|
1
|
Hanif R, Pittas A, Feng Y, Koutsos MI,
Qiao L, Staiano-Coico L, Shiff SI and Rigas B: Effects of
nonsteroidal anti-inflammatory drugs on proliferation and on
induction of apoptosis in colon cancer cells by a
prostaglandin-independent pathway. Biochem Pharmacol. 52:237–245.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Souza RF, Shewmake K, Beer DG, Cryer B and
Spechler SJ: Selective inhibition of cyclooxygenase-2 suppresses
growth and induces apoptosis in human esophageal adenocarcinoma
cells. Cancer Res. 60:5767–5772. 2000.PubMed/NCBI
|
|
3
|
Dai Y and Wang WH: Non-steroidal
anti-inflammatory drugs in prevention of gastric cancer. World J
Gastroenterol. 12:2884–2889. 2006.PubMed/NCBI
|
|
4
|
DuBois RN and Smalley WE: Cyclooxygenase,
NSAIDs, and colorectal cancer. J Gastroenterol. 31:898–906. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Rao CV and Reddy BS: NSAIDs and
chemoprevention. Curr Cancer Drug Targets. 4:29–42. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Winde G, Schmid KW, Brandt B, Muller O and
Osswald H: Clinical and genomic influence of sulindac on rectal
mucosa in familial adenomatous polyposis. Dis Colon Rectum.
40:1156–1169. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Maclagan T: The treatment of acute
rheumatism by salicin and salicylic acid. Lancet. 113:875–877.
1879. View Article : Google Scholar
|
|
8
|
Dugowson CE and Gnanashanmugam P:
Nonsteroidal anti-inflammatory drugs. Phys Med Rehabil Clin N Am.
17347–354. (vi)2006. View Article : Google Scholar
|
|
9
|
Vane JR and Botting RM: The mechanism of
action of aspirin. Thromb Res. 110:255–258. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Flower RJ: Drugs which inhibit
prostaglandin biosynthesis. Pharmacol Rev. 26:33–67. 1974.
|
|
11
|
Vane JR and Botting RM: Anti-inflammatory
drugs and their mechanism of action. Inflamm Res. 47 (Suppl
2):S78–S87. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Marnett LJ, Rowlinson SW, Goodwin DC,
Kalgutkar AS and Lanzo CA: Arachidonic acid oxygenation by COX-1
and COX-2. Mechanisms of catalysis and inhibition. J Biol Chem.
274:22903–22906. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Rao P and Knaus EE: Evolution of
nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX)
inhibition and beyond. J Pharm Pharm Sci. 11:S81–S110.
2008.PubMed/NCBI
|
|
14
|
Dubois RN, Abramson SB, Crofford L, et al:
Cyclooxygenase in biology and disease. FASEB J. 12:1063–1073.
1998.PubMed/NCBI
|
|
15
|
Rigas B and Shiff SJ: Nonsteroidal
anti-inflammatory drugs (NSAIDs), cyclooxygenases, and the cell
cycle. Their interactions in colon cancer. Adv Exp Med Biol.
470:119–126. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wang D, Mann JR and DuBois RN: The role of
prostaglandins and other eicosanoids in the gastrointestinal tract.
Gastroenterology. 128:1445–1461. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Capdevila JH, Falck JR and Harris RC:
Cytochrome P450 and arachidonic acid bioactivation. Molecular and
functional properties of the arachidonate monooxygenase. J Lipid
Res. 41:163–181. 2000.PubMed/NCBI
|
|
18
|
Gerritsen ME: Physiological and
pathophysiological roles of eicosanoids in the microcirculation.
Cardiovasc Res. 32:720–732. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Harder DR, Campbell WB and Roman RJ: Role
of cytochrome P-450 enzymes and metabolites of arachidonic acid in
the control of vascular tone. J Vasc Res. 32:79–92. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Harizi H, Corcuff JB and Gualde N:
Arachidonic-acid-derived eicosanoids: roles in biology and
immunopathology. Trends Mol Med. 14:461–469. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chen YQ, Duniec ZM, Liu B, et al:
Endogenous 12(S)-HETE production by tumor cells and its role in
metastasis. Cancer Res. 54:1574–1579. 1994.PubMed/NCBI
|
|
22
|
Gao X, Grignon DJ, Chbihi T, et al:
Elevated 12-lipoxygenase mRNA expression correlates with advanced
stage and poor differentiation of human prostate cancer. Urology.
46:227–237. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Honn KV, Tang DG, Gao X, et al:
12-lipoxygenases and 12(S)-HETE: role in cancer metastasis. Cancer
Metastasis Rev. 13:365–396. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Tang DG and Honn KV: 12-Lipoxygenase,
12(S)-HETE, and cancer metastasis. Ann N Y Acad Sci. 744:199–215.
1994. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Timar J, Raso E, Fazakas ZS, Silletti S,
Raz A and Honn KV: Multiple use of a signal transduction pathway in
tumor cell invasion. Anticancer Res. 16:3299–3306. 1996.PubMed/NCBI
|
|
26
|
Kage K, Fujita N, Oh-hara T, Ogata E,
Fujita T and Tsuruo T: Basic fibroblast growth factor induces
cyclooxygenase-2 expression in endothelial cells derived from bone.
Biochem Biophys Res Commun. 254:259–263. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Fong CY, Pang L, Holland E and Knox AJ:
TGF-beta1 stimulates IL-8 release, COX-2 expression, and PGE(2)
release in human airway smooth muscle cells. Am J Physiol Lung Cell
Mol Physiol. 279:L201–L207. 2000.PubMed/NCBI
|
|
28
|
Saha D, Datta PK, Sheng H, et al:
Synergistic induction of cyclooxygenase-2 by transforming growth
factor-beta1 and epidermal growth factor inhibits apoptosis in
epithelial cells. Neoplasia. 1:508–517. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Diaz A, Chepenik KP, Korn JH, Reginato AM
and Jimenez SA: Differential regulation of cyclooxygenases 1 and 2
by interleukin-1 beta, tumor necrosis factor-alpha, and
transforming growth factor-beta 1 in human lung fibroblasts. Exp
Cell Res. 241:222–229. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Chandrasekharan NV, Dai H, Roos KL, et al:
COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and
other analgesic/antipyretic drugs: cloning, structure, and
expression. Proc Natl Acad Sci USA. 99:13926–13931. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Cui JG, Kuroda H, Chandrasekharan NV, et
al: Cyclooxygenase-3 gene expression in Alzheimer hippocampus and
in stressed human neural cells. Neurochem Res. 29:1731–1737. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kis B, Snipes JA and Busija DW:
Acetaminophen and the cyclooxygenase-3 puzzle: sorting out facts,
fictions, and uncertainties. J Pharmacol Exp Ther. 315:1–7. 2005.
View Article : Google Scholar
|
|
33
|
Cerella C, Sobolewski C, Chateauvieux S,
et al: COX-2 inhibitors block chemotherapeutic agent-induced
apoptosis prior to commitment in hematopoietic cancer cells.
Biochem Pharmacol. 82:1277–1290. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Surh YJ and Kundu JK: Signal transduction
network leading to COX-2 induction: a road map in search of cancer
chemopreventives. Arch Pharm Res. 28:1–15. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Eberhart CE, Coffey RJ, Radhika A,
Giardiello FM, Ferrenbach S and DuBois RN: Up-regulation of
cyclooxygenase 2 gene expression in human colorectal adenomas and
adenocarcinomas. Gastroenterology. 107:1183–1188. 1994.PubMed/NCBI
|
|
36
|
Sano H, Kawahito Y, Wilder RL, et al:
Expression of cyclooxygenase-1 and −2 in human colorectal cancer.
Cancer Res. 55:3785–3789. 1995.
|
|
37
|
Ristimaki A, Honkanen N, Jankala H,
Sipponen P and Harkonen M: Expression of cyclooxygenase-2 in human
gastric carcinoma. Cancer Res. 57:1276–1280. 1997.PubMed/NCBI
|
|
38
|
Yip-Schneider MT, Barnard DS, Billings SD,
et al: Cyclooxygenase-2 expression in human pancreatic
adenocarcinomas. Carcinogenesis. 21:139–146. 2000.
|
|
39
|
Wilson KT, Fu S, Ramanujam KS and Meltzer
SJ: Increased expression of inducible nitric oxide synthase and
cyclooxygenase-2 in Barrett's esophagus and associated
adenocarcinomas. Cancer Res. 58:2929–2934. 1998.
|
|
40
|
Wolff H, Saukkonen K, Anttila S,
Karjalainen A, Vainio H and Ristimaki A: Expression of
cyclooxygenase-2 in human lung carcinoma. Cancer Res. 58:4997–5001.
1998.PubMed/NCBI
|
|
41
|
Hwang D, Scollard D, Byrne J and Levine E:
Expression of cyclooxygenase-1 and cyclooxygenase-2 in human breast
cancer. J Natl Cancer Inst. 90:455–460. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Cao Y and Prescott SM: Many actions of
cyclooxygenase-2 in cellular dynamics and in cancer. J Cell
Physiol. 190:279–286. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hida T, Kozaki K, Muramatsu H, et al:
Cyclooxygenase-2 inhibitor induces apoptosis and enhances
cytotoxicity of various anticancer agents in non-small cell lung
cancer cell lines. Clin Cancer Res. 6:2006–2011. 2000.PubMed/NCBI
|
|
44
|
O'Kane SL, Eagle GL, Greenman J, Lind MJ
and Cawkwell L: COX-2 specific inhibitors enhance the cytotoxic
effects of pemetrexed in mesothelioma cell lines. Lung Cancer.
67:160–165. 2010.PubMed/NCBI
|
|
45
|
Sinha-Datta U, Taylor JM, Brown M and
Nicot C: Celecoxib disrupts the canonical apoptotic network in
HTLV-I cells through activation of Bax and inhibition of PKB/Akt.
Apoptosis. 13:33–40. 2008. View Article : Google Scholar
|
|
46
|
Totzke G, Schulze-Osthoff K and Janicke
RU: Cyclooxygenase-2 (COX-2) inhibitors sensitize tumor cells
specifically to death receptor-induced apoptosis independently of
COX-2 inhibition. Oncogene. 22:8021–8030. 2003. View Article : Google Scholar
|
|
47
|
Elder DJ, Halton DE, Hague A and Paraskeva
C: Induction of apoptotic cell death in human colorectal carcinoma
cell lines by a cyclooxygenase-2 (COX-2)-selective nonsteroidal
anti-inflammatory drug: independence from COX-2 protein expression.
Clin Cancer Res. 3:1679–1683. 1997.
|
|
48
|
Grosch S, Tegeder I, Niederberger E,
Brautigam L and Geisslinger G: COX-2 independent induction of cell
cycle arrest and apoptosis in colon cancer cells by the selective
COX-2 inhibitor celecoxib. FASEB J. 15:2742–2744. 2001.PubMed/NCBI
|
|
49
|
Zhang X, Morham SG, Langenbach R and Young
DA: Malignant transformation and antineoplastic actions of
nonsteroidal antiinflammatory drugs (NSAIDs) on cyclooxygenase-null
embryo fibroblasts. J Exp Med. 190:451–459. 1999. View Article : Google Scholar
|
|
50
|
Pidgeon GP, Lysaght J, Krishnamoorthy S,
et al: Lipoxygenase metabolism: roles in tumor progression and
survival. Cancer Metastasis Rev. 26:503–524. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Radmark O, Werz O, Steinhilber D and
Samuelsson B: 5-Lipoxygenase: regulation of expression and enzyme
activity. Trends Biochem Sci. 32:332–341. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Werz O and Steinhilber D: Therapeutic
options for 5-lipoxygenase inhibitors. Pharmacol Ther. 112:701–718.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wasilewicz MP, Kolodziej B, Bojulko T, et
al: Overexpression of 5-lipoxygenase in sporadic colonic adenomas
and a possible new aspect of colon carcinogenesis. Int J Colorectal
Dis. 25:1079–1085. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Metzger K, Angres G, Maier H and Lehmann
WD: Lipoxygenase products in human saliva: patients with oral
cancer compared to controls. Free Radic Biol Med. 18:185–194. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Chen Y, Hu Y, Zhang H, Peng C and Li S:
Loss of the Alox5 gene impairs leukemia stem cells and prevents
chronic myeloid leukemia. Nat Genet. 41:783–792. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hennig R, Ventura J, Segersvard R, et al:
LY293111 improves efficacy of gemcitabine therapy on pancreatic
cancer in a fluorescent orthotopic model in athymic mice.
Neoplasia. 7:417–425. 2005.PubMed/NCBI
|
|
57
|
Paruchuri S, Broom O, Dib K and Sjolander
A: The pro-inflammatory mediator leukotriene D4 induces
phosphatidylinositol 3-kinase and Rac-dependent migration of
intestinal epithelial cells. J Biol Chem. 280:13538–13544. 2005.
View Article : Google Scholar
|
|
58
|
Hayashi T, Nishiyama K and Shirahama T:
Inhibition of 5-lipoxygenase pathway suppresses the growth of
bladder cancer cells. Int J Urol. 13:1086–1091. 2006.
|
|
59
|
Meng Z, Cao R, Yang Z, Liu T, Wang Y and
Wang X: Inhibitor of 5-lipoxygenase, zileuton, suppresses prostate
cancer metastasis by upregulating E-cadherin and paxillin.
Urology. 82(1452): e7–e14. 2013.PubMed/NCBI
|
|
60
|
Schroeder CP, Yang P, Newman RA and Lotan
R: Simultaneous inhibition of COX-2 and 5-LOX activities augments
growth arrest and death of premalignant and malignant human lung
cell lines. J Exp Ther Oncol. 6:183–192. 2007.
|
|
61
|
Shin VY, Jin HC, Ng EK, Sung JJ, Chu KM
and Cho CH: Activation of 5-lipoxygenase is required for nicotine
mediated epithelial-mesenchymal transition and tumor cell growth.
Cancer Lett. 292:237–245. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hagmann W, Gao X, Zacharek A,
Wojciechowski LA and Honn KV: 12-Lipoxygenase in Lewis lung
carcinoma cells: molecular identity, intracellular distribution of
activity and protein, and Ca2+-dependent translocation from cytosol
to membranes. Prostaglandins. 49:49–62. 1995.PubMed/NCBI
|
|
63
|
Pidgeon GP, Kandouz M, Meram A and Honn
KV: Mechanisms controlling cell cycle arrest and induction of
apoptosis after 12-lipoxygenase inhibition in prostate cancer
cells. Cancer Res. 62:2721–2727. 2002.PubMed/NCBI
|
|
64
|
Tang DG, Chen YQ and Honn KV: Arachidonate
lipoxygenases as essential regulators of cell survival and
apoptosis. Proc Natl Acad Sci USA. 93:5241–5246. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wong BC, Wang WP, Cho CH, et al:
12-Lipoxygenase inhibition induced apoptosis in human gastric
cancer cells. Carcinogenesis. 22:1349–1354. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Terada N, Shimizu Y, Kamba T, et al:
Identification of EP4 as a potential target for the treatment of
castration-resistant prostate cancer using a novel xenograft model.
Cancer Res. 70:1606–1615. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Jiang WG, Watkins G, Douglas-Jones A and
Mansel RE: Reduction of isoforms of 15-lipoxygenase (15-LOX)-1 and
15-LOX-2 in human breast cancer. Prostaglandins Leukot Essent Fatty
Acids. 74:235–245. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Shappell SB, Boeglin WE, Olson SJ, Kasper
S and Brash AR: 15-lipoxygenase-2 (15-LOX-2) is expressed in benign
prostatic epithelium and reduced in prostate adenocarcinoma. Am J
Pathol. 155:235–245. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Shureiqi I, Wu Y, Chen D, et al: The
critical role of 15-lipoxygenase-1 in colorectal epithelial cell
terminal differentiation and tumorigenesis. Cancer Res.
65:11486–11492. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Tang DG, Bhatia B, Tang S and
Schneider-Broussard R: 15-Lipoxygenase 2 (15-LOX2) is a functional
tumor suppressor that regulates human prostate epithelial cell
differentiation, senescence, and growth (size). Prostaglandins
Other Lipid Mediat. 82:135–146. 2007. View Article : Google Scholar
|
|
71
|
Bhatia B, Tang S, Yang P, et al:
Cell-autonomous induction of functional tumor suppressor
15-lipoxygenase 2 (15-LOX2) contributes to replicative senescence
of human prostate progenitor cells. Oncogene. 24:3583–3595. 2005.
View Article : Google Scholar
|
|
72
|
Tang S, Bhatia B, Maldonado CJ, et al:
Evidence that arachidonate 15-lipoxygenase 2 is a negative cell
cycle regulator in normal prostate epithelial cells. J Biol Chem.
277:16189–16201. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Brown CM, Reisfeld B and Mayeno AN:
Cytochromes P450: a structure-based summary of biotransformations
using representative substrates. Drug Metab Rev. 40:1–100. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Cheranov SY, Karpurapu M, Wang D, Zhang B,
Venema RC and Rao GN: An essential role for SRC-activated STAT-3 in
14,15-EET-induced VEGF expression and angiogenesis. Blood.
111:5581–5591. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Jiang JG, Ning YG, Chen C, et al:
Cytochrome p450 epoxygenase promotes human cancer metastasis.
Cancer Res. 67:6665–6674. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Webler AC, Michaelis UR, Popp R, et al:
Epoxyeicosatrienoic acids are part of the VEGF-activated signaling
cascade leading to angiogenesis. Am J Physiol Cell Physiol.
295:C1292–C1301. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Webler AC, Popp R, Korff T, et al:
Cytochrome P450 2C9-induced angiogenesis is dependent on EphB4.
Arterioscler Thromb Vasc Biol. 28:1123–1129. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Yan G, Chen S, You B and Sun J: Activation
of sphingosine kinase-1 mediates induction of endothelial cell
proliferation and angiogenesis by epoxyeicosatrienoic acids.
Cardiovasc Res. 78:308–314. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Gottesman MM: Mechanisms of cancer drug
resistance. Annu Rev Med. 53:615–627. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Turk D and Szakacs G: Relevance of
multidrug resistance in the age of targeted therapy. Curr Opin Drug
Discov Devel. 12:246–252. 2009.PubMed/NCBI
|
|
81
|
Arico S, Pattingre S, Bauvy C, et al:
Celecoxib induces apoptosis by inhibiting
3-phosphoinositide-dependent protein kinase-1 activity in the human
colon cancer HT-29 cell line. J Biol Chem. 277:27613–27621. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Arunasree KM, Roy KR, Anilkumar K, Aparna
A, Reddy GV and Reddanna P: Imatinib-resistant K562 cells are more
sensitive to celecoxib, a selective COX-2 inhibitor: role of COX-2
and MDR-1. Leuk Res. 32:855–864. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Roy KR, Reddy GV, Maitreyi L, et al:
Celecoxib inhibits MDR1 expression through COX-2-dependent
mechanism in human hepatocellular carcinoma (HepG2) cell line.
Cancer Chemother Pharmacol. 65:903–911. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Yu L, Wu WK, Li ZJ, Liu QC, Li HT, Wu YC
and Cho CH: Enhancement of doxorubicin cytotoxicity on human
esophageal squamous cell carcinoma cells by indomethacin and
4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide
(SC236) via inhibiting P-glycoprotein activity. Mol Pharmacol.
75:1364–1373. 2009.
|
|
85
|
Zatelli MC, Luchin A, Tagliati F, et al:
Cyclooxygenase-2 inhibitors prevent the development of
chemoresistance phenotype in a breast cancer cell line by
inhibiting glycoprotein p-170 expression. Endocr Relat Cancer.
14:1029–1038. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
de Vries EF, Doorduin J, Vellinga NA, van
Waarde A, Dierckx RA and Klein HC: Can celecoxib affect
P-glycoprotein-mediated drug efflux? A microPET study. Nucl Med
Biol. 35:459–466. 2008.PubMed/NCBI
|
|
87
|
Awara WM, El-Sisi AE, El-Sayad ME and Goda
AE: The potential role of cyclooxygenase-2 inhibitors in the
treatment of experimentally-induced mammary tumour: does celecoxib
enhance the anti-tumour activity of doxorubicin? Pharmacol Res.
50:487–498. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Yan YX, Li WZ, Huang YQ and Liao WX: The
COX-2 inhibitor celecoxib enhances the sensitivity of KB/VCR oral
cancer cell lines to vincristine by down-regulating P-glycoprotein
expression and function. Prostaglandins Other Lipid Mediat.
97:29–35. 2011. View Article : Google Scholar
|
|
89
|
Zrieki A, Farinotti R and Buyse M:
Cyclooxygenase inhibitors down regulate P-glycoprotein in human
colorectal Caco-2 cell line. Pharm Res. 25:1991–2001. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Ye CG, Wu WK, Yeung JH, et al:
Indomethacin and SC236 enhance the cytotoxicity of doxorubicin in
human hepatocellular carcinoma cells via inhibiting P-glycoprotein
and MRP1 expression. Cancer Lett. 304:90–96. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Kang HK, Lee E, Pyo H and Lim SJ:
Cyclooxygenase-independent down-regulation of multidrug
resistance-associated protein-1 expression by celecoxib in human
lung cancer cells. Mol Cancer Ther. 4:1358–1363. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Ko SH, Choi GJ, Lee JH, Han YA, Lim SJ and
Kim SH: Differential effects of selective cyclooxygenase-2
inhibitors in inhibiting proliferation and induction of apoptosis
in oral squamous cell carcinoma. Oncol Rep. 19:425–433. 2008.
|
|
93
|
Natarajan K, Xie Y, Baer MR and Ross DD:
Role of breast cancer resistance protein (BCRP/ABCG2) in cancer
drug resistance. Biochem Pharmacol. 83:1084–1103. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Elahian F, Kalalinia F and Behravan J:
Evaluation of indomethacin and dexamethasone effects on
BCRP-mediated drug resistance in MCF-7 parental and resistant cell
lines. Drug Chem Toxicol. 33:113–119. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Chen M, Yu L, Gu C, Zhong D, Wu S and Liu
S: Celecoxib antagonizes the cytotoxic effect of cisplatin in human
gastric cancer cells by decreasing intracellular cisplatin
accumulation. Cancer Lett. 329:189–196. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Sugiura T, Saikawa Y, Kubota T, et al:
Combination chemotherapy with JTE-522, a novel selective
cyclooxygenase-2 inhibitor, and cisplatin against gastric cancer
cell lines in vitro and in vivo. In Vivo. 17:229–233. 2003.
|
|
97
|
Kim SH, Kim SH, Song YC and Song YS:
Celecoxib potentiates the anticancer effect of cisplatin on vulvar
cancer cells independently of cyclooxygenase. Ann N Y Acad Sci.
1171:635–641. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Li WZ, Wang XY, Li ZG, Zhang JH and Ding
YQ: Celecoxib enhances the inhibitory effect of cisplatin on
Tca8113 cells in human tongue squamous cell carcinoma in vivo and
in vitro. J Oral Pathol Med. 39:579–584. 2010.PubMed/NCBI
|
|
99
|
van Wijngaarden J, van Beek E, van Rossum
G, et al: Celecoxib enhances doxorubicin-induced cytotoxicity in
MDA-MB231 cells by NF-kappaB-mediated increase of intracellular
doxorubicin accumulation. Eur J Cancer. 43:433–442. 2007.
|
|
100
|
Xia W, Zhao T, Lv J, et al: Celecoxib
enhanced the sensitivity of cancer cells to anticancer drugs by
inhibition of the expression of P-glycoprotein through a
COX-2-independent manner. J Cell Biochem. 108:181–194. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Pereira MA, Tao L, Wang W, et al:
Modulation by celecoxib and difluoromethylornithine of the
methylation of DNA and the estrogen receptor-alpha gene in rat
colon tumors. Carcinogenesis. 25:1917–1923. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Ellinger J, Bastian PJ, Jurgan T, et al:
CpG island hypermethylation at multiple gene sites in diagnosis and
prognosis of prostate cancer. Urology. 71:161–167. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Enokida H, Shiina H, Igawa M, et al: CpG
hypermethylation of MDR1 gene contributes to the pathogenesis and
progression of human prostate cancer. Cancer Res. 64:5956–5962.
2004. View Article : Google Scholar
|
|
104
|
Qiu YY, Mirkin BL and Dwivedi RS: MDR1
hypermethylation contributes to the progression of neuroblastoma.
Mol Cell Biochem. 301:131–135. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Wei D, Wang L, He Y, Xiong HQ, Abbruzzese
JL and Xie K: Celecoxib inhibits vascular endothelial growth factor
expression in and reduces angiogenesis and metastasis of human
pancreatic cancer via suppression of Sp1 transcription factor
activity. Cancer Res. 64:2030–2038. 2004. View Article : Google Scholar
|
|
106
|
Cianchi F, Cortesini C, Magnelli L, et al:
Inhibition of 5-lipoxygenase by MK886 augments the antitumor
activity of celecoxib in human colon cancer cells. Mol Cancer Ther.
5:2716–2726. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
El-Awady RA, Saleh EM, Ezz M and Elsayed
AM: Interaction of celecoxib with different anti-cancer drugs is
antagonistic in breast but not in other cancer cells. Toxicol Appl
Pharmacol. 255:271–286. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Chen C, Shen HL, Yang J, Chen QY and Xu
WL: Preventing chemoresistance of human breast cancer cell line,
MCF-7 with celecoxib. J Cancer Res Clin Oncol. 137:9–17. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Fosslien E: Molecular pathology of
cyclooxygenase-2 in neoplasia. Ann Clin Lab Sci. 30:3–21.
2000.PubMed/NCBI
|
|
110
|
Bol DK, Rowley RB, Ho CP, et al:
Cyclooxygenase-2 overexpression in the skin of transgenic mice
results in suppression of tumor development. Cancer Res.
62:2516–2521. 2002.PubMed/NCBI
|
|
111
|
Nakopoulou L, Mylona E, Papadaki I, et al:
Overexpression of cyclooxygenase-2 is associated with a favorable
prognostic phenotype in breast carcinoma. Pathobiology. 72:241–249.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Xu Z, Choudhary S, Voznesensky O, et al:
Overexpression of COX-2 in human osteosarcoma cells decreases
proliferation and increases apoptosis. Cancer Res. 66:6657–6664.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Patel VA, Dunn MJ and Sorokin A:
Regulation of MDR-1 (P-glycoprotein) by cyclooxygenase-2. J Biol
Chem. 277:38915–38920. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Saikawa Y, Sugiura T, Toriumi F, et al:
Cyclooxygenase-2 gene induction causes CDDP resistance in colon
cancer cell line, HCT-15. Anticancer Res. 24:2723–2728.
2004.PubMed/NCBI
|
|
115
|
Surowiak P, Materna V, Matkowski R, et al:
Relationship between the expression of cyclooxygenase 2 and
MDR1/P-glycoprotein in invasive breast cancers and their prognostic
significance. Breast Cancer Res. 7:R862–R870. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Surowiak P, Pawelczyk K, Maciejczyk A, et
al: Positive correlation between cyclooxygenase 2 and the
expression of ABC transporters in non-small cell lung cancer.
Anticancer Res. 28:2967–2974. 2008.PubMed/NCBI
|
|
117
|
Ziemann C, Schafer D, Rudell G, Kahl GF
and Hirsch-Ernst KI: The cyclooxygenase system participates in
functional MDR1b overexpression in primary rat hepatocyte cultures.
Hepatology. 35:579–588. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Liu B, Qu L and Tao H: Cyclo-oxygenase 2
up-regulates the effect of multidrug resistance. Cell Biol Int.
34:21–25. 2010.PubMed/NCBI
|
|
119
|
Jendzelovsky R, Mikes J, Koval J, et al:
Drug efflux transporters, MRP1 and BCRP, affect the outcome of
hypericin-mediated photodynamic therapy in HT-29 adenocarcinoma
cells. Photochem Photobiol Sci. 8:1716–1723. 2009. View Article : Google Scholar
|
|
120
|
Kleban J, Mikes J, Horvath V, et al:
Mechanisms involved in the cell cycle and apoptosis of HT-29 cells
pre-treated with MK-886 prior to photodynamic therapy with
hypericin. J Photochem Photobiol B. 93:108–118. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Kleban J, Mikes J, Szilardiova B, et al:
Modulation of hypericin photodynamic therapy by pretreatment with
12 various inhibitors of arachidonic acid metabolism in colon
adenocarcinoma HT-29 cells. Photochem Photobiol. 83:1174–1185.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Kleban J, Szilardiova B, Mikes J, et al:
Pre-treatment of HT-29 cells with 5-LOX inhibitor (MK-886) induces
changes in cell cycle and increases apoptosis after photodynamic
therapy with hypericin. J Photochem Photobiol B. 84:79–88. 2006.
View Article : Google Scholar
|
|
123
|
Hida T, Kozaki K, Ito H, et al:
Significant growth inhibition of human lung cancer cells both in
vitro and in vivo by the combined use of a selective cyclooxygenase
2 inhibitor, JTE-522, and conventional anticancer agents. Clin
Cancer Res. 8:2443–2447. 2002.
|
|
124
|
Hossain MA, Kim DH, Jang JY, et al:
Aspiri. induces apoptosis in vitro and inhibits tumor growth
of human hepatocellular carcinoma cells in a nude mouse xenograft
model. Int J Oncol. 40:1298–1304. 2012.PubMed/NCBI
|
|
125
|
Irie T, Tsujii M, Tsuji S, et al:
Synergistic antitumor effects of celecoxib with 5-fluorouracil
depend on IFN-gamma. Int J Cancer. 121:878–883. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Knapp DW, Glickman NW, Widmer WR, et al:
Cisplatin versus cisplatin combined with piroxicam in a canine
model of human invasive urinary bladder cancer. Cancer Chemother
Pharmacol. 46:221–226. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Ponthan F, Wickstrom M, Gleissman H, et
al: Celecoxib prevents neuroblastoma tumor development and
potentiates the effect of chemotherapeutic drugs in vitro and in
vivo. Clin Cancer Res. 13:1036–1044. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Spugnini EP, Cardillo I, Verdina A, et al:
Piroxicam and cisplatin in a mouse model of peritoneal
mesothelioma. Clin Cancer Res. 12:6133–6143. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Zhang DQ, Guo Q, Zhu JH and Chen WC:
Increase of cyclooxygenase-2 inhibition with celecoxib combined
with 5-FU enhances tumor cell apoptosis and antitumor efficacy in a
subcutaneous implantation tumor model of human colon cancer. World
J Surg Oncol. 11(16)2013. View Article : Google Scholar
|
|
130
|
Tsujii M, Kawano S, Tsuji S, Sawaoka H,
Hori M and DuBois RN: Cyclooxygenase regulates angiogenesis induced
by colon cancer cells. Cell. 93:705–716. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Leahy KM, Ornberg RL, Wang Y, Zweifel BS,
Koki AT and Masferrer JL: Cyclooxygenase-2 inhibition by celecoxib
reduces proliferation and induces apoptosis in angiogenic
endothelial cells in vivo. Cancer Res. 62:625–631. 2002.PubMed/NCBI
|
|
132
|
Patel MI, Subbaramaiah K, Du B, et al:
Celecoxib inhibits prostate cancer growth: evidence of a
cyclooxygenase-2-independent mechanism. Clin Cancer Res.
11:1999–2007. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Sakamoto T, Uozaki H, Kondo K, et al:
Cyclooxygenase-2 regulates the degree of apoptosis by modulating
bcl-2 protein in pleomorphic adenoma and mucoepidermoid carcinoma
of the parotid gland. Acta Otolaryngol. 125:191–195. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Tjiu JW, Liao YH, Lin SJ, et al:
Cyclooxygenase-2 overexpression in human basal cell carcinoma cell
line increases antiapoptosis, angiogenesis, and tumorigenesis. J
Invest Dermatol. 126:1143–1151. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Wang F, Sun GP, Zou YF, et al: Expression
of COX-2 and Bcl-2 in primary fallopian tube carcinoma:
correlations with clinicopathologic features. Folia Histochem
Cytobiol. 49:389–397. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Stark LA, Din FV, Zwacka RM and Dunlop MG:
Aspirin-induced activation of the NF-kappaB signaling pathway: a
novel mechanism for aspirin-mediated apoptosis in colon cancer
cells. FASEB J. 15:1273–1275. 2001.
|
|
137
|
Park IS, Jo JR, Hong H, et al: Aspirin
induces apoptosis in YD-8 human oral squamous carcinoma cells
through activation of caspases, down-regulation of Mcl-1, and
inactivation of ERK-1/2 and AKT. Toxicol In Vitro. 24:713–720.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Stark LA, Reid K, Sansom OJ, et al:
Aspirin activates the NF-kappaB signalling pathway and induces
apoptosis in intestinal neoplasia in two in vivo models of human
colorectal cancer. Carcinogenesis. 28:968–976. 2007. View Article : Google Scholar
|
|
139
|
Trifan OC, Durham WF, Salazar VS, et al:
Cyclooxygenase-2 inhibition with celecoxib enhances antitumor
efficacy and reduces diarrhea side effect of CPT-11. Cancer Res.
62:5778–5784. 2002.PubMed/NCBI
|
|
140
|
Altorki NK, Port JL, Zhang F, et al:
Chemotherapy induces the expression of cyclooxygenase-2 in
non-small cell lung cancer. Clin Cancer Res. 11:4191–4197. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Masferrer JL, Leahy KM, Koki AT, et al:
Antiangiogenic and antitumor activities of cyclooxygenase-2
inhibitors. Cancer Res. 60:1306–1311. 2000.PubMed/NCBI
|
|
142
|
Kohne CH, De Greve J, Hartmann JT, et al:
Irinotecan combined with infusional 5-fluorouracil/folinic acid or
capecitabine plus celecoxib or placebo in the first-line treatment
of patients with metastatic colorectal cancer. EORTC study 40015.
Ann Oncol. 19:920–926. 2008. View Article : Google Scholar
|
|
143
|
Maiello E, Giuliani F, Gebbia V, et al:
Gruppo Oncologico dell'Italia Meridionale, FOLFIRI with or without
celecoxib in advanced colorectal cancer: a randomized phase II
study of the Gruppo Oncologico dell'Italia Meridionale (GOIM). Ann
Oncol. 17 (Suppl 7):vii55–59. 2006.
|
|
144
|
Schneider BJ, Kalemkerian GP, Kraut MJ, et
al: Phase II study of celecoxib and docetaxel in non-small cell
lung cancer (NSCLC) patients with progression after platinum-based
therapy. J Thorac Oncol. 3:1454–1459. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Skapek SX, Anderson JR, Hill DA, et al:
Safety and efficacy of high-dose tamoxifen and sulindac for desmoid
tumor in children: results of a Children's Oncology Group (COG)
phase II study. Pediatr Blood Cancer. 60:1108–1112. 2013.PubMed/NCBI
|
|
146
|
Csiki I, Morrow JD, Sandler A, et al:
Targeting cyclooxygenase-2 in recurrent non-small cell lung cancer:
a phase II trial of celecoxib and docetaxel. Clin Cancer Res.
11:6634–6640. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Becerra CR, Frenkel EP, Ashfaq R and
Gaynor RB: Increased toxicity and lack of efficacy of rofecoxib in
combination with chemotherapy for treatment of metastatic
colorectal cancer: a phase II study. Int J Cancer. 105:868–872.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Dang CT, Dannenberg AJ, Subbaramaiah K, et
al: Phase II study of celecoxib and trastuzumab in metastatic
breast cancer patients who have progressed after prior
trastuzumab-based treatments. Clin Cancer Res. 10:4062–4067. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Gridelli C, Gallo C, Ceribelli A, et al:
Factorial phase III randomised trial of rofecoxib and prolonged
constant infusion of gemcitabine in advanced non-small-cell lung
cancer: the GEmcitabine-COxib in NSCLC (GECO) study. Lancet Oncol.
8:500–512. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Groen HJ, Sietsma H, Vincent A, et al:
Randomized, placebo-controlled phase III study of docetaxel plus
carboplatin with celecoxib and cyclooxygenase-2 expression as a
biomarker for patients with advanced non-small-cell lung cancer:
the NVALT-4 study. J Clin Oncol. 29:4320–4326. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Koch A, Bergman B, Holmberg E, et al
Swedish Lung Cancer Study Group: Effect of celecoxib on survival in
patients with advanced non-small cell lung cancer: a double blind
randomised clinical phase III trial (CYCLUS study) by the Swedish
Lung Cancer Study Group. Eur J Cancer. 47:1546–1555. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Altorki NK, Keresztes RS, Port JL, et al:
Celecoxib, a selective cyclo-oxygenase-2 inhibitor, enhances the
response to preoperative paclitaxel and carboplatin in early-stage
non-small-cell lung cancer. J Clin Oncol. 21:2645–2650. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Nugent FW, Mertens WC, Graziano S, et al:
Docetaxel and cyclooxygenase-2 inhibition with celecoxib for
advanced non-small cell lung cancer progressing after
platinum-based chemotherapy: a multicenter phase II trial. Lung
Cancer. 48:267–273. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Legge F, Paglia A, D'Asta M, Fuoco G,
Scambia G and Ferrandina G: Phase II study of the combination
carboplatin plus celecoxib in heavily pre-treated recurrent ovarian
cancer patients. BMC Cancer. 11(214)2011. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Altorki NK, Christos P, Port JL, et al:
Preoperative taxane-based chemotherapy and celecoxib for carcinoma
of the esophagus and gastroesophageal junction: results of a phase
2 trial. J Thorac Oncol. 6:1121–1127. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
An Y and Ongkeko WM: ABCG2: the key to
chemoresistance in cancer stem cells? Expert Opin Drug Metab
Toxicol. 5:1529–1542. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Huang WZ, Fu JH, Wang DK, et al:
Overexpression of cyclooxygenase-2 is associated with
chemoradiotherapy resistance and prognosis in esophageal squamous
cell carcinoma patients. Dis Esophagus. 21:679–684. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Robey RW, To KK, Polgar O, et al: ABCG2: a
perspective. Adv Drug Deliv Rev. 61:3–13. 2009. View Article : Google Scholar
|
|
159
|
Szczuraszek K, Materna V, Halon A, et al:
Positive correlation between cyclooxygenase-2 and ABC-transporter
expression in non-Hodgkin's lymphomas. Oncol Rep. 22:1315–1323.
2009.PubMed/NCBI
|
|
160
|
Edelman MJ, Watson D, Wang X, et al:
Eicosanoid modulation in advanced lung cancer: cyclooxygenase-2
expression is a positive predictive factor for celecoxib +
chemotherapy - Cancer and Leukemia Group B Trial 30203. J Clin
Oncol. 26:848–855. 2008.PubMed/NCBI
|