van Hengel J, Guérin CJ, Berx G, Movahedi K, Van den Bergh R, Pereira-Fernandes A, Geuns JM, Pircher H, et al: Alternatively activated macrophages engage in homotypic and heterotypic interactions through IL-4 and polyamine-induced E-cadherin/catenin complexes. Blood. 114:4664–4674. 2009. View Article : Google Scholar : PubMed/NCBI | |
Takai Y, Irie K, Shimizu K, Sakisaka T and Ikeda W: Nectins and nectin-like molecules: Roles in cell adhesion, migration, and polarization. Cancer Sci. 94:655–667. 2003. View Article : Google Scholar : PubMed/NCBI | |
Izumi G, Sakisaka T, Baba T, Tanaka S, Morimoto K and Takai Y: Endocytosis of E-cadherin regulated by Rac and Cdc42 small G proteins through IQGAP1 and actin filaments. J Cell Biol. 166:237–248. 2004. View Article : Google Scholar : PubMed/NCBI | |
Takai Y, Miyoshi J, Ikeda W and Ogita H: Nectins and nectin-like molecules: Roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol. 9:603–615. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ikeda W, Kakunaga S, Takekuni K, Shingai T, Satoh K, Morimoto K, Takeuchi M, Imai T and Takai Y: Nectin-like molecule-5/Tage4 enhances cell migration in an integrin-dependent, Nectin-3-independent manner. J Biol Chem. 279:18015–18025. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bevelacqua V, Bevelacqua Y, Candido S, Skarmoutsou E, Amoroso A, Guarneri C, Strazzanti A, Gangemi P, Mazzarino MC, D'Amico F, et al: Nectin like-5 overexpression correlates with the malignant phenotype in cutaneous melanoma. Oncotarget. 3:882–892. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nakai R, Maniwa Y, Tanaka Y, Nishio W, Yoshimura M, Okita Y, Ohbayashi C, Satoh N, Ogita H, Takai Y and Hayashi Y: Overexpression of Necl-5 correlates with unfavorable prognosis in patients with lung adenocarcinoma. Cancer Sci. 101:1326–1330. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kania A and Klein R: Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat Rev Mol Cell Biol. 17:240–256. 2016. View Article : Google Scholar : PubMed/NCBI | |
Astin JW, Batson J, Kadir S, Charlet J, Persad RA, Gillatt D, Oxley JD and Nobes CD: Competition amongst Eph receptors regulates contact inhibition of locomotion and invasiveness in prostate cancer cells. Nat Cell Biol. 12:1194–1204. 2010. View Article : Google Scholar : PubMed/NCBI | |
Batson J, Astin JW and Nobes CD: Regulation of contact inhibition of locomotion by Eph-ephrin signalling. J Microsc. 251:232–241. 2013. View Article : Google Scholar : PubMed/NCBI | |
Matthews HK, Marchant L, Carmona-Fontaine C, Kuriyama S, Larraín J, Holt MR, Parsons M and Mayor R: Directional migration of neural crest cells in vivo is regulated by Syndecan-4/Rac1 and non-canonical Wnt signaling/RhoA. Development. 135:1771–1780. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kurayoshi M, Oue N, Yamamoto H, Kishida M, Inoue A, Asahara T, Yasui W and Kikuchi A: Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res. 66:10439–10448. 2006. View Article : Google Scholar : PubMed/NCBI | |
VanderVorst K, Dreyer CA, Konopelski SE, Lee H, Ho HH and Carraway KL III: Wnt/PCP signaling contribution to carcinoma collective cell migration and metastasis. Cancer Res. 79:1719–1729. 2019. View Article : Google Scholar : PubMed/NCBI | |
Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M and Wrana JL: Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 151:1542–1556. 2012. View Article : Google Scholar : PubMed/NCBI | |
Halbleib JM and Nelson WJ: Cadherins in development: Cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 20:3199–3214. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wheeler AP and Ridley AJ: Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Exp Cell Res. 301:43–49. 2004. View Article : Google Scholar : PubMed/NCBI | |
Theveneau E, Marchant L, Kuriyama S, Gull M, Moepps B, Parsons M and Mayor R: Collective chemotaxis requires contact-dependent cell polarity. Dev Cell. 19:39–53. 2010. View Article : Google Scholar : PubMed/NCBI | |
Drees F, Pokutta S, Yamada S, Nelson WJ and Weis WI: Alpha-catenin is a molecula r switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell. 123:903–915. 2005. View Article : Google Scholar : PubMed/NCBI | |
Anastasiadis PZ and Reynolds AB: Regulation of Rho GTPases by p120-catenin. Curr Opin Cell Biol. 13:604–610. 2001. View Article : Google Scholar : PubMed/NCBI | |
Macpherson IR, Hooper S, Serrels A, McGarry L, Ozanne BW, Harrington K, Frame MC, Sahai E and Brunton VG: p120-catenin is required for the collective invasion of squamous cell carcinoma cells via a phosphorylation-independent mechanism. Oncogene. 26:5214–5228. 2007. View Article : Google Scholar : PubMed/NCBI | |
Noren NK, Liu BP, Burridge K and Kreft B: p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J Cell Biol. 150:567–580. 2000. View Article : Google Scholar : PubMed/NCBI | |
Nobes CD and Hall A: Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 81:53–62. 1995. View Article : Google Scholar : PubMed/NCBI | |
Kurokawa K and Matsuda M: Localized RhoA activation as a requirement for the induction of membrane ruffling. Mol Biol Cell. 16:4294–4303. 2005. View Article : Google Scholar : PubMed/NCBI | |
Krause M and Gautreau A: Steering cell migration: Lamellipodium dynamics and the regulation of directional persistence. Nat Rev Mol Cell Biol. 15:577–590. 2014. View Article : Google Scholar : PubMed/NCBI | |
Haga RB and Ridley AJ: Rho GTPases: Regulation and roles in cancer cell biology. Small GTPases. 7:207–221. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim SY, Lee S, Lee E, Lim H, Shin JY, Jung J, Kim SG and Moon A: Sex-biased differences in the correlation between epithelial-to-mesenchymal transition-associated genes in cancer cell lines. Oncol Lett. 18:6852–6868. 2019.PubMed/NCBI | |
Hidalgo-Carcedo C, Hooper S, Chaudhry SI, Williamson P, Harrington K, Leitinger B and Sahai E: Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat Cell Biol. 13:49–58. 2011. View Article : Google Scholar : | |
Zaritsky A, Tseng YY, Rabadán MA, Krishna S, Overholtzer M, Danuser G and Hall A: Diverse roles of guanine nucleotide exchange factors in regulating collective cell migration. J Cell Biol. 216:1543–1556. 2017. View Article : Google Scholar : PubMed/NCBI | |
Runkle EA and Mu D: Tight junction proteins: From barrier to tumorigenesis. Cancer Lett. 337:41–48. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kummer D, Steinbacher T, Thölmann S, Schwietzer MF, Hartmann C, Horenkamp S, Demuth S, Peddibhotla SSD, Brinkmann F, Kemper B, et al: A JAM-A-tetraspanin-αvβ5 integrin complex regulates contact inhibition of locomotion. J Cell Biol. 221:e2021051472022. View Article : Google Scholar | |
Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI | |
Davis JR, Luchici A, Mosis F, Thackery J, Salazar JA, Mao Y, Dunn GA, Betz T, Miodownik M and Stramer BM: Inter-cellular forces orchestrate contact inhibition of locomotion. Cell. 161:361–373. 2015. View Article : Google Scholar : PubMed/NCBI | |
Davis JR, Huang CY, Zanet J, Harrison S, Rosten E, Cox S, Soong DY, Dunn GA and Stramer BM: Emergence of embryonic pattern through contact inhibition of locomotion. Development. 139:4555–4560. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, et al: Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J. 88:3689–3698. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mialhe A, Lafanechère L, Treilleux I, Peloux N, Dumontet C, Brémond A, Panh MH, Payan R, Wehland J, Margolis RL and Job D: Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res. 61:5024–5027. 2001.PubMed/NCBI | |
Daub H, Gevaert K, Vandekerckhove J, Sobel A and Hall A: Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16. J Biol Chem. 276:1677–1680. 2001. View Article : Google Scholar | |
Moore R, Theveneau E, Pozzi S, Alexandre P, Richardson J, Merks A, Parsons M, Kashef J, Linker C and Mayor R: Par3 controls neural crest migration by promoting microtubule catastrophe during contact inhibition of locomotion. Development. 140:4763–4775. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cramer LP: Forming the cell rear first: Breaking cell symmetry to trigger directed cell migration. Nat Cell Biol. 12:628–632. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yam PT, Wilson CA, Ji L, Hebert B, Barnhart EL, Dye NA, Wiseman PW, Danuser G and Theriot JA: Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. J Cell Biol. 178:1207–1221. 2007. View Article : Google Scholar : PubMed/NCBI | |
Olson HM and Nechiporuk AV: Using zebrafish to study collective cell migration in development and disease. Front Cell Dev Biol. 6:832018. View Article : Google Scholar : PubMed/NCBI | |
Ozawa M, Hiver S, Yamamoto T, Shibata T, Upadhyayula S, Mimori-Kiyosue Y and Takeichi M: Adherens junction regulates cryptic lamellipodia formation for epithelial cell migration. J Cell Biol. 219:e2020061962020. View Article : Google Scholar : PubMed/NCBI | |
Yokoyama S, Matsui TS and Deguchi S: New wrinkling substrate assay reveals traction force fields of leader and follower cells undergoing collective migration. Biochem Biophys Res Commun. 482:975–979. 2017. View Article : Google Scholar | |
Jakobsson L, Franco CA, Bentley K, Collins RT, Ponsioen B, Aspalter IM, Rosewell I, Busse M, Thurston G, Medvinsky A, et al: Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol. 12:943–953. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ghabrial AS and Krasnow MA: Social interactions among epithelial cells during tracheal branching morphogenesis. Nature. 441:746–749. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nguyen-Ngoc KV, Cheung KJ, Brenot A, Shamir ER, Gray RS, Hines WC, Yaswen P, Werb Z and Ewald AJ: ECM microenvironment regulates collective migration and local dissemination in normal and malignant mammary epithelium. Proc Natl Acad Sci USA. 109:E2595–E2604. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cheung KJ, Gabrielson E, Werb Z and Ewald AJ: Collective invasion in breast cancer requires a conserved basal epithelial program. Cell. 155:1639–1651. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cai D, Chen SC, Prasad M, He L, Wang X, Choesmel-Cadamuro V, Sawyer JK, Danuser G and Montell DJ: Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell. 157:1146–1159. 2014. View Article : Google Scholar : PubMed/NCBI | |
Inaki M, Vishnu S, Cliffe A and Rørth P: Effective guidance of collective migration based on differences in cell states. Proc Natl Acad Sci USA. 109:2027–2032. 2012. View Article : Google Scholar : PubMed/NCBI | |
Okimura C, Iwanaga M, Sakurai T, Ueno T, Urano Y and Iwadate Y: Leading-edge elongation by follower cell interruption in advancing epithelial cell sheets. Proc Natl Acad Sci USA. 119:e21199031192022. View Article : Google Scholar : PubMed/NCBI | |
Vishwakarma M, Di Russo J, Probst D, Schwarz US, Das T and Spatz JP: Mechanical interactions among followers determine the emergence of leaders in migrating epithelial cell collectives. Nat Commun. 9:34692018. View Article : Google Scholar : PubMed/NCBI | |
Bocci F, Onuchic JN and Jolly MK: Understanding the principles of pattern formation driven by notch signaling by integrating experiments and theoretical models. Front Physiol. 11:9292020. View Article : Google Scholar : PubMed/NCBI | |
DeMali KA and Burridge K: Coupling membrane protrusion and cell adhesion. J Cell Sci. 116:2389–2397. 2003. View Article : Google Scholar : PubMed/NCBI | |
DeCamp SJ, Tsuda VMK, Ferruzzi J, Koehler SA, Giblin JT, Roblyer D, Zaman MH, Weiss ST, Kılıç A, De Marzio M, et al: Epithelial layer unjamming shifts energy metabolism toward glycolysis. Sci Rep. 10:183022020. View Article : Google Scholar : PubMed/NCBI | |
Weber GF, Bjerke MA and DeSimone DW: A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev Cell. 22:104–115. 2012. View Article : Google Scholar : | |
Chen T, Saw TB, Mège RM and Ladoux B: Mechanical forces in cell monolayers. J Cell Sci. 131:jcs2181562018. View Article : Google Scholar : PubMed/NCBI | |
Tambe DT, Hardin CC, Angelini TE, Rajendran K, Park CY, Serra-Picamal X, Zhou EH, Zaman MH, Butler JP, Weitz DA, et al: Collective cell guidance by cooperative intercellular forces. Nat Mater. 10:469–475. 2011. View Article : Google Scholar : PubMed/NCBI | |
Trepat X, Wasserman MR, Angelini TE, Millet E, Weitz DA, Butler JP and Fredberg JJ: Physical forces during collective cell migration. Nat Phys. 5:426–430. 2009. View Article : Google Scholar | |
Gayrard C, Bernaudin C, Déjardin T, Seiler C and Borghi N: Src- and confinement-dependent FAK activation causes E-cadherin relaxation and β-catenin activity. J Cell Biol. 217:1063–1077. 2018. View Article : Google Scholar : PubMed/NCBI | |
Desai RA, Gopal SB, Chen S and Chen CS: Contact inhibition of locomotion probabilities drive solitary versus collective cell migration. J R Soc Interface. 10:201307172013. View Article : Google Scholar : PubMed/NCBI | |
Thomas WA, Boscher C, Chu YS, Cuvelier D, Martinez-Rico C, Seddiki R, Heysch J, Ladoux B, Thiery JP, Mege RM and Dufour S: α-Catenin and vinculin cooperate to promote high E-cadherin-based adhesion strength. J Biol Chem. 288:4957–4969. 2013. View Article : Google Scholar | |
Seddiki R, Narayana GHNS, Strale PO, Balcioglu HE, Peyret G, Yao M, Le AP, Teck Lim C, Yan J, Ladoux B and Mège RM: Force-dependent binding of vinculin to α-catenin regulates cell-cell contact stability and collective cell behavior. Mol Biol Cell. 29:380–388. 2018. View Article : Google Scholar : | |
Matsuzawa K, Himoto T, Mochizuki Y and Ikenouchi J: α-Catenin controls the anisotropy of force distribution at cell-cell junctions during collective cell migration. Cell Rep. 23:3447–3456. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bazellières E, Conte V, Elosegui-Artola A, Serra-Picamal X, Bintanel-Morcillo M, Roca-Cusachs P, Muñoz JJ, Sales-Pardo M, Guimerà R and Trepat X: Control of cell-cell forces and collective cell dynamics by the intercellular adhesome. Nat Cell Biol. 17:409–420. 2015. View Article : Google Scholar : PubMed/NCBI | |
Plutoni C, Bazellieres E, Le Borgne-Rochet M, Comunale F, Brugues A, Séveno M, Planchon D, Thuault S, Morin N, Bodin S, et al: P-cadherin promotes collective cell migration via a Cdc42-mediated increase in mechanical forces. J Cell Biol. 212:199–217. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, Nelson CM and Chen CS: Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci USA. 107:9944–9949. 2010. View Article : Google Scholar : PubMed/NCBI | |
Crawford AJ, Gomez-Cruz C, Russo GC, Huang W, Bhorkar I, uñoz-Barrutia A, Wirtz D and Garcia-Gonzalez D: Tumor proliferation and invasion are coupled through cell-extracellular matrix friction. bioRxiv. 2022.2011:2015.5165482022. | |
Lee MH, Russo G, Rahmanto YS, Du W, Crawford AJ, Wu PH, Gilkes D, Kiemen A, Miyamoto T, Yu Y, et al: Multi-compartment tumor organoids. Mater Today. 61:104–116. 2022. View Article : Google Scholar | |
Russo GC, Crawford AJ, Clark D, Cui J, Carney R, Karl MN, Su B, Starich B, Lih T, Kamat P, et al: E-cadherin interacts with EGFR resulting in hyper-activation of ERK in multiple models of breast cancer. bioRxiv. 2020. | |
Muhamed I, Wu J, Sehgal P, Kong X, Tajik A, Wang N and Leckband DE: E-cadherin-mediated force transduction signals regulate global cell mechanics. J Cell Sci. 129:1843–1854. 2016.PubMed/NCBI | |
Barry AK, Tabdili H, Muhamed I, Wu J, Shashikanth N, Gomez GA, Yap AS, Gottardi CJ, de Rooij J, Wang N and Leckband DE: α-catenin cytomechanics-role in cadherin-dependent adhesion and mechanotransduction. J Cell Sci. 127:1779–1791. 2014. View Article : Google Scholar : PubMed/NCBI | |
Benham-Pyle BW, Pruitt BL and Nelson WJ: Cell adhesion. Mechanical strain induces E-cadherin-dependent Yap1 and β-catenin activation to drive cell cycle entry. Science. 348:1024–1027. 2015. View Article : Google Scholar : PubMed/NCBI | |
Röper JC, Mitrossilis D, Stirnemann G, Waharte F, Brito I, Fernandez-Sanchez ME, Baaden M, Salamero J and Farge E: The major β-catenin/E-cadherin junctional binding site is a primary molecular mechano-transductor of differentiation in vivo. Elife. 7:e333812018. View Article : Google Scholar | |
Fernández-Sánchez ME, Barbier S, Whitehead J, Béalle G, Michel A, Latorre-Ossa H, Rey C, Fouassier L, Claperon A, Brullé L, et al: Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure. Nature. 523:92–95. 2015. View Article : Google Scholar | |
Hino N, Rossetti L, Marín-Llauradó A, Aoki K, Trepat X, Matsuda M and Hirashima T: ERK-mediated mechanochemical waves direct collective cell polarization. Dev Cell. 53:646–660.e8. 2020. View Article : Google Scholar : PubMed/NCBI | |
Coló GP, Hernández-Varas P, Lock J, Bartolomé RA, Arellano-Sánchez N, Strömblad S and Teixidó J: Focal adhesion disassembly is regulated by a RIAM to MEK-1 pathway. J Cell Sci. 125:5338–5352. 2012.PubMed/NCBI | |
Das T, Safferling K, Rausch S, Grabe N, Boehm H and Spatz JP: A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nat Cell Biol. 17:276–287. 2015. View Article : Google Scholar : PubMed/NCBI | |
Colak-Champollion T, Lan L, Jadhav AR, Yamaguchi N, Venkiteswaran G, Patel H, Cammer M, Meier-Schellersheim M and Knaut H: Cadherin-mediated cell coupling coordinates chemokine sensing across collectively migrating cells. Curr Biol. 29:2570–2579.e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
Heneberg P: Paracrine tumor signaling induces transdifferentiation of surrounding fibroblasts. Crit Rev Oncol Hematol. 97:303–311. 2016. View Article : Google Scholar | |
Barbazán J and Matic Vignjevic D: Cancer associated fibroblasts: Is the force the path to the dark side? Curr Opin Cell Biol. 56:71–79. 2019. View Article : Google Scholar | |
Ishii G, Ochiai A and Neri S: Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev. 99:186–196. 2016. View Article : Google Scholar | |
Attaran S, Skoko JJ, Hopkins BL, Wright MK, Wood LE, Asan A, Woo HA, Feinberg A and Neumann CA: Peroxiredoxin-1 Tyr194 phosphorylation regulates LOX-dependent extracellular matrix remodelling in breast cancer. Br J Cancer. 125:1146–1157. 2021. View Article : Google Scholar : PubMed/NCBI | |
Winkler J, Abisoye-Ogunniyan A, Metcalf KJ and Werb Z: Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun. 11:51202020. View Article : Google Scholar : PubMed/NCBI | |
Kai F, Drain AP and Weaver VM: The extracellular matrix modulates the metastatic journey. Dev Cell. 49:332–346. 2019. View Article : Google Scholar : PubMed/NCBI | |
Poltavets V, Kochetkova M, Pitson SM and Samuel MS: The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity. Front Oncol. 8:4312018. View Article : Google Scholar : PubMed/NCBI | |
Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, et al: Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 139:891–906. 2009. View Article : Google Scholar : PubMed/NCBI | |
Elosegui-Artola A, Oria R, Chen Y, Kosmalska A, Pérez-González C, Castro N, Zhu C, Trepat X and Roca-Cusachs P: Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat Cell Biol. 18:540–548. 2016. View Article : Google Scholar : PubMed/NCBI | |
Miranti CK and Brugge JS: Sensing the environment: A historical perspective on integrin signal transduction. Nat Cell Biol. 4:E83–E90. 2002. View Article : Google Scholar : PubMed/NCBI | |
Maritzen T, Schachtner H and Legler DF: On the move: Endocytic trafficking in cell migration. Cell Mol Life Sci. 72:2119–2134. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sawada Y, Tamada M, Dubin-Thaler BJ, Cherniavskaya O, Sakai R, Tanaka S and Sheetz MP: Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell. 127:1015–1026. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tamada M, Sheetz MP and Sawada Y: Activation of a signaling cascade by cytoskeleton stretch. Dev Cell. 7:709–718. 2004. View Article : Google Scholar : PubMed/NCBI | |
Van Helvert S, Storm C and Friedl P: Mechanoreciprocity in cell migration. Nat Cell Biol. 20:8–20. 2018. View Article : Google Scholar : | |
Keating M, Kurup A, Alvarez-Elizondo M, Levine AJ and Botvinick E: Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility. Acta Biomater. 57:304–312. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bi D, Lopez JH, Schwarz JM and Manning ML: A density-independent rigidity transition in biological tissues. Nat Phys. 11:1074–1079. 2015. View Article : Google Scholar | |
Wolf K, Te Lindert M, Krause M, Alexander S, Te Riet J, Willis AL, Hoffman RM, Figdor CG, Weiss SJ and Friedl P: Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol. 201:1069–1084. 2013. View Article : Google Scholar : PubMed/NCBI | |
Han YL, Ronceray P, Xu G, Malandrino A, Kamm RD, Lenz M, Broedersz CP and Guo M: Cell contraction induces long-ranged stress stiffening in the extracellular matrix. Proc Natl Acad Sci USA. 115:4075–4080. 2018. View Article : Google Scholar : PubMed/NCBI | |
Roomi MW, Monterrey JC, Kalinovsky T, Rath M and Niedzwiecki A: Patterns of MMP-2 and MMP-9 expression in human cancer cell lines. Oncol Rep. 21:1323–1333. 2009.PubMed/NCBI | |
Isomursu A, Park KY, Hou J, Cheng B, Mathieu M, Shamsan GA, Fuller B, Kasim J, Mahmoodi MM, Lu TJ, et al: Directed cell migration towards softer environments. Nat Mater. 21:1081–1090. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sunyer R, Conte V, Escribano J, Elosegui-Artola A, Labernadie A, Valon L, Navajas D, García-Aznar JM, Muñoz JJ, Roca-Cusachs P and Trepat X: Collective cell durotaxis emerges from long-range intercellular force transmission. Science. 353:1157–1161. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gilkes DM, Bajpai S, Chaturvedi P, Wirtz D and Semenza GL: Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J Biol Chem. 288:10819–10829. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chandler EM, Saunders MP, Yoon CJ, Gourdon D and Fischbach C: Adipose progenitor cells increase fibronectin matrix strain and unfolding in breast tumors. Phys Biol. 8:0150082011. View Article : Google Scholar : PubMed/NCBI | |
Guiet R, Van Goethem E, Cougoule C, Balor S, Valette A, Al Saati T, Lowell CA, Le Cabec V and Maridonneau-Parini I: The process of macrophage migration promotes matrix metalloproteinase-independent invasion by tumor cells. J Immunol. 187:3806–3814. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vilchez Mercedes SA, Bocci F, Levine H, Onuchic JN, Jolly MK and Wong PK: Decoding leader cells in collective cancer invasion. Nat Rev Cancer. 21:592–604. 2021. View Article : Google Scholar : PubMed/NCBI | |
Artym VV, Zhang Y, Seillier-Moiseiwitsch F, Yamada KM and Mueller SC: Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: Defining the stages of invadopodia formation and function. Cancer Res. 66:3034–3043. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hoshino D, Kirkbride KC, Costello K, Clark ES, Sinha S, Grega-Larson N, Tyska MJ and Weaver AM: Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep. 5:1159–1168. 2013. View Article : Google Scholar : PubMed/NCBI | |
Han T, Kang D, Ji D, Wang X, Zhan W, Fu M, Xin HB and Wang JB: How does cancer cell metabolism affect tumor migration and invasion? Cell Adh Migr. 7:395–403. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim KS, Sengupta S, Berk M, Kwak YG, Escobar PF, Belinson J, Mok SC and Xu Y: Hypoxia enhances lysophosphatidic acid responsiveness in ovarian cancer cells and lysophosphatidic acid induces ovarian tumor metastasis in vivo. Cancer Res. 66:7983–7990. 2006. View Article : Google Scholar : PubMed/NCBI | |
Egeblad M, Rasch MG and Weaver VM: Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol. 22:697–706. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rofstad EK, Mathiesen B, Kindem K and Galappathi K: Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res. 66:6699–6707. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pedron S, Becka E and Harley BA: Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid. Biomaterials. 34:7408–7417. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cha J, Kang SG and Kim P: Strategies of mesenchymal invasion of patient-derived brain tumors: Microenvironmental adaptation. Sci Rep. 6:249122016. View Article : Google Scholar : PubMed/NCBI | |
Kim Y and Kumar S: CD44-mediated adhesion to hyaluronic acid contributes to mechanosensing and invasive motility. Mol Cancer Res. 12:1416–1429. 2014. View Article : Google Scholar : PubMed/NCBI | |
Belousov A, Titov S, Shved N, Garbuz M, Malykin G, Gulaia V, Kagansky A and Kumeiko V: The extracellular matrix and biocompatible materials in glioblastoma treatment. Front Bioeng Biotechnol. 7:3412019. View Article : Google Scholar : PubMed/NCBI | |
Serres E, Debarbieux F, Stanchi F, Maggiorella L, Grall D, Turchi L, Burel-Vandenbos F, Figarella-Branger D, Virolle T, Rougon G and Van Obberghen-Schilling E: Fibronectin expression in glioblastomas promotes cell cohesion, collective invasion of basement membrane in vitro and orthotopic tumor growth in mice. Oncogene. 33:3451–3462. 2014. View Article : Google Scholar | |
Condeelis J, Singer RH and Segall JE: The great escape: When cancer cells hijack the genes for chemotaxis and motility. Annu Rev Cell Dev Biol. 21:695–718. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tweedy L, Thomason PA, Paschke PI, Martin K, Machesky LM, Zagnoni M and Insall RH: Seeing around corners: Cells solve mazes and respond at a distance using attractant breakdown. Science. 369:eaay97922020. View Article : Google Scholar : PubMed/NCBI | |
Susanto O, Koh YWH, Morrice N, Tumanov S, Thomason PA, Nielson M, Tweedy L, Muinonen-Martin AJ, Kamphorst JJ, Mackay GM and Insall RH: LPP3 mediates self-generation of chemotactic LPA gradients by melanoma cells. J Cell Sci. 130:3455–3466. 2017.PubMed/NCBI | |
Tweedy L, Knecht DA, Mackay GM and Insall RH: Self-generated chemoattractant gradients: Attractant depletion extends the range and robustness of chemotaxis. PLoS Biol. 14:e10024042016. View Article : Google Scholar : PubMed/NCBI | |
Scherber C, Aranyosi AJ, Kulemann B, Thayer SP, Toner M, Iliopoulos O and Irimia D: Epithelial cell guidance by self-generated EGF gradients. Integr Biol (Camb). 4:259–269. 2012. View Article : Google Scholar : PubMed/NCBI | |
Muinonen-Martin AJ, Susanto O, Zhang Q, Smethurst E, Faller WJ, Veltman DM, Kalna G, Lindsay C, Bennett DC, Sansom OJ, et al: Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal. PLoS Biol. 12:e10019662014. View Article : Google Scholar : PubMed/NCBI | |
Sobolik T, Su YJ, Wells S, Ayers GD, Cook RS and Richmond A: CXCR4 drives the metastatic phenotype in breast cancer through induction of CXCR2 and activation of MEK and PI3K pathways. Mol Biol Cell. 25:566–582. 2014. View Article : Google Scholar : PubMed/NCBI | |
Malet-Engra G, Yu W, Oldani A, Rey-Barroso J, Gov NS, Scita G and Dupré L: Collective cell motility promotes chemotactic prowess and resistance to chemorepulsion. Curr Biol. 25:242–250. 2015. View Article : Google Scholar : PubMed/NCBI | |
Boucharaba A, Serre CM, Grès S, Saulnier-Blache JS, Bordet JC, Guglielmi J, Clézardin P and Peyruchaud O: Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest. 114:1714–1725. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhao C, Sardella A, Chun J, Poubelle PE, Fernandes MJ and Bourgoin SG: TNF-alpha promotes LPA1- and LPA3-mediated recruitment of leukocytes in vivo through CXCR2 ligand chemokines. J Lipid Res. 52:1307–1318. 2011. View Article : Google Scholar : PubMed/NCBI | |
Juin A, Spence HJ, Martin KJ, McGhee E, Neilson M, Cutiongco MFA, Gadegaard N, Mackay G, Fort L, Lilla S, et al: N-WASP control of LPAR1 trafficking establishes response to self-Generated LPA gradients to promote pancreatic cancer cell metastasis. Dev Cell. 51:431–445.e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tweedy L and Insall RH: Self-generated gradients yield exceptionally robust steering cues. Front Cell Dev Biol. 8:1332020. View Article : Google Scholar : PubMed/NCBI | |
Bray SJ: Notch signalling in context. Nat Rev Mol Cell Biol. 17:722–735. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bocci F, Gearhart-Serna L, Boareto M, Ribeiro M, Ben-Jacob E, Devi GR, Levine H, Onuchic JN and Jolly MK: Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc Natl Acad Sci USA. 116:148–157. 2019. View Article : Google Scholar : | |
Lewis J: Notch signalling and the control of cell fate choices in vertebrates. Semin Cell Dev Biol. 9:583–589. 1998. View Article : Google Scholar | |
Tashima Y and Okajima T: Congenital diseases caused by defective O-glycosylation of notch receptors. Nagoya J Med Sci. 80:299–307. 2018.PubMed/NCBI | |
Shimojo H, Ohtsuka T and Kageyama R: Dynamic expression of notch signaling genes in neural stem/progenitor cells. Front Neurosci. 5:782011. View Article : Google Scholar : PubMed/NCBI | |
Manderfield LJ, High FA, Engleka KA, Liu F, Li L, Rentschler S and Epstein JA: Notch activation of Jagged1 contributes to the assembly of the arterial wall. Circulation. 125:314–323. 2012. View Article : Google Scholar : | |
Boareto M, Jolly MK, Lu M, Onuchic JN, Clementi C and Ben-Jacob E: Jagged-Delta asymmetry in notch signaling can give rise to a sender/receiver hybrid phenotype. Proc Natl Acad Sci USA. 112:E402–E409. 2015. View Article : Google Scholar : PubMed/NCBI | |
Luca VC, Jude KM, Pierce NW, Nachury MV, Fischer S and Garcia KC: Structural biology. Structural basis for Notch1 engagement of Delta-like 4. Science. 347:847–853. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rana NA and Haltiwanger RS: Fringe benefits: Functional and structural impacts of O-glycosylation on the extracellular domain of notch receptors. Curr Opin Struct Biol. 21:583–589. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jolly MK, Boareto M, Lu M, Onuchic JN, Clementi C and Ben-Jacob E: Operating principles of Notch-Delta-Jagged module of cell-cell communication. New J Phys. 17:0550212015. View Article : Google Scholar | |
Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C and Shima DT: Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev. 16:2684–2698. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD and Wiegand SJ: Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA. 104:3219–3224. 2007. View Article : Google Scholar : PubMed/NCBI | |
Benedito R, Rocha SF, Woeste M, Zamykal M, Radtke F, Casanovas O, Duarte A, Pytowski B and Adams RH: Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature. 484:110–114. 2012. View Article : Google Scholar : PubMed/NCBI | |
Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, Lin HC, Yancopoulos GD and Thurston G: Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature. 444:1032–1037. 2006. View Article : Google Scholar : PubMed/NCBI | |
Han M, Xu W, Cheng P, Jin H and Wang X: Histone demethylase lysine demethylase 5B in development and cancer. Oncotarget. 8:8980–8991. 2017. View Article : Google Scholar : | |
Zheng YC, Chang J, Wang LC, Ren HM, Pang JR and Liu HM: Lysine demethylase 5B (KDM5B): A potential anti-cancer drug target. Eur J Med Chem. 161:131–140. 2019. View Article : Google Scholar | |
Horton JR, Engstrom A, Zoeller EL, Liu X, Shanks JR, Zhang X, Johns MA, Vertino PM, Fu H and Cheng X: Characterization of a linked jumonji domain of the KDM5/JARID1 family of histone H3 lysine 4 demethylases. J Biol Chem. 291:2631–2646. 2016. View Article : Google Scholar : | |
Hinohara K, Wu HJ, Vigneau S, McDonald TO, Igarashi KJ, Yamamoto KN, Madsen T, Fassl A, Egri SB, Papanastasiou M, et al: KDM5 histone demethylase activity links cellular transcriptomic heterogeneity to therapeutic resistance. Cancer Cell. 34:939–953.e9. 2018. View Article : Google Scholar : PubMed/NCBI | |
Goley ED and Welch MD: The ARP2/3 complex: An actin nucleator comes of age. Nat Rev Mol Cell Biol. 7:713–726. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hsu PP and Sabatini DM: Cancer cell metabolism: Warburg and beyond. Cell. 134:703–707. 2008. View Article : Google Scholar : PubMed/NCBI | |
Faubert B, Solmonson A and DeBerardinis RJ: Metabolic reprogramming and cancer progression. Science. 368:eaaw54732020. View Article : Google Scholar : PubMed/NCBI | |
Warhurg O, Posener K and Negelein E: Über den Stoffwechsel der Carcinomzelle. Naturwissenschaften. 12:1131–1137. 1924. View Article : Google Scholar | |
Zanotelli MR, Rahman-Zaman A, VanderBurgh JA, Taufalele PV, Jain A, Erickson D, Bordeleau F and Reinhart-King CA: Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making. Nat Commun. 10:41852019. View Article : Google Scholar : PubMed/NCBI | |
Commander R, Wei C, Sharma A, Mouw JK, Burton LJ, Summerbell E, Mahboubi D, Peterson RJ, Konen J, Zhou W, et al: Subpopulation targeting of pyruvate dehydrogenase and GLUT1 decouples metabolic heterogeneity during collective cancer cell invasion. Nat Commun. 11:15332020. View Article : Google Scholar : PubMed/NCBI | |
Tan Z, Yang C, Zhang X, Zheng P and Shen W: Expression of glucose transporter 1 and prognosis in non-small cell lung cancer: A pooled analysis of 1665 patients. Oncotarget. 8:609542017. View Article : Google Scholar : PubMed/NCBI | |
Yu M, Yongzhi H, Chen S, Luo X, Lin Y, Zhou Y, Jin H, Hou B, Deng Y, Tu L and Jian Z: The prognostic value of GLUT1 in cancers: A systematic review and meta-analysis. Oncotarget. 8:43356–43367. 2017. View Article : Google Scholar : PubMed/NCBI | |
Carvalho KC, Cunha IW, Rocha RM, Ayala FR, Cajaíba MM, Begnami MD, Vilela RS, Paiva GR, Andrade RG and Soares FA: GLUT1 expression in malignant tumors and its use as an immunodiagnostic marker. Clinics (Sao Paulo). 66:965–972. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bos R, van Der Hoeven JJ, van Der Wall E, van Der Groep P, van Diest PJ, Comans EF, Joshi U, Semenza GL, Hoekstra OS, Lammertsma AA and Molthoff CF: Biologic correlates of (18) fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol. 20:379–387. 2002. View Article : Google Scholar : PubMed/NCBI | |
Schwartzenberg-Bar-Yoseph F, Armoni M and Karnieli E: The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 64:2627–2633. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Pore N, Behrooz A, Ismail-Beigi F and Maity A: Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem. 276:9519–9525. 2001. View Article : Google Scholar | |
Tanegashima K, Sato-Miyata Y, Funakoshi M, Nishito Y, Aigaki T and Hara T: Epigenetic regulation of the glucose transporter gene Slc2a1 by β-hydroxybutyrate underlies preferential glucose supply to the brain of fasted mice. Genes Cells. 22:71–83. 2017. View Article : Google Scholar | |
Barthel A, Okino ST, Liao J, Nakatani K, Li J, Whitlock JP Jr and Roth RA: Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1. J Biol Chem. 274:20281–20286. 1999. View Article : Google Scholar : PubMed/NCBI | |
Cunniff B, McKenzie AJ, Heintz NH and Howe AK: AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion. Mol Biol Cell. 27:2662–2674. 2016. View Article : Google Scholar : PubMed/NCBI | |
Alert R and Trepat X: Physical models of collective cell migration. Annu Rev Condens Matter Phys. 11:77–101. 2020. View Article : Google Scholar | |
Merino-Casallo F, Gomez-Benito MJ, Hervas-Raluy S and Garcia-Aznar JM: Unravelling cell migration: Defining movement from the cell surface. Cell Adh Migr. 16:25–64. 2022. View Article : Google Scholar : PubMed/NCBI |