Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular and Clinical Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9450 Online ISSN: 2049-9469
Journal Cover
January-February 2015 Volume 3 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-February 2015 Volume 3 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Potency of non-steroidal anti-inflammatory drugs in chemotherapy (Review)

  • Authors:
    • Lucia Hiľovská
    • Rastislav Jendželovský
    • Peter Fedoročko
  • View Affiliations / Copyright

    Affiliations: Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 040 01 Košice, Slovakia
  • Pages: 3-12
    |
    Published online on: October 16, 2014
       https://doi.org/10.3892/mco.2014.446
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer cell resistance, particularly multidrug resistance (MDR), is the leading cause of chemotherapy failure. A number of mechanisms involved in the development of MDR have been described, including the overexpression of ATP-dependent membrane-bound transport proteins. The enhanced expression of these proteins, referred to as ATP‑binding cassette (ABC) transporters, results in an increased cellular efflux of the cytotoxic drug, thereby reducing its intracellular concentration to an ineffective level. Non-steroidal anti-inflammatory drugs (NSAIDs) are the most frequently consumed drugs worldwide. NSAIDs are mainly used to treat pain, fever and inflammation. Numerous studies suggest that NSAIDs also show promise as anticancer drugs. NSAIDs have been shown to reduce cancer cell proliferation, motility, angiogenesis and invasiveness. In addition to these effects, NSAIDs have been shown to induce apoptosis in a wide variety of cancer types. Moreover, several studies have indicated that NSAIDs may sensitise cancer cells to the antiproliferative effects of cytotoxic drugs by modulating ABC transporter activity. Therefore, combining specific NSAIDs with chemotherapeutic drugs may have clinical applications. Such treatments may allow for the use of a lower dose of cytotoxic drugs and may also enhance the effectiveness of therapy. The objective of this review was to discuss the possible role of NSAIDs in the modulation of antitumour drug cytotoxicity. We particularly emphasised on the use of COX-2 inhibitors in combination with chemotherapy and the molecular and cellular mechanisms underlying the alterations in outcome that occur in response to this combination therapy.
View Figures

Figure 1

View References

1 

Hanif R, Pittas A, Feng Y, Koutsos MI, Qiao L, Staiano-Coico L, Shiff SI and Rigas B: Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochem Pharmacol. 52:237–245. 1996. View Article : Google Scholar : PubMed/NCBI

2 

Souza RF, Shewmake K, Beer DG, Cryer B and Spechler SJ: Selective inhibition of cyclooxygenase-2 suppresses growth and induces apoptosis in human esophageal adenocarcinoma cells. Cancer Res. 60:5767–5772. 2000.PubMed/NCBI

3 

Dai Y and Wang WH: Non-steroidal anti-inflammatory drugs in prevention of gastric cancer. World J Gastroenterol. 12:2884–2889. 2006.PubMed/NCBI

4 

DuBois RN and Smalley WE: Cyclooxygenase, NSAIDs, and colorectal cancer. J Gastroenterol. 31:898–906. 1996. View Article : Google Scholar : PubMed/NCBI

5 

Rao CV and Reddy BS: NSAIDs and chemoprevention. Curr Cancer Drug Targets. 4:29–42. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Winde G, Schmid KW, Brandt B, Muller O and Osswald H: Clinical and genomic influence of sulindac on rectal mucosa in familial adenomatous polyposis. Dis Colon Rectum. 40:1156–1169. 1997. View Article : Google Scholar : PubMed/NCBI

7 

Maclagan T: The treatment of acute rheumatism by salicin and salicylic acid. Lancet. 113:875–877. 1879. View Article : Google Scholar

8 

Dugowson CE and Gnanashanmugam P: Nonsteroidal anti-inflammatory drugs. Phys Med Rehabil Clin N Am. 17347–354. (vi)2006. View Article : Google Scholar

9 

Vane JR and Botting RM: The mechanism of action of aspirin. Thromb Res. 110:255–258. 2003. View Article : Google Scholar : PubMed/NCBI

10 

Flower RJ: Drugs which inhibit prostaglandin biosynthesis. Pharmacol Rev. 26:33–67. 1974.

11 

Vane JR and Botting RM: Anti-inflammatory drugs and their mechanism of action. Inflamm Res. 47 (Suppl 2):S78–S87. 1998. View Article : Google Scholar : PubMed/NCBI

12 

Marnett LJ, Rowlinson SW, Goodwin DC, Kalgutkar AS and Lanzo CA: Arachidonic acid oxygenation by COX-1 and COX-2. Mechanisms of catalysis and inhibition. J Biol Chem. 274:22903–22906. 1999. View Article : Google Scholar : PubMed/NCBI

13 

Rao P and Knaus EE: Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J Pharm Pharm Sci. 11:S81–S110. 2008.PubMed/NCBI

14 

Dubois RN, Abramson SB, Crofford L, et al: Cyclooxygenase in biology and disease. FASEB J. 12:1063–1073. 1998.PubMed/NCBI

15 

Rigas B and Shiff SJ: Nonsteroidal anti-inflammatory drugs (NSAIDs), cyclooxygenases, and the cell cycle. Their interactions in colon cancer. Adv Exp Med Biol. 470:119–126. 1999. View Article : Google Scholar : PubMed/NCBI

16 

Wang D, Mann JR and DuBois RN: The role of prostaglandins and other eicosanoids in the gastrointestinal tract. Gastroenterology. 128:1445–1461. 2005. View Article : Google Scholar : PubMed/NCBI

17 

Capdevila JH, Falck JR and Harris RC: Cytochrome P450 and arachidonic acid bioactivation. Molecular and functional properties of the arachidonate monooxygenase. J Lipid Res. 41:163–181. 2000.PubMed/NCBI

18 

Gerritsen ME: Physiological and pathophysiological roles of eicosanoids in the microcirculation. Cardiovasc Res. 32:720–732. 1996. View Article : Google Scholar : PubMed/NCBI

19 

Harder DR, Campbell WB and Roman RJ: Role of cytochrome P-450 enzymes and metabolites of arachidonic acid in the control of vascular tone. J Vasc Res. 32:79–92. 1995. View Article : Google Scholar : PubMed/NCBI

20 

Harizi H, Corcuff JB and Gualde N: Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. Trends Mol Med. 14:461–469. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Chen YQ, Duniec ZM, Liu B, et al: Endogenous 12(S)-HETE production by tumor cells and its role in metastasis. Cancer Res. 54:1574–1579. 1994.PubMed/NCBI

22 

Gao X, Grignon DJ, Chbihi T, et al: Elevated 12-lipoxygenase mRNA expression correlates with advanced stage and poor differentiation of human prostate cancer. Urology. 46:227–237. 1995. View Article : Google Scholar : PubMed/NCBI

23 

Honn KV, Tang DG, Gao X, et al: 12-lipoxygenases and 12(S)-HETE: role in cancer metastasis. Cancer Metastasis Rev. 13:365–396. 1994. View Article : Google Scholar : PubMed/NCBI

24 

Tang DG and Honn KV: 12-Lipoxygenase, 12(S)-HETE, and cancer metastasis. Ann N Y Acad Sci. 744:199–215. 1994. View Article : Google Scholar : PubMed/NCBI

25 

Timar J, Raso E, Fazakas ZS, Silletti S, Raz A and Honn KV: Multiple use of a signal transduction pathway in tumor cell invasion. Anticancer Res. 16:3299–3306. 1996.PubMed/NCBI

26 

Kage K, Fujita N, Oh-hara T, Ogata E, Fujita T and Tsuruo T: Basic fibroblast growth factor induces cyclooxygenase-2 expression in endothelial cells derived from bone. Biochem Biophys Res Commun. 254:259–263. 1999. View Article : Google Scholar : PubMed/NCBI

27 

Fong CY, Pang L, Holland E and Knox AJ: TGF-beta1 stimulates IL-8 release, COX-2 expression, and PGE(2) release in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 279:L201–L207. 2000.PubMed/NCBI

28 

Saha D, Datta PK, Sheng H, et al: Synergistic induction of cyclooxygenase-2 by transforming growth factor-beta1 and epidermal growth factor inhibits apoptosis in epithelial cells. Neoplasia. 1:508–517. 1999. View Article : Google Scholar : PubMed/NCBI

29 

Diaz A, Chepenik KP, Korn JH, Reginato AM and Jimenez SA: Differential regulation of cyclooxygenases 1 and 2 by interleukin-1 beta, tumor necrosis factor-alpha, and transforming growth factor-beta 1 in human lung fibroblasts. Exp Cell Res. 241:222–229. 1998. View Article : Google Scholar : PubMed/NCBI

30 

Chandrasekharan NV, Dai H, Roos KL, et al: COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci USA. 99:13926–13931. 2002. View Article : Google Scholar : PubMed/NCBI

31 

Cui JG, Kuroda H, Chandrasekharan NV, et al: Cyclooxygenase-3 gene expression in Alzheimer hippocampus and in stressed human neural cells. Neurochem Res. 29:1731–1737. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Kis B, Snipes JA and Busija DW: Acetaminophen and the cyclooxygenase-3 puzzle: sorting out facts, fictions, and uncertainties. J Pharmacol Exp Ther. 315:1–7. 2005. View Article : Google Scholar

33 

Cerella C, Sobolewski C, Chateauvieux S, et al: COX-2 inhibitors block chemotherapeutic agent-induced apoptosis prior to commitment in hematopoietic cancer cells. Biochem Pharmacol. 82:1277–1290. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Surh YJ and Kundu JK: Signal transduction network leading to COX-2 induction: a road map in search of cancer chemopreventives. Arch Pharm Res. 28:1–15. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S and DuBois RN: Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology. 107:1183–1188. 1994.PubMed/NCBI

36 

Sano H, Kawahito Y, Wilder RL, et al: Expression of cyclooxygenase-1 and −2 in human colorectal cancer. Cancer Res. 55:3785–3789. 1995.

37 

Ristimaki A, Honkanen N, Jankala H, Sipponen P and Harkonen M: Expression of cyclooxygenase-2 in human gastric carcinoma. Cancer Res. 57:1276–1280. 1997.PubMed/NCBI

38 

Yip-Schneider MT, Barnard DS, Billings SD, et al: Cyclo­oxygenase-2 expression in human pancreatic adenocarcinomas. Carcinogenesis. 21:139–146. 2000.

39 

Wilson KT, Fu S, Ramanujam KS and Meltzer SJ: Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett's esophagus and associated adenocarcinomas. Cancer Res. 58:2929–2934. 1998.

40 

Wolff H, Saukkonen K, Anttila S, Karjalainen A, Vainio H and Ristimaki A: Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res. 58:4997–5001. 1998.PubMed/NCBI

41 

Hwang D, Scollard D, Byrne J and Levine E: Expression of cyclooxygenase-1 and cyclooxygenase-2 in human breast cancer. J Natl Cancer Inst. 90:455–460. 1998. View Article : Google Scholar : PubMed/NCBI

42 

Cao Y and Prescott SM: Many actions of cyclooxygenase-2 in cellular dynamics and in cancer. J Cell Physiol. 190:279–286. 2002. View Article : Google Scholar : PubMed/NCBI

43 

Hida T, Kozaki K, Muramatsu H, et al: Cyclooxygenase-2 inhibitor induces apoptosis and enhances cytotoxicity of various anticancer agents in non-small cell lung cancer cell lines. Clin Cancer Res. 6:2006–2011. 2000.PubMed/NCBI

44 

O'Kane SL, Eagle GL, Greenman J, Lind MJ and Cawkwell L: COX-2 specific inhibitors enhance the cytotoxic effects of pemetrexed in mesothelioma cell lines. Lung Cancer. 67:160–165. 2010.PubMed/NCBI

45 

Sinha-Datta U, Taylor JM, Brown M and Nicot C: Celecoxib disrupts the canonical apoptotic network in HTLV-I cells through activation of Bax and inhibition of PKB/Akt. Apoptosis. 13:33–40. 2008. View Article : Google Scholar

46 

Totzke G, Schulze-Osthoff K and Janicke RU: Cyclooxygenase-2 (COX-2) inhibitors sensitize tumor cells specifically to death receptor-induced apoptosis independently of COX-2 inhibition. Oncogene. 22:8021–8030. 2003. View Article : Google Scholar

47 

Elder DJ, Halton DE, Hague A and Paraskeva C: Induction of apoptotic cell death in human colorectal carcinoma cell lines by a cyclooxygenase-2 (COX-2)-selective nonsteroidal anti-inflammatory drug: independence from COX-2 protein expression. Clin Cancer Res. 3:1679–1683. 1997.

48 

Grosch S, Tegeder I, Niederberger E, Brautigam L and Geisslinger G: COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. FASEB J. 15:2742–2744. 2001.PubMed/NCBI

49 

Zhang X, Morham SG, Langenbach R and Young DA: Malignant transformation and antineoplastic actions of nonsteroidal antiinflammatory drugs (NSAIDs) on cyclooxygenase-null embryo fibroblasts. J Exp Med. 190:451–459. 1999. View Article : Google Scholar

50 

Pidgeon GP, Lysaght J, Krishnamoorthy S, et al: Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Rev. 26:503–524. 2007. View Article : Google Scholar : PubMed/NCBI

51 

Radmark O, Werz O, Steinhilber D and Samuelsson B: 5-Lipoxygenase: regulation of expression and enzyme activity. Trends Biochem Sci. 32:332–341. 2007. View Article : Google Scholar : PubMed/NCBI

52 

Werz O and Steinhilber D: Therapeutic options for 5-lipoxygenase inhibitors. Pharmacol Ther. 112:701–718. 2006. View Article : Google Scholar : PubMed/NCBI

53 

Wasilewicz MP, Kolodziej B, Bojulko T, et al: Overexpression of 5-lipoxygenase in sporadic colonic adenomas and a possible new aspect of colon carcinogenesis. Int J Colorectal Dis. 25:1079–1085. 2010. View Article : Google Scholar : PubMed/NCBI

54 

Metzger K, Angres G, Maier H and Lehmann WD: Lipoxygenase products in human saliva: patients with oral cancer compared to controls. Free Radic Biol Med. 18:185–194. 1995. View Article : Google Scholar : PubMed/NCBI

55 

Chen Y, Hu Y, Zhang H, Peng C and Li S: Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nat Genet. 41:783–792. 2009. View Article : Google Scholar : PubMed/NCBI

56 

Hennig R, Ventura J, Segersvard R, et al: LY293111 improves efficacy of gemcitabine therapy on pancreatic cancer in a fluore­scent orthotopic model in athymic mice. Neoplasia. 7:417–425. 2005.PubMed/NCBI

57 

Paruchuri S, Broom O, Dib K and Sjolander A: The pro-inflammatory mediator leukotriene D4 induces phosphatidylinositol 3-kinase and Rac-dependent migration of intestinal epithelial cells. J Biol Chem. 280:13538–13544. 2005. View Article : Google Scholar

58 

Hayashi T, Nishiyama K and Shirahama T: Inhibition of 5-lipoxy­genase pathway suppresses the growth of bladder cancer cells. Int J Urol. 13:1086–1091. 2006.

59 

Meng Z, Cao R, Yang Z, Liu T, Wang Y and Wang X: Inhibitor of 5-lipoxygenase, zileuton, suppresses prostate cancer meta­stasis by upregulating E-cadherin and paxillin. Urology. 82(1452): e7–e14. 2013.PubMed/NCBI

60 

Schroeder CP, Yang P, Newman RA and Lotan R: Simultaneous inhibition of COX-2 and 5-LOX activities augments growth arrest and death of premalignant and malignant human lung cell lines. J Exp Ther Oncol. 6:183–192. 2007.

61 

Shin VY, Jin HC, Ng EK, Sung JJ, Chu KM and Cho CH: Activation of 5-lipoxygenase is required for nicotine mediated epithelial-mesenchymal transition and tumor cell growth. Cancer Lett. 292:237–245. 2010. View Article : Google Scholar : PubMed/NCBI

62 

Hagmann W, Gao X, Zacharek A, Wojciechowski LA and Honn KV: 12-Lipoxygenase in Lewis lung carcinoma cells: molecular identity, intracellular distribution of activity and protein, and Ca2+-dependent translocation from cytosol to membranes. Prostaglandins. 49:49–62. 1995.PubMed/NCBI

63 

Pidgeon GP, Kandouz M, Meram A and Honn KV: Mechanisms controlling cell cycle arrest and induction of apoptosis after 12-lipoxygenase inhibition in prostate cancer cells. Cancer Res. 62:2721–2727. 2002.PubMed/NCBI

64 

Tang DG, Chen YQ and Honn KV: Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis. Proc Natl Acad Sci USA. 93:5241–5246. 1996. View Article : Google Scholar : PubMed/NCBI

65 

Wong BC, Wang WP, Cho CH, et al: 12-Lipoxygenase inhibition induced apoptosis in human gastric cancer cells. Carcinogenesis. 22:1349–1354. 2001. View Article : Google Scholar : PubMed/NCBI

66 

Terada N, Shimizu Y, Kamba T, et al: Identification of EP4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model. Cancer Res. 70:1606–1615. 2010. View Article : Google Scholar : PubMed/NCBI

67 

Jiang WG, Watkins G, Douglas-Jones A and Mansel RE: Reduction of isoforms of 15-lipoxygenase (15-LOX)-1 and 15-LOX-2 in human breast cancer. Prostaglandins Leukot Essent Fatty Acids. 74:235–245. 2006. View Article : Google Scholar : PubMed/NCBI

68 

Shappell SB, Boeglin WE, Olson SJ, Kasper S and Brash AR: 15-lipoxygenase-2 (15-LOX-2) is expressed in benign prostatic epithelium and reduced in prostate adenocarcinoma. Am J Pathol. 155:235–245. 1999. View Article : Google Scholar : PubMed/NCBI

69 

Shureiqi I, Wu Y, Chen D, et al: The critical role of 15-lipoxygenase-1 in colorectal epithelial cell terminal differentiation and tumorigenesis. Cancer Res. 65:11486–11492. 2005. View Article : Google Scholar : PubMed/NCBI

70 

Tang DG, Bhatia B, Tang S and Schneider-Broussard R: 15-Lipoxygenase 2 (15-LOX2) is a functional tumor suppressor that regulates human prostate epithelial cell differentiation, senescence, and growth (size). Prostaglandins Other Lipid Mediat. 82:135–146. 2007. View Article : Google Scholar

71 

Bhatia B, Tang S, Yang P, et al: Cell-autonomous induction of functional tumor suppressor 15-lipoxygenase 2 (15-LOX2) contributes to replicative senescence of human prostate progenitor cells. Oncogene. 24:3583–3595. 2005. View Article : Google Scholar

72 

Tang S, Bhatia B, Maldonado CJ, et al: Evidence that arachidonate 15-lipoxygenase 2 is a negative cell cycle regulator in normal prostate epithelial cells. J Biol Chem. 277:16189–16201. 2002. View Article : Google Scholar : PubMed/NCBI

73 

Brown CM, Reisfeld B and Mayeno AN: Cytochromes P450: a structure-based summary of biotransformations using representative substrates. Drug Metab Rev. 40:1–100. 2008. View Article : Google Scholar : PubMed/NCBI

74 

Cheranov SY, Karpurapu M, Wang D, Zhang B, Venema RC and Rao GN: An essential role for SRC-activated STAT-3 in 14,15-EET-induced VEGF expression and angiogenesis. Blood. 111:5581–5591. 2008. View Article : Google Scholar : PubMed/NCBI

75 

Jiang JG, Ning YG, Chen C, et al: Cytochrome p450 epoxygenase promotes human cancer metastasis. Cancer Res. 67:6665–6674. 2007. View Article : Google Scholar : PubMed/NCBI

76 

Webler AC, Michaelis UR, Popp R, et al: Epoxyeicosatrienoic acids are part of the VEGF-activated signaling cascade leading to angiogenesis. Am J Physiol Cell Physiol. 295:C1292–C1301. 2008. View Article : Google Scholar : PubMed/NCBI

77 

Webler AC, Popp R, Korff T, et al: Cytochrome P450 2C9-induced angiogenesis is dependent on EphB4. Arterioscler Thromb Vasc Biol. 28:1123–1129. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Yan G, Chen S, You B and Sun J: Activation of sphingosine kinase-1 mediates induction of endothelial cell proliferation and angiogenesis by epoxyeicosatrienoic acids. Cardiovasc Res. 78:308–314. 2008. View Article : Google Scholar : PubMed/NCBI

79 

Gottesman MM: Mechanisms of cancer drug resistance. Annu Rev Med. 53:615–627. 2002. View Article : Google Scholar : PubMed/NCBI

80 

Turk D and Szakacs G: Relevance of multidrug resistance in the age of targeted therapy. Curr Opin Drug Discov Devel. 12:246–252. 2009.PubMed/NCBI

81 

Arico S, Pattingre S, Bauvy C, et al: Celecoxib induces apoptosis by inhibiting 3-phosphoinositide-dependent protein kinase-1 activity in the human colon cancer HT-29 cell line. J Biol Chem. 277:27613–27621. 2002. View Article : Google Scholar : PubMed/NCBI

82 

Arunasree KM, Roy KR, Anilkumar K, Aparna A, Reddy GV and Reddanna P: Imatinib-resistant K562 cells are more sensitive to celecoxib, a selective COX-2 inhibitor: role of COX-2 and MDR-1. Leuk Res. 32:855–864. 2008. View Article : Google Scholar : PubMed/NCBI

83 

Roy KR, Reddy GV, Maitreyi L, et al: Celecoxib inhibits MDR1 expression through COX-2-dependent mechanism in human hepatocellular carcinoma (HepG2) cell line. Cancer Chemother Pharmacol. 65:903–911. 2010. View Article : Google Scholar : PubMed/NCBI

84 

Yu L, Wu WK, Li ZJ, Liu QC, Li HT, Wu YC and Cho CH: Enhancement of doxorubicin cytotoxicity on human esophageal squamous cell carcinoma cells by indomethacin and 4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (SC236) via inhibiting P-glycoprotein activity. Mol Pharmacol. 75:1364–1373. 2009.

85 

Zatelli MC, Luchin A, Tagliati F, et al: Cyclooxygenase-2 inhibitors prevent the development of chemoresistance phenotype in a breast cancer cell line by inhibiting glycoprotein p-170 expression. Endocr Relat Cancer. 14:1029–1038. 2007. View Article : Google Scholar : PubMed/NCBI

86 

de Vries EF, Doorduin J, Vellinga NA, van Waarde A, Dierckx RA and Klein HC: Can celecoxib affect P-glycoprotein-mediated drug efflux? A microPET study. Nucl Med Biol. 35:459–466. 2008.PubMed/NCBI

87 

Awara WM, El-Sisi AE, El-Sayad ME and Goda AE: The potential role of cyclooxygenase-2 inhibitors in the treatment of experimentally-induced mammary tumour: does celecoxib enhance the anti-tumour activity of doxorubicin? Pharmacol Res. 50:487–498. 2004. View Article : Google Scholar : PubMed/NCBI

88 

Yan YX, Li WZ, Huang YQ and Liao WX: The COX-2 inhibitor celecoxib enhances the sensitivity of KB/VCR oral cancer cell lines to vincristine by down-regulating P-glycoprotein expression and function. Prostaglandins Other Lipid Mediat. 97:29–35. 2011. View Article : Google Scholar

89 

Zrieki A, Farinotti R and Buyse M: Cyclooxygenase inhibitors down regulate P-glycoprotein in human colorectal Caco-2 cell line. Pharm Res. 25:1991–2001. 2008. View Article : Google Scholar : PubMed/NCBI

90 

Ye CG, Wu WK, Yeung JH, et al: Indomethacin and SC236 enhance the cytotoxicity of doxorubicin in human hepatocellular carcinoma cells via inhibiting P-glycoprotein and MRP1 expression. Cancer Lett. 304:90–96. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Kang HK, Lee E, Pyo H and Lim SJ: Cyclooxygenase-independent down-regulation of multidrug resistance-associated protein-1 expression by celecoxib in human lung cancer cells. Mol Cancer Ther. 4:1358–1363. 2005. View Article : Google Scholar : PubMed/NCBI

92 

Ko SH, Choi GJ, Lee JH, Han YA, Lim SJ and Kim SH: Differential effects of selective cyclooxygenase-2 inhibitors in inhibiting proliferation and induction of apoptosis in oral squamous cell carcinoma. Oncol Rep. 19:425–433. 2008.

93 

Natarajan K, Xie Y, Baer MR and Ross DD: Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol. 83:1084–1103. 2012. View Article : Google Scholar : PubMed/NCBI

94 

Elahian F, Kalalinia F and Behravan J: Evaluation of indomethacin and dexamethasone effects on BCRP-mediated drug resistance in MCF-7 parental and resistant cell lines. Drug Chem Toxicol. 33:113–119. 2010. View Article : Google Scholar : PubMed/NCBI

95 

Chen M, Yu L, Gu C, Zhong D, Wu S and Liu S: Celecoxib antagonizes the cytotoxic effect of cisplatin in human gastric cancer cells by decreasing intracellular cisplatin accumulation. Cancer Lett. 329:189–196. 2013. View Article : Google Scholar : PubMed/NCBI

96 

Sugiura T, Saikawa Y, Kubota T, et al: Combination chemotherapy with JTE-522, a novel selective cyclooxygenase-2 inhibitor, and cisplatin against gastric cancer cell lines in vitro and in vivo. In Vivo. 17:229–233. 2003.

97 

Kim SH, Kim SH, Song YC and Song YS: Celecoxib potentiates the anticancer effect of cisplatin on vulvar cancer cells independently of cyclooxygenase. Ann N Y Acad Sci. 1171:635–641. 2009. View Article : Google Scholar : PubMed/NCBI

98 

Li WZ, Wang XY, Li ZG, Zhang JH and Ding YQ: Celecoxib enhances the inhibitory effect of cisplatin on Tca8113 cells in human tongue squamous cell carcinoma in vivo and in vitro. J Oral Pathol Med. 39:579–584. 2010.PubMed/NCBI

99 

van Wijngaarden J, van Beek E, van Rossum G, et al: Celecoxib enhances doxorubicin-induced cytotoxicity in MDA-MB231 cells by NF-kappaB-mediated increase of intracellular doxorubicin accumulation. Eur J Cancer. 43:433–442. 2007.

100 

Xia W, Zhao T, Lv J, et al: Celecoxib enhanced the sensitivity of cancer cells to anticancer drugs by inhibition of the expression of P-glycoprotein through a COX-2-independent manner. J Cell Biochem. 108:181–194. 2009. View Article : Google Scholar : PubMed/NCBI

101 

Pereira MA, Tao L, Wang W, et al: Modulation by celecoxib and difluoromethylornithine of the methylation of DNA and the estrogen receptor-alpha gene in rat colon tumors. Carcinogenesis. 25:1917–1923. 2004. View Article : Google Scholar : PubMed/NCBI

102 

Ellinger J, Bastian PJ, Jurgan T, et al: CpG island hypermethylation at multiple gene sites in diagnosis and prognosis of prostate cancer. Urology. 71:161–167. 2008. View Article : Google Scholar : PubMed/NCBI

103 

Enokida H, Shiina H, Igawa M, et al: CpG hypermethylation of MDR1 gene contributes to the pathogenesis and progression of human prostate cancer. Cancer Res. 64:5956–5962. 2004. View Article : Google Scholar

104 

Qiu YY, Mirkin BL and Dwivedi RS: MDR1 hypermethylation contributes to the progression of neuroblastoma. Mol Cell Biochem. 301:131–135. 2007. View Article : Google Scholar : PubMed/NCBI

105 

Wei D, Wang L, He Y, Xiong HQ, Abbruzzese JL and Xie K: Celecoxib inhibits vascular endothelial growth factor expression in and reduces angiogenesis and metastasis of human pancreatic cancer via suppression of Sp1 transcription factor activity. Cancer Res. 64:2030–2038. 2004. View Article : Google Scholar

106 

Cianchi F, Cortesini C, Magnelli L, et al: Inhibition of 5-lipoxygenase by MK886 augments the antitumor activity of celecoxib in human colon cancer cells. Mol Cancer Ther. 5:2716–2726. 2006. View Article : Google Scholar : PubMed/NCBI

107 

El-Awady RA, Saleh EM, Ezz M and Elsayed AM: Interaction of celecoxib with different anti-cancer drugs is antagonistic in breast but not in other cancer cells. Toxicol Appl Pharmacol. 255:271–286. 2011. View Article : Google Scholar : PubMed/NCBI

108 

Chen C, Shen HL, Yang J, Chen QY and Xu WL: Preventing chemoresistance of human breast cancer cell line, MCF-7 with celecoxib. J Cancer Res Clin Oncol. 137:9–17. 2011. View Article : Google Scholar : PubMed/NCBI

109 

Fosslien E: Molecular pathology of cyclooxygenase-2 in neoplasia. Ann Clin Lab Sci. 30:3–21. 2000.PubMed/NCBI

110 

Bol DK, Rowley RB, Ho CP, et al: Cyclooxygenase-2 overexpression in the skin of transgenic mice results in suppression of tumor development. Cancer Res. 62:2516–2521. 2002.PubMed/NCBI

111 

Nakopoulou L, Mylona E, Papadaki I, et al: Overexpression of cyclooxygenase-2 is associated with a favorable prognostic phenotype in breast carcinoma. Pathobiology. 72:241–249. 2005. View Article : Google Scholar : PubMed/NCBI

112 

Xu Z, Choudhary S, Voznesensky O, et al: Overexpression of COX-2 in human osteosarcoma cells decreases proliferation and increases apoptosis. Cancer Res. 66:6657–6664. 2006. View Article : Google Scholar : PubMed/NCBI

113 

Patel VA, Dunn MJ and Sorokin A: Regulation of MDR-1 (P-glycoprotein) by cyclooxygenase-2. J Biol Chem. 277:38915–38920. 2002. View Article : Google Scholar : PubMed/NCBI

114 

Saikawa Y, Sugiura T, Toriumi F, et al: Cyclooxygenase-2 gene induction causes CDDP resistance in colon cancer cell line, HCT-15. Anticancer Res. 24:2723–2728. 2004.PubMed/NCBI

115 

Surowiak P, Materna V, Matkowski R, et al: Relationship between the expression of cyclooxygenase 2 and MDR1/P-glycoprotein in invasive breast cancers and their prognostic significance. Breast Cancer Res. 7:R862–R870. 2005. View Article : Google Scholar : PubMed/NCBI

116 

Surowiak P, Pawelczyk K, Maciejczyk A, et al: Positive correlation between cyclooxygenase 2 and the expression of ABC transporters in non-small cell lung cancer. Anticancer Res. 28:2967–2974. 2008.PubMed/NCBI

117 

Ziemann C, Schafer D, Rudell G, Kahl GF and Hirsch-Ernst KI: The cyclooxygenase system participates in functional MDR1b overexpression in primary rat hepatocyte cultures. Hepatology. 35:579–588. 2002. View Article : Google Scholar : PubMed/NCBI

118 

Liu B, Qu L and Tao H: Cyclo-oxygenase 2 up-regulates the effect of multidrug resistance. Cell Biol Int. 34:21–25. 2010.PubMed/NCBI

119 

Jendzelovsky R, Mikes J, Koval J, et al: Drug efflux transporters, MRP1 and BCRP, affect the outcome of hypericin-mediated photodynamic therapy in HT-29 adenocarcinoma cells. Photochem Photobiol Sci. 8:1716–1723. 2009. View Article : Google Scholar

120 

Kleban J, Mikes J, Horvath V, et al: Mechanisms involved in the cell cycle and apoptosis of HT-29 cells pre-treated with MK-886 prior to photodynamic therapy with hypericin. J Photochem Photobiol B. 93:108–118. 2008. View Article : Google Scholar : PubMed/NCBI

121 

Kleban J, Mikes J, Szilardiova B, et al: Modulation of hypericin photodynamic therapy by pretreatment with 12 various inhibitors of arachidonic acid metabolism in colon adenocarcinoma HT-29 cells. Photochem Photobiol. 83:1174–1185. 2007. View Article : Google Scholar : PubMed/NCBI

122 

Kleban J, Szilardiova B, Mikes J, et al: Pre-treatment of HT-29 cells with 5-LOX inhibitor (MK-886) induces changes in cell cycle and increases apoptosis after photodynamic therapy with hypericin. J Photochem Photobiol B. 84:79–88. 2006. View Article : Google Scholar

123 

Hida T, Kozaki K, Ito H, et al: Significant growth inhibition of human lung cancer cells both in vitro and in vivo by the combined use of a selective cyclooxygenase 2 inhibitor, JTE-522, and conventional anticancer agents. Clin Cancer Res. 8:2443–2447. 2002.

124 

Hossain MA, Kim DH, Jang JY, et al: Aspiri. induces apoptosis in vitro and inhibits tumor growth of human hepatocellular carcinoma cells in a nude mouse xenograft model. Int J Oncol. 40:1298–1304. 2012.PubMed/NCBI

125 

Irie T, Tsujii M, Tsuji S, et al: Synergistic antitumor effects of celecoxib with 5-fluorouracil depend on IFN-gamma. Int J Cancer. 121:878–883. 2007. View Article : Google Scholar : PubMed/NCBI

126 

Knapp DW, Glickman NW, Widmer WR, et al: Cisplatin versus cisplatin combined with piroxicam in a canine model of human invasive urinary bladder cancer. Cancer Chemother Pharmacol. 46:221–226. 2000. View Article : Google Scholar : PubMed/NCBI

127 

Ponthan F, Wickstrom M, Gleissman H, et al: Celecoxib prevents neuroblastoma tumor development and potentiates the effect of chemotherapeutic drugs in vitro and in vivo. Clin Cancer Res. 13:1036–1044. 2007. View Article : Google Scholar : PubMed/NCBI

128 

Spugnini EP, Cardillo I, Verdina A, et al: Piroxicam and cisplatin in a mouse model of peritoneal mesothelioma. Clin Cancer Res. 12:6133–6143. 2006. View Article : Google Scholar : PubMed/NCBI

129 

Zhang DQ, Guo Q, Zhu JH and Chen WC: Increase of cyclooxygenase-2 inhibition with celecoxib combined with 5-FU enhances tumor cell apoptosis and antitumor efficacy in a subcutaneous implantation tumor model of human colon cancer. World J Surg Oncol. 11(16)2013. View Article : Google Scholar

130 

Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M and DuBois RN: Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell. 93:705–716. 1998. View Article : Google Scholar : PubMed/NCBI

131 

Leahy KM, Ornberg RL, Wang Y, Zweifel BS, Koki AT and Masferrer JL: Cyclooxygenase-2 inhibition by celecoxib reduces proliferation and induces apoptosis in angiogenic endothelial cells in vivo. Cancer Res. 62:625–631. 2002.PubMed/NCBI

132 

Patel MI, Subbaramaiah K, Du B, et al: Celecoxib inhibits prostate cancer growth: evidence of a cyclooxygenase-2-independent mechanism. Clin Cancer Res. 11:1999–2007. 2005. View Article : Google Scholar : PubMed/NCBI

133 

Sakamoto T, Uozaki H, Kondo K, et al: Cyclooxygenase-2 regulates the degree of apoptosis by modulating bcl-2 protein in pleomorphic adenoma and mucoepidermoid carcinoma of the parotid gland. Acta Otolaryngol. 125:191–195. 2005. View Article : Google Scholar : PubMed/NCBI

134 

Tjiu JW, Liao YH, Lin SJ, et al: Cyclooxygenase-2 overexpression in human basal cell carcinoma cell line increases antiapoptosis, angiogenesis, and tumorigenesis. J Invest Dermatol. 126:1143–1151. 2006. View Article : Google Scholar : PubMed/NCBI

135 

Wang F, Sun GP, Zou YF, et al: Expression of COX-2 and Bcl-2 in primary fallopian tube carcinoma: correlations with clinicopathologic features. Folia Histochem Cytobiol. 49:389–397. 2011. View Article : Google Scholar : PubMed/NCBI

136 

Stark LA, Din FV, Zwacka RM and Dunlop MG: Aspirin-induced activation of the NF-kappaB signaling pathway: a novel mechanism for aspirin-mediated apoptosis in colon cancer cells. FASEB J. 15:1273–1275. 2001.

137 

Park IS, Jo JR, Hong H, et al: Aspirin induces apoptosis in YD-8 human oral squamous carcinoma cells through activation of caspases, down-regulation of Mcl-1, and inactivation of ERK-1/2 and AKT. Toxicol In Vitro. 24:713–720. 2010. View Article : Google Scholar : PubMed/NCBI

138 

Stark LA, Reid K, Sansom OJ, et al: Aspirin activates the NF-kappaB signalling pathway and induces apoptosis in intestinal neoplasia in two in vivo models of human colorectal cancer. Carcinogenesis. 28:968–976. 2007. View Article : Google Scholar

139 

Trifan OC, Durham WF, Salazar VS, et al: Cyclooxygenase-2 inhibition with celecoxib enhances antitumor efficacy and reduces diarrhea side effect of CPT-11. Cancer Res. 62:5778–5784. 2002.PubMed/NCBI

140 

Altorki NK, Port JL, Zhang F, et al: Chemotherapy induces the expression of cyclooxygenase-2 in non-small cell lung cancer. Clin Cancer Res. 11:4191–4197. 2005. View Article : Google Scholar : PubMed/NCBI

141 

Masferrer JL, Leahy KM, Koki AT, et al: Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 60:1306–1311. 2000.PubMed/NCBI

142 

Kohne CH, De Greve J, Hartmann JT, et al: Irinotecan combined with infusional 5-fluorouracil/folinic acid or capecitabine plus celecoxib or placebo in the first-line treatment of patients with metastatic colorectal cancer. EORTC study 40015. Ann Oncol. 19:920–926. 2008. View Article : Google Scholar

143 

Maiello E, Giuliani F, Gebbia V, et al: Gruppo Oncologico dell'Italia Meridionale, FOLFIRI with or without celecoxib in advanced colorectal cancer: a randomized phase II study of the Gruppo Oncologico dell'Italia Meridionale (GOIM). Ann Oncol. 17 (Suppl 7):vii55–59. 2006.

144 

Schneider BJ, Kalemkerian GP, Kraut MJ, et al: Phase II study of celecoxib and docetaxel in non-small cell lung cancer (NSCLC) patients with progression after platinum-based therapy. J Thorac Oncol. 3:1454–1459. 2008. View Article : Google Scholar : PubMed/NCBI

145 

Skapek SX, Anderson JR, Hill DA, et al: Safety and efficacy of high-dose tamoxifen and sulindac for desmoid tumor in children: results of a Children's Oncology Group (COG) phase II study. Pediatr Blood Cancer. 60:1108–1112. 2013.PubMed/NCBI

146 

Csiki I, Morrow JD, Sandler A, et al: Targeting cyclooxygenase-2 in recurrent non-small cell lung cancer: a phase II trial of celecoxib and docetaxel. Clin Cancer Res. 11:6634–6640. 2005. View Article : Google Scholar : PubMed/NCBI

147 

Becerra CR, Frenkel EP, Ashfaq R and Gaynor RB: Increased toxicity and lack of efficacy of rofecoxib in combination with chemotherapy for treatment of metastatic colorectal cancer: a phase II study. Int J Cancer. 105:868–872. 2003. View Article : Google Scholar : PubMed/NCBI

148 

Dang CT, Dannenberg AJ, Subbaramaiah K, et al: Phase II study of celecoxib and trastuzumab in metastatic breast cancer patients who have progressed after prior trastuzumab-based treatments. Clin Cancer Res. 10:4062–4067. 2004. View Article : Google Scholar : PubMed/NCBI

149 

Gridelli C, Gallo C, Ceribelli A, et al: Factorial phase III randomised trial of rofecoxib and prolonged constant infusion of gemcitabine in advanced non-small-cell lung cancer: the GEmcitabine-COxib in NSCLC (GECO) study. Lancet Oncol. 8:500–512. 2007. View Article : Google Scholar : PubMed/NCBI

150 

Groen HJ, Sietsma H, Vincent A, et al: Randomized, placebo-controlled phase III study of docetaxel plus carboplatin with celecoxib and cyclooxygenase-2 expression as a biomarker for patients with advanced non-small-cell lung cancer: the NVALT-4 study. J Clin Oncol. 29:4320–4326. 2011. View Article : Google Scholar : PubMed/NCBI

151 

Koch A, Bergman B, Holmberg E, et al Swedish Lung Cancer Study Group: Effect of celecoxib on survival in patients with advanced non-small cell lung cancer: a double blind randomised clinical phase III trial (CYCLUS study) by the Swedish Lung Cancer Study Group. Eur J Cancer. 47:1546–1555. 2011. View Article : Google Scholar : PubMed/NCBI

152 

Altorki NK, Keresztes RS, Port JL, et al: Celecoxib, a selective cyclo-oxygenase-2 inhibitor, enhances the response to preoperative paclitaxel and carboplatin in early-stage non-small-cell lung cancer. J Clin Oncol. 21:2645–2650. 2003. View Article : Google Scholar : PubMed/NCBI

153 

Nugent FW, Mertens WC, Graziano S, et al: Docetaxel and cyclooxygenase-2 inhibition with celecoxib for advanced non-small cell lung cancer progressing after platinum-based chemotherapy: a multicenter phase II trial. Lung Cancer. 48:267–273. 2005. View Article : Google Scholar : PubMed/NCBI

154 

Legge F, Paglia A, D'Asta M, Fuoco G, Scambia G and Ferrandina G: Phase II study of the combination carboplatin plus celecoxib in heavily pre-treated recurrent ovarian cancer patients. BMC Cancer. 11(214)2011. View Article : Google Scholar : PubMed/NCBI

155 

Altorki NK, Christos P, Port JL, et al: Preoperative taxane-based chemotherapy and celecoxib for carcinoma of the esophagus and gastroesophageal junction: results of a phase 2 trial. J Thorac Oncol. 6:1121–1127. 2011. View Article : Google Scholar : PubMed/NCBI

156 

An Y and Ongkeko WM: ABCG2: the key to chemoresistance in cancer stem cells? Expert Opin Drug Metab Toxicol. 5:1529–1542. 2009. View Article : Google Scholar : PubMed/NCBI

157 

Huang WZ, Fu JH, Wang DK, et al: Overexpression of cyclooxygenase-2 is associated with chemoradiotherapy resistance and prognosis in esophageal squamous cell carcinoma patients. Dis Esophagus. 21:679–684. 2008. View Article : Google Scholar : PubMed/NCBI

158 

Robey RW, To KK, Polgar O, et al: ABCG2: a perspective. Adv Drug Deliv Rev. 61:3–13. 2009. View Article : Google Scholar

159 

Szczuraszek K, Materna V, Halon A, et al: Positive correlation between cyclooxygenase-2 and ABC-transporter expression in non-Hodgkin's lymphomas. Oncol Rep. 22:1315–1323. 2009.PubMed/NCBI

160 

Edelman MJ, Watson D, Wang X, et al: Eicosanoid modulation in advanced lung cancer: cyclooxygenase-2 expression is a positive predictive factor for celecoxib + chemotherapy - Cancer and Leukemia Group B Trial 30203. J Clin Oncol. 26:848–855. 2008.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Hiľovská L, Jendželovský R and Fedoročko P: Potency of non-steroidal anti-inflammatory drugs in chemotherapy (Review). Mol Clin Oncol 3: 3-12, 2015.
APA
Hiľovská, L., Jendželovský, R., & Fedoročko, P. (2015). Potency of non-steroidal anti-inflammatory drugs in chemotherapy (Review). Molecular and Clinical Oncology, 3, 3-12. https://doi.org/10.3892/mco.2014.446
MLA
Hiľovská, L., Jendželovský, R., Fedoročko, P."Potency of non-steroidal anti-inflammatory drugs in chemotherapy (Review)". Molecular and Clinical Oncology 3.1 (2015): 3-12.
Chicago
Hiľovská, L., Jendželovský, R., Fedoročko, P."Potency of non-steroidal anti-inflammatory drugs in chemotherapy (Review)". Molecular and Clinical Oncology 3, no. 1 (2015): 3-12. https://doi.org/10.3892/mco.2014.446
Copy and paste a formatted citation
x
Spandidos Publications style
Hiľovská L, Jendželovský R and Fedoročko P: Potency of non-steroidal anti-inflammatory drugs in chemotherapy (Review). Mol Clin Oncol 3: 3-12, 2015.
APA
Hiľovská, L., Jendželovský, R., & Fedoročko, P. (2015). Potency of non-steroidal anti-inflammatory drugs in chemotherapy (Review). Molecular and Clinical Oncology, 3, 3-12. https://doi.org/10.3892/mco.2014.446
MLA
Hiľovská, L., Jendželovský, R., Fedoročko, P."Potency of non-steroidal anti-inflammatory drugs in chemotherapy (Review)". Molecular and Clinical Oncology 3.1 (2015): 3-12.
Chicago
Hiľovská, L., Jendželovský, R., Fedoročko, P."Potency of non-steroidal anti-inflammatory drugs in chemotherapy (Review)". Molecular and Clinical Oncology 3, no. 1 (2015): 3-12. https://doi.org/10.3892/mco.2014.446
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team