|
1
|
Wente SR: Gatekeepers of the nucleus.
Science. 288:1374–1377. 2000.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Watson J, Baker T, Bell S, Gann A, Levine
M and Losick R: Molecular Biology of the Gene. 5th ed.
Pearson/Benjamin Cummings: San Francisco Cold Spring Harbor, NY,
912 p. 2004.
|
|
3
|
Izaurralde E and Adam S: Transport of
macromolecules between the nucleus and the cytoplasm. RNA.
4:351–364. 1998.PubMed/NCBI
|
|
4
|
Misteli T: Physiological importance of RNA
and protein mobility in the cell nucleus. Histochem Cell Biol.
129:5–11. 2008.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Chook YM and Blobel G: Karyopherins and
nuclear import. Curr Opin Struct Biol. 11:703–715. 2001.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Alberts B, Johnson A, Lewis J, Raff M,
Roberts K and Walter P: Drosophila and the Molecular Genetics of
Pattern Formation: Genesis of the Body Plan. 4th edition. Garland
Science, New York, NY, 2002.
|
|
7
|
La Cour T, Kiemer L, Mølgaard A, Gupta R,
Skriver K and Brunak S: Analysis and prediction of leucine-rich
nuclear export signals. Protein Eng Des Sel. 17:527–536.
2004.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Powell SM, Zilz N, Beazer-Barclay Y, Bryan
TM, Hamilton SR, Thibodeau SN, Vogelstein B and Kinzler KW: APC
mutations occur early during colorectal tumorigenesis. Nature.
359:235–237. 1992.PubMed/NCBI View
Article : Google Scholar
|
|
9
|
Pichler A and Melchior F:
Ubiquitin-related modifier SUMO1 and nucleocytoplasmic transport.
Traffic. 3:381–387. 2002.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Azmi S, Uddin MH and Mohammad RM: The
nuclear export protein XPO1 - from biology to targeted therapy. Nat
Rev Clin Oncol. 18:152–169. 2021.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Pemberton LF and Paschal BM: Mechanisms of
receptor-mediated nuclear import and nuclear export. Traffic.
6:187–198. 2005.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Kau TR, Way JC and Silver PA: Nuclear
transport and cancer: From mechanism to intervention. Nat Rev
Cancer. 4:106–117. 2004.PubMed/NCBI View
Article : Google Scholar
|
|
13
|
Fornerod M, Ohno M, Yoshida M and Mattaj
IW: CRM1 is an export receptor for leucine-rich nuclear export
signals. Cell. 90:1051–1060. 1997.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Kudo N, Khochbin S, Nishi K, Kitano K,
Yanagida M, Yoshida M and Horinouchi S: Molecular cloning and cell
cycle-dependent expression of mammalian CRM1, a protein involved in
nuclear export of proteins. J Biol Chem. 272:29742–29751.
1997.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Adachi Y and Yanagida M: Higher order
chromosome structure is affected by cold-sensitive mutations in a
Schizosaccharomyces pombe gene crm1+ which encodes a 115-kD protein
preferentially localized in the nucleus and its periphery. J Cell
Biol. 108:1195–1207. 1989.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Ruggiero A, Giubettini M and Lavia P: XPO1
(exportin 1 (CRM1 homolog, yeast)). Atlas of Genetics and
Cytogenetics in Oncology and Haematology. INIST-CNRS 16: 2011.
|
|
17
|
Fornerod M, van Baal S, Valentine V,
Shapiro DN and Grosveld G: Chromosomal localization of genes
encoding CAN/Nup214-interacting proteins-human CRM1 localizes to
2p16, whereas Nup88 localizes to 17p13 and is physically linked to
SF2p32. Genomics. 42:538–540. 1997.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Parikh K, Cang S, Sekhri A and Liu D:
Selective inhibitors of nuclear export (SINE)-a novel class of
anti-cancer agents. J Hematol Oncol. 7(78)2014.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Fornerod M, Van Deursen J, Van Baal S,
Reynolds A, Davis D, Murti KG, Fransen J and Grosveld G: The human
homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214
and a novel nuclear pore component Nup88. EMBO J. 16:807–816.
1997.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Petosa C, Schoehn G, Askjaer P, Bauer U,
Moulin M, Steuerwald U, Soler-Lopez M, Baudin F, Mattaj IW and
Müller CW: Architecture of CRM1/Exportin1 suggests how
cooperativity is achieved during formation of a nuclear export
complex. Mol Cell. 16:761–775. 2004.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Dölker N, Blanchet CE, Voss B, Haselbach
D, Kappel C, Monecke T, Svergun DI, Stark H, Ficner R, Zachariae U,
et al: Structural determinants and mechanism of mammalian CRM1
allostery. Structure. 21:1350–1360. 2013.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Saito N and Matsuura YA: 2.1-Å-resolution
crystal structure of unliganded CRM1 reveals the mechanism of
autoinhibition. J Mol Biol. 425:350–364. 2013.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Koyama M and Matsuura Y: An allosteric
mechanism to displace nuclear export cargo from CRM1 and RanGTP by
RanBP1. EMBO J. 29:2002–1013. 2010.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Lee SH and Hannink M: The N-terminal
nuclear export sequence of IkappaBalpha is required for
RanGTP-dependent binding to CRM1. J Biol Chem. 276:23599–23606.
2001.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Dong X, Biswas A, Süel KE, Jackson LK,
Martinez R, Gu H and Chook YM: Structural basis for leucine-rich
nuclear export signal recognition by CRM1. Nature. 458:1136–1141.
2009.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Ptasznik A, Nakat Y, Kalota A, Emerson SG
and Gewirtz AM: Short interfering RNA (siRNA) targeting the Lyn
kinase induces apoptosis in primary, and drug-resistant,
BCR-ABL1(+) leukemia cells. Nat Med. 10:1187–1189. 2004.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Grunewald TG, Kammerer U, Schulze E,
Schindler D, Honig A, Zimmer M and Butt E: Silencing of LASP-1
influences zyxin localization, inhibits proliferation and reduces
migration in breast cancer cells. Exp Cell Res. 312:974–982.
2006.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Fukuda M, Asano S, Nakamura T, Adachi M,
Yoshida M, Yanagida M and Nishida E: CRM1 is responsible for
intracellular transport mediated by the nuclear export signal.
Nature. 390:308–311. 1997.PubMed/NCBI View
Article : Google Scholar
|
|
29
|
Ossareh-Nazari B, Bachelerie F and
Dargemont C: Evidence for a role of CRM1 in signal-mediated nuclear
protein export. Science. 278:141–144. 1997.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Fei E, Ma X, Zhu C, Xue T, Yan J, Xu Y,
Zhou J and Wang G: Nucleocytoplasmic shuttling of dysbindin-1, a
schizophrenia-related protein, regulates synapsin I expression. J
Biol Chem. 285:38630–38640. 2010.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Matsuyama A, Arai R, Yashiroda Y, Shirai
A, Kamata A, Sekido S, Kobyashi Y, Hashimoto A, Hamamoto M, Hiraoka
Y, et al: ORFeome cloning and global analysis of protein
localization in the fission yeast Schizosaccharomyces pombe. Nat
Biotechnol. 24:841–847. 2006.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Kutay U and Güttinger S: Leucine-rich
nuclear-export signals: Born to be weak. Trends Cell Biol.
15:121–124. 2005.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Turner JG, Dawson J and Sullivan DM:
Nuclear export of proteins and drug resistance in cancer. Biochem
Pharmacol. 83:1021–1032. 2012.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Vogt PK, Jiang H and Aoki M: Triple layer
control: Phosphorylation, acetylation and ubiquitination of FOXO
proteins. Cell Cycle. 4:908–913. 2005.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Craig E, Zhang ZK, Davies KP and Kalpana
GV: A masked NES in INI1/hSNF5 mediates hCRM1-dependent nuclear
export: Implications for tumorigenesis. EMBO J. 21:31–42.
2002.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Yoneda Y, Hieda M, Nagoshi E and Miyamoto
Y: Nucleocytoplasmic protein transport and recycling of Ran. Cell
Struct Funct. 24:425–333. 1999.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Poon IK and Jans DA: Regulation of nuclear
transport: Central role in development and transformation? Traffic.
6:173–186. 2005.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Gandhi UH, Senapedis W, Baloglu E, Unger
TJ, Chari A, Vogl D and Cornell RF: Clinical implications of
targeting XPO1-mediated nuclear export in multiple myeloma. Clin
Lymphoma Myeloma Leuk. 18:335–345. 2018.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Fabbro M and Henderson BR: Regulation of
tumor suppressors by nuclear-cytoplasmic shuttling. Exp Cell Res.
282:59–69. 2003.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Rensen WM, Mangiacasale R, Ciciarello M
and Lavia P: The GTPase Ran: Regulation of cell life and potential
roles in cell transformation. Front Biosci. 13:4097–4121.
2008.PubMed/NCBI View
Article : Google Scholar
|
|
41
|
van der Watt PJ and Leaner VD: The nuclear
exporter, Crm1, is regulated by NFY and Sp1 in cancer cells and
repressed by p53 in response to DNA damage. Biochim Biophys Acta.
1809:316–326. 2011.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Lin DC, Hao JJ, Nagata Y, Xu L, Shang L,
Meng X, Sato Y, Okuno Y, Varela AM, Ding LW, et al: Genomic and
molecular characterization of esophageal squamous cell carcinoma.
Nat Genet. 46:467–473. 2014.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Landau DA, Carter SL, Stojanov P, McKenna
A, Stevenson K, Lawrence MS, Sougnez C, Stewart C, Sivachenko A,
Wang L, et al: Evolution and impact of subclonal mutations in
chronic lymphocytic leukemia. Cell. 152:714–726. 2013.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Liu X, Malenfant P, Reesor C, Lee A,
Hudson ML, Harvard C, Qiao Y, Persico AM, Cohen IL, Chudley AE, et
al: 2p15-p16. 1 microdeletion syndrome: Molecular characterization
and association of the OTX1 and XPO1 genes with autism spectrum
disorders. Eur J Hum Genet. 19:1264–1270. 2011.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Pernat Drobež C, Repnik K, Gorenjak M,
Ferkolj I, Weersma RK and Potocnik U: DNA polymorphisms predict
time to progression from uncomplicated to complicated Crohn's
disease. Eur J Gastroenterol Hepatol. 30:447–455. 2018.PubMed/NCBI View Article : Google Scholar
|
|
46
|
He X, Zhang H, Tao B, Yang M, Chen H, Lu
L, Yi H, Pan H and Tang S: The A/A genotype of XPO1 rs4430924 is
associated with higher risk of antituberculosis drug-induced
hepatotoxicity in Chinese patients. J Clin Pharmacol. 59:1014–1021.
2019.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Noske A, Weichert W, Niesporek S, Röske A,
Buckendahl AC, Koch I, Sehouli J, Dietel M and Denkert C:
Expression of the nuclear export protein chromosomal region
maintenance/exportin 1/Xpo1 is a prognostic factor in human ovarian
cancer. Cancer. 112:1733–1743. 2008.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Van der Watt PJ, Maske CP, Hendricks DT,
Parker MI, Denny L, Govender D, Birrer MJ and Leaner VD: The
Karyopherin proteins, Crm1 and Karyopherin β1, are overexpressed in
cervical cancer and are critical for cancer cell survival and
proliferation. Int J Cancer. 124:1829–1840. 2009.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Liu X, Chong Y, Tu Y, Liu N, Yue C, Qi Z,
Liu H, Yao Y, Liu H, Gao S, et al: CRM1/XPO1 is associated with
clinical outcome in glioma and represents a therapeutic target by
perturbing multiple core pathways. J Hematol Oncol.
9(108)2016.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Jiang Y, Hou J, Zhang X, Xu G, Wang Y,
Shen L, Wu Y, Li Y and Yao L: Circ-XPO1 upregulates XPO1 expression
by sponging multiple miRNAs to facilitate osteosarcoma cell
progression. Exp Mol Pathol. 117(104553)2020.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Azmi AS, Li Y, Muqbil I, Aboukameel A,
Senapedis W, Baloglu E, Landesman Y, Shacham S, Kauffman MG, Philip
PA and Mohammad RM: Exportin 1 (XPO1) inhibition leads to
restoration of tumor suppressor miR-145 and consequent suppression
of pancreatic cancer cell proliferation and migration. Oncotarget.
8:82144–82155. 2017.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Van der Watt PJ, Zemanay W, Govender D,
Hendricks DT, Parker MI and Leaner VD: Elevated expression of the
nuclear export protein, Crm1 (exportin 1), associates with human
esophageal squamous cell carcinoma. Oncol Rep. 32:730–738.
2014.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Yang X, Cheng L, Yao L, Ren H, Zhang S,
Min X, Chen X, Zhang J and Li M: Involvement of chromosome region
maintenance 1 (CRM1) in the formation and progression of esophageal
squamous cell carcinoma. Med Oncol. 31(155)2014.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Liu Z and Ga W: Leptomycin B reduces
primary and acquired resistance of gefitinib in lung cancer cells.
Toxicol Appl Pharmacol. 335:16–27. 2017.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Sexton R, Mahdi Z, Chaudhury R, Beydoun R,
Aboukameel A, Khan HY, Baloglu E, Senapedis W, Landesman Y, Tesfaye
A, et al: Targeting nuclear exporter protein XPO1/CRM1 in gastric
cancer. Int J Mol Sci. 20(4826)2019.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Özdaş S and Özdaş T: Crm1 knockdown by
specific small interfering RNA reduces cell proliferation and
induces apoptosis in head and neck cancer cell lines. Turk J Biol.
42:132–143. 2018.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Özdaş S: Nuclear entrapment of p33ING1b by
inhibition of exportin-1: A trigger of apoptosis in head and neck
squamous cell cancer. Cell Mol Biol (Noisy-le-grand). 64:66–72.
2018.PubMed/NCBI
|
|
58
|
Inoue H, Kauffman M, Shacham S, Landesman
Y, Yang J, Evans CP and Weiss RH: CRM1 blockade by selective
inhibitors of nuclear export attenuates kidney cancer growth. J
Urol. 189:2317–2326. 2013.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Zheng Y, Gery S, Sun H, Shacham S,
Kauffman M and Koeffler HP: KPT-330 inhibitor of XPO1-mediated
nuclear export has anti-proliferative activity in hepatocellular
carcinoma. Cancer Chemother Pharmacol. 74:487–495. 2014.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Conway AE, Haldeman JM, Wechsler DS and
Lava CP: A critical role for CRM1 in regulating HOXA gene
transcription in CALM-AF10 leukemias. Leukemia. 29:423–432.
2015.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Kojima K, Kornblau SM, Ruvolo V, Dilip A,
Duvvuri S, Davis RE, Zhang M, Wang Z, Coombes KR, Zhang N, et al:
Prognostic impact and targeting of CRM1 in acute myeloid leukemia.
Blood. 121:4166–4174. 2013.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Lapalombella R, Sun Q, Williams K,
Tangeman L, Jha S, Zhong Y, Goettl V, Mahoney E, Berglund C, Gupta
S, et al: Selective inhibitors of nuclear export show that
CRM1/XPO1 is a target in chronic lymphocytic leukemia. Blood.
120:4621–4634. 2012.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Zhang K, Wang M, Tamayo AT, Shacham S,
Kauffman M, Lee J, Zhang L, Ou Z, Li C, Sun L, et al: Novel
selective inhibitors of nuclear export CRM1 antagonists for therapy
in mantle cell lymphoma. Exp Hematol. 41:67–78.e4. 2013.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Yoshimura M, Ishizawa J, Ruvolo V, Dilip
A, Quintás-Cardama A, McDonnell TJ, Neelapu SS, Kwak LW, Shacham S,
Kauffman M, et al: Induction of p53-mediated transcription and
apoptosis by exportin-1 (XPO 1) inhibition in mantle cell lymphoma.
Cancer Sci. 105:795–801. 2014.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Tai YT, Landesman Y, Acharya C, Calle Y,
Zhong MY, Cea M, Tannenbaum D, Cagnetta A, Reagan M, Munshi AA, et
al: CRM1 inhibition induces tumor cell cytotoxicity and impairs
osteoclastogenesis in multiple myeloma: Molecular mechanisms and
therapeutic implications. Leukemia. 28:155–165. 2014.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Wang AY, Weiner H, Green M, Chang H,
Fulton N, Larson RA, Odenike O, Artz AS, Bishop MR, Godley LA, et
al: A phase I study of selinexor in combination with high-dose
cytarabine and mitoxantrone for remission induction in patients
with acute myeloid leukemia. J Hematol Oncol. 11(4)2018.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Yue L, Sun ZN, Yao YS, Shen Z, Wang HB,
Liu XP, Zhou F, Xiang JY, Yao RY and Niu HT: CRM1, a novel
independent prognostic factor overexpressed in invasive breast
carcinoma of poor prognosis. Oncol Lett. 15:7515–7522.
2018.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Dasso M: Ran at kinetochores. Biochem Soc
Trans. 34:711–715. 2006.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Sendino M, Omaetxebarria MJ and Rodríguez
JA: Hitting a moving target: Inhibition of the nuclear export
receptor XPO1/CRM1 as a therapeutic approach in cancer. Cancer Drug
Resistance. 1:139–163. 2018.
|
|
70
|
Turner JG, Marchion DC, Dawson JL, Emmons
MF, Hazlehurst LA, Washausen P and Sullivan DM: Human multiple
myeloma cells are sensitized to topoisomerase II inhibitors by CRM1
inhibition. Cancer Res. 69:6899–6905. 2009.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Takenaka Y, Fukumori T, Yoshii T, Oka N,
Inohara H, Kim HR, Bresalier RS and Raz A: Nuclear export of
phosphorylated galectin-3 regulates its antiapoptotic activity in
response to chemotherapeutic drugs. Mol Cell Biol. 24:4395–4406.
2004.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Aloisi A, Di Gregorio S, Stagno F,
Guglielmo P, Mannino F, Sormani MP, Bruzzi P, Gambacorti-Passerini
C, Saglio G, Venuta S, et al: BCR-ABL nuclear entrapment kills
human CML cells: Ex vivo study on 35 patients with the combination
of imatinib mesylate and leptomycin B. Blood. 107:1591–1598.
2006.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Dickmanns A, Monecke T and Ficner R:
Structural basis of targeting the exportin CRM1 in cancer. Cells.
4:538–568. 2015.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Kudo N, Matsumori N, Taoka H, Fujiwara D,
Schreiner EP, Wolff B, Yoshida M and Horinouchi S: Leptomycin B
inactivates CRM1/exportin 1 by covalent modification at a cysteine
residue in the central conserved region. Proc Natl Acad Sci USA.
96:9112–9117. 1999.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Mutka SC, Yang WQ, Dong SD, Ward SL, Craig
DA, Timmermans PB and Murli S: Identification of nuclear export
inhibitors with potent anticancer activity in vivo. Cancer Res.
69:510–517. 2009.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Newlands ES, Rustin GJ and Brampton MH:
Phase I trial of elactocin. Br J Cancer. 74:648–649.
1996.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Hayakawa Y, Sohda KY, Shin-Ya K, Hidaka T
and Seto H: Anguinomycins C and D, new antitumor antibiotics with
selective cytotoxicity against transformed cells. J Antibiot
(Tokyo). 48:954–961. 1995.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Wach JY, Güttinger S, Kutay U and Gademann
K: The cytotoxic styryl lactone goniothalamin is an inhibitor of
nucleocytoplasmic transport. Bioorg Med Chem Lett. 20:2843–2846.
2010.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Sophonnithiprasert T, Mahabusarakam W,
Nakamura Y and Watanapokasin R: Goniothalamin induces
mitochondria-mediated apoptosis associated with endoplasmic
reticulum stress-induced activation of JNK in HeLa cells. Oncol
Lett. 13:119–128. 2017.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Hilliard M, Frohnert C, Spillner C,
Marcone S, Nath A, Lampe T, Fitzgerald DJ and Kehlenbach RH: The
anti-inflammatory prostaglandin 15-deoxy-delta(12,14)-PGJ2 inhibits
CRM1-dependent nuclear protein export. J Biol Chem.
285:22202–22210. 2010.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Muqbil I, Azmi AS and Mohammad RM: Nuclear
export inhibition for pancreatic cancer therapy. Cancers (Basel).
10(138)2018.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Liu X, Niu M, Xu X, Cai W, Zeng L, Zhou X,
Yu R and Xu K: CRM1 is a direct cellular target of the natural
anti-cancer agent plumbagin. J Pharmacol Sci. 124:486–493.
2014.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Niu M, Chong Y, Han Y and Liu X: Novel
reversible selective inhibitor of nuclear export shows that CRM1 is
a target in colorectal cancer cells. Cancer Biol Ther.
16:1110–1118. 2015.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Niu M, Xu X, Shen Y, Yao Y, Qiao J, Zhu F,
Zeng L, Liu X and Xu K: Piperlongumine is a novel nuclear export
inhibitor with potent anticancer activity. Chem Biol Interact.
237:66–72. 2015.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Meissner T, Krause E and Vinkemeier U:
Ratjadone and leptomycin B block CRM1-dependent nuclear export by
identical mechanisms. FEBS Lett. 576:27–30. 2004.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Fleta-Soriano E, Martinez JP, Hinkelmann
B, Gerth K, Washausen P, Diez J, Frank R, Sasse F and Meyerhans A:
The myxobacterial metabolite ratjadone A inhibits HIV infection by
blocking the Rev/CRM1-mediated nuclear export pathway. Microb Cell
Fact. 13(17)2014.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Klahn P, Fetz V, Ritter A, Collisi W,
Hinkelmann B, Arnold T, Tegge W, Rox K, Hüttel S, Mohr KI, et al:
The nuclear export inhibitor aminoratjadone is a potent effector in
extracellular-targeted drug conjugates. Chem Sci. 10:5197–5210.
2019.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Camus V, Miloudi H, Taly A, Sola B and
Jardin F: XPO1 in B cell hematological malignancies: From recurrent
somatic mutations to targeted therapy. J Hematol Oncol.
10(47)2017.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Azmi AS, Muqbil I, Wu J, Aboukameel A,
Senapedis W, Baloglu E, Bollig-Fischer A, Dyson G, Kauffman M,
Landesman Y, et al: Targeting the nuclear export protein XPO1/CRM1
reverses epithelial to mesenchymal transition. Sci Rep.
5(16077)2015.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Theodoropoulos N, Lancman G and Chari A:
Targeting nuclear export proteins in multiple myeloma therapy.
Target Oncol. 15:697–708. 2020.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Niu M, Wu S, Mao L and Yang Y: CRM1 is a
cellular target of curcumin: New insights for the myriad of
biological effects of an ancient spice. Traffic. 14:1042–1052.
2013.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Etchin J, Montero J, Berezovskaya A, Le
BT, Kentsis A, Christie AL, Conway AS, Chen WC, Reed C, Mansour MR,
et al: Activity of a selective inhibitor of nuclear export,
selinexor (KPT-330), against AML-initiating cells engrafted into
immunosuppressed NSG mice. Leukemia. 30:190–199. 2016.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Etchin J, Sanda T, Mansour MR, Kentsis A,
Montero J, Le BT, Christie AL, McCauley D, Rodig SJ, Kauffman M, et
al: KPT-330 inhibitor of CRM 1 (XPO 1)-mediated nuclear export has
selective anti-leukaemic activity in preclinical models of T-cell
acute lymphoblastic leukaemia and acute myeloid leukaemia. Br J
Haematol. 161:117–127. 2013.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Subhash VV, Yeo MS, Wang L, Tan SH, Wong
FY, Thuya WL, Tan WL, Peethala PC, Soe MY, Tan DSP, et al:
Anti-tumor efficacy of Selinexor (KPT-330) in gastric cancer is
dependent on nuclear accumulation of p53 tumor suppressor. Sci Rep.
8(12248)2018.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Gravina GL, Senapedis W, McCauley D,
Baloglu E, Shacham S and Festuccia C: Nucleo-cytoplasmic transport
as a therapeutic target of cancer. J Hematol Oncol.
7(85)2014.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Azizian NG and Li Y: XPO1-dependent
nuclear export as a target for cancer therapy. J Hematol Oncol.
13(61)2020.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Lewin J, Malone E, Al-Ezzi E, Fasih S,
Pedersen P, Accardi S, Gupta A and Abdul Razak A: A phase 1b trial
of selinexor, a first-in-class selective inhibitor of nuclear
export (SINE), in combination with doxorubicin in patients with
advanced soft tissue sarcomas (STS). Eur J Cancer. 144:360–367.
2021.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Mendonca J, Sharma A, Kim HS, Hammers H,
Meeker A, De Marzo A, Carducci M, Kauffman M, Shacham S and Kachhap
S: Selective inhibitors of nuclear export (SINE) as novel
therapeutics for prostate cancer. Oncotarget. 5:6102–6112.
2014.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Uddin MH, Zonder JA and Azmi AS: Exportin
1 inhibition as antiviral therapy. Drug Discov Today. 25:1775–1781.
2020.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Han X, Wang J, Shen Y, Zhang N, Wang S,
Yao J and Shi Y: CRM1 as a new therapeutic target for non-Hodgkin
lymphoma. Leuk Res. 39:38–46. 2015.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Delman M, Avcı ST, Akçok İ, Kanbur T,
Erdal E and Çağır A: Antiproliferative activity of
(R)-4'-methylklavuzon on hepatocellular carcinoma cells and
EpCAM+/CD133+ cancer stem cells via SIRT1 and
Exportin-1 (CRM1) inhibition. Eur J Med Chem. 180:224–237.
2019.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Liu X, Chong Y, Liu H, Han Y and Niu M:
CRM1 inhibitor S109 suppresses cell proliferation and induces cell
cycle arrest in renal cancer cells. Korean J Physiol Pharmacol.
20:161–168. 2016.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Daelemans D, Afonina E, Nilsson J, Werner
G, Kjems J, De Clercq E, Pavlakis GN and Vandamme AM: A synthetic
HIV-1 Rev inhibitor interfering with the CRM1-mediated nuclear
export. Proc Natl Acad Sci USA. 99:14440–14445. 2002.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Xu HW, Jia S, Liu M, Li X, Meng X, Wu X,
Yu L, Wang M and Jin CY: A low toxic CRM1 degrader: Synthesis and
anti-proliferation on MGC803 and HGC27. Eur J Med Chem.
206(112708)2020.PubMed/NCBI View Article : Google Scholar
|