Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2014 Volume 10 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2014 Volume 10 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Inflammatory response in Parkinson's disease (Review)

  • Authors:
    • Junqiang Yan
    • Qizhi Fu
    • Liniu Cheng
    • Mingming Zhai
    • Wenjuan Wu
    • Lina Huang
    • Ganqin Du
  • View Affiliations / Copyright

    Affiliations: Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
  • Pages: 2223-2233
    |
    Published online on: September 12, 2014
       https://doi.org/10.3892/mmr.2014.2563
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Parkinson's disease (PD) is one of the most common age‑related neurodegenerative diseases, which results from a number of environmental and inherited factors. PD is characterized by the slow progressive degeneration of dopaminergic (DA) neurons in the substantia nigra. The nigrostriatal DA neurons are particularly vulnerable to inflammatory attack. Neuroinflammation is an important contributor to the pathogenesis of age‑related neurodegenerative disorders, such as PD, and as such anti‑inflammatory agents are becoming a novel therapeutic focus. This review will discuss the current knowledge regarding inflammation and review the roles of intracellular inflammatory signaling pathways, which are specific inflammatory mediators in PD. Finally, possible therapeutic strategies are proposed, which may downregulate inflammatory processes and inhibit the progression of PD.
View Figures
View References

1 

Lang AE and Lozano AM: Parkinson’s disease. First of two parts. N Engl J Med. 339:1044–1053. 1998.

2 

Anandhan A, Essa MM and Manivasagam T: Therapeutic attenuation of neuroinflammation and apoptosis by black tea theaflavin in chronic MPTP/probenecid model of Parkinson’s disease. Neurotox Res. 23:166–173. 2013.PubMed/NCBI

3 

Barnum CJ and Tansey MG: Neuroinflammation and non-motor symptoms: the dark passenger of Parkinson’s disease? Curr Neurol Neurosci Rep. 12:350–358. 2012.PubMed/NCBI

4 

Sekiyama K, Sugama S, Fujita M, et al: Neuroinflammation in Parkinson’s disease and related disorders: A lesson from genetically manipulated mouse models of α-synucleinopathies. Parkinsons Dis. 2012:2717322012.

5 

Hirsch EC, Vyas S and Hunot S: Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord. 18(Suppl 1): S210–S212. 2012.

6 

Khan MM, Kempuraj D, Thangavel R and Zaheer A: Protection of MPTP-induced neuroinflammation and neurodegeneration by Pycnogenol. Neurochem Int. 62:379–388. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Ghosh A, Kanthasamy A, Joseph J, et al: Anti-inflammatory and neuroprotective effects of an orally active apocynin derivative in pre-clinical models of Parkinson’s disease. J Neuroinflammation. 9:2412012.PubMed/NCBI

8 

Yan J, Xu Y, Zhu C, et al: Simvastatin prevents dopaminergic neurodegeneration in experimental parkinsonian models: the association with anti-inflammatory responses. PLoS One. 6:e209452011. View Article : Google Scholar

9 

Ghosh A, Roy A, Matras J, Brahmachari S, Gendelman HE and Pahan K: Simvastatin inhibits the activation of p21ras and prevents the loss of dopaminergic neurons in a mouse model of Parkinson’s disease. J Neurosci. 29:13543–13556. 2009.PubMed/NCBI

10 

Depboylu C, Stricker S, Ghobril JP, Oertel WH, Priller J and Höglinger GU: Brain-resident microglia predominate over infiltrating myeloid cells in activation, phagocytosis and interaction with T-lymphocytes in the MPTP mouse model of Parkinson disease. Exp Neurol. 238:183–191. 2012. View Article : Google Scholar

11 

Dutta G, Barber DS, Zhang P, Doperalski NJ and Liu B: Involvement of dopaminergic neuronal cystatin C in neuronal injury-induced microglial activation and neurotoxicity. J Neurochem. 122:752–763. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Long-Smith CM, Sullivan AM and Nolan YM: The influence of microglia on the pathogenesis of Parkinson’s disease. Prog Neurobiol. 89:277–287. 2009.

13 

Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B and Hong JS: Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci. 20:6309–6316. 2000.PubMed/NCBI

14 

Whitton PS: Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol. 150:963–976. 2007.

15 

Crotty S, Fitzgerald P, Tuohy E, et al: Neuroprotective effects of novel phosphatidylglycerol-based phospholipids in the 6-hydroxydopamine model of Parkinson’s disease. Eur J Neurosci. 27:294–300. 2008.PubMed/NCBI

16 

Mirza B, Hadberg H, Thomsen P and Moos T: The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience. 95:425–432. 2000.PubMed/NCBI

17 

Hunot S, Vila M, Teismann P, et al: JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA. 101:665–670. 2004.PubMed/NCBI

18 

Arimoto T and Bing G: Up-regulation of inducible nitric oxide synthase in the substantia nigra by lipopolysaccharide causes microglial activation and neurodegeneration. Neurobiol Dis. 12:35–45. 2003. View Article : Google Scholar

19 

Bartosz G: Peroxynitrite: mediator of the toxic action of nitric oxide. Acta Biochim Pol. 43:645–659. 1996.PubMed/NCBI

20 

Orr CF, Rowe DB and Halliday GM: An inflammatory review of Parkinson’s disease. Prog Neurobiol. 68:325–340. 2002.

21 

Iravani MM, Leung CC, Sadeghian M, Haddon CO, Rose S and Jenner P: The acute and the long-term effects of nigral lipopolysaccharide administration on dopaminergic dysfunction and glial cell activation. Eur J Neurosci. 22:317–330. 2005. View Article : Google Scholar

22 

McLaughlin P, Zhou Y, Ma T, et al: Proteomic analysis of microglial contribution to mouse strain-dependent dopaminergic neurotoxicity. Glia. 53:567–582. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Wersinger C and Sidhu A: An inflammatory pathomechanism for Parkinson’s disease? Curr Med Chem. 13:591–602. 2006.

24 

Stoll G, Jander S and Schroeter M: Cytokines in CNS disorders: neurotoxicity versus neuroprotection. J Neural Transm Suppl. 59:81–89. 2000.PubMed/NCBI

25 

Wang DD and Bordey A: The astrocyte odyssey. Prog Neurobiol. 86:342–367. 2008.

26 

Vila M, Jackson-Lewis V, Guégan C, et al: The role of glial cells in Parkinson’s disease. Curr Opin Neurol. 14:483–489. 2001.

27 

Ortinski PI, Dong J, Mungenast A, et al: Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat Neurosci. 13:584–591. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Mythri RB, Venkateshappa C, Harish G, et al: Evaluation of markers of oxidative stress, antioxidant function and astrocytic proliferation in the striatum and frontal cortex of Parkinson’s disease brains. Neurochem Res. 36:1452–1463. 2011.PubMed/NCBI

29 

Aoki E, Yano R, Yokoyama H, Kato H and Araki T: Role of nuclear transcription factor kappa B (NF-kappaB) for MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine)-induced apoptosis in nigral neurons of mice. Exp Mol Pathol. 86:57–64. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Saura J, Parés M, Bové J, et al: Intranigral infusion of interleukin-1beta activates astrocytes and protects from subsequent 6-hydroxydopamine neurotoxicity. J Neurochem. 85:651–661. 2003. View Article : Google Scholar : PubMed/NCBI

31 

Bélanger M and Magistretti PJ: The role of astroglia in neuroprotection. Dialogues Clin Neurosci. 11:281–295. 2009.

32 

Sortwell CE, Daley BF, Pitzer MR, McGuire SO, Sladek JR Jr and Collier TJ: Oligodendrocyte-type 2 astrocyte-derived trophic factors increase survival of developing dopamine neurons through the inhibition of apoptotic cell death. J Comp Neurol. 426:143–153. 2000. View Article : Google Scholar

33 

Dong Y and Benveniste EN: Immune function of astrocytes. Glia. 36:180–190. 2001. View Article : Google Scholar : PubMed/NCBI

34 

Wang Q, Tang XN and Yenari MA: The inflammatory response in stroke. J Neuroimmunol. 184:53–68. 2007. View Article : Google Scholar

35 

Gomide V, Bibancos T and Chadi G: Dopamine cell morphology and glial cell hypertrophy and process branching in the nigrostriatal system after striatal 6-OHDA analyzed by specific sterological tools. Int J Neurosci. 115:557–582. 2005. View Article : Google Scholar

36 

Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H and Takahashi H: NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol. 99:14–20. 2000.PubMed/NCBI

37 

Benarroch EE: Oligodendrocytes: Susceptibility to injury and involvement in neurologic disease. Neurology. 72:1779–1785. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Khan O, Filippi M, Freedman MS, et al: Chronic cerebrospinal venous insufficiency and multiple sclerosis. Ann Neurol. 67:286–290. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Takagi S, Hayakawa N, Kimoto H, Kato H and Araki T: Damage to oligodendrocytes in the striatum after MPTP neurotoxicity in mice. J Neural Transm. 114:1553–1557. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Rosin C, Colombo S, Calver AA, Bates TE and Skaper SD: Dopamine D2 and D3 receptor agonists limit oligodendrocyte injury caused by glutamate oxidative stress and oxygen/glucose deprivation. Glia. 52:336–343. 2005. View Article : Google Scholar

41 

McTigue DM and Tripathi RB: The life, death, and replacement of oligodendrocytes in the adult CNS. J Neurochem. 107:1–19. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Kurkowska-Jastrzebska I, Bałkowiec-Iskra E, Ciesielska A, et al: Decreased inflammation and augmented expression of trophic factors correlate with MOG-induced neuroprotection of the injured nigrostriatal system in the murine MPTP model of Parkinson’s disease. Int Immunopharmacol. 9:781–791. 2009.

43 

Zhao C, Ling Z, Newman MB, Bhatia A and Carvey PM: TNF-alpha knockout and minocycline treatment attenuates blood-brain barrier leakage in MPTP-treated mice. Neurobiol Dis. 26:36–46. 2007. View Article : Google Scholar : PubMed/NCBI

44 

Pieper HC, Evert BO, Kaut O, Riederer PF, Waha A and Wüllner U: Different methylation of the TNF-alpha promoter in cortex and substantia nigra: Implications for selective neuronal vulnerability. Neurobiol Dis. 32:521–527. 2008. View Article : Google Scholar

45 

Rousselet E, Callebert J, Parain K, et al: Role of TNF-alpha receptors in mice intoxicated with the parkinsonian toxin MPTP. Exp Neurol. 177:183–192. 2002. View Article : Google Scholar : PubMed/NCBI

46 

Boka G, Anglade P, Wallach D, Javoy-Agid, et al: Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett. 172:151–154. 1994.PubMed/NCBI

47 

Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI and O’Callaghan JP: Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTP-induced neurotoxicity: role of TNF-alpha. FASEB J. 20:670–682. 2006. View Article : Google Scholar : PubMed/NCBI

48 

Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI and O’Callaghan JP: Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson’s disease. FASEB J. 16:1474–1476. 2002.PubMed/NCBI

49 

McCoy MK, Martinez TN, Ruhn KA, et al: Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson’s disease. J Neurosci. 26:9365–9375. 2006.

50 

Scalzo P, Kümmer A, Cardoso F and Teixeira AL: Serum levels of interleukin-6 are elevated in patients with Parkinson’s disease and correlate with physical performance. Neurosci Lett. 468:56–58. 2010.PubMed/NCBI

51 

Wu DC, Jackson-Lewis V, Vila M, et al: Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci. 22:1763–1771. 2002.PubMed/NCBI

52 

Ferrari CC, Pott Godoy MC, Tarelli R, Chertoff M, Depino AM and Pitossi FJ: Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. Neurobiol Dis. 24:183–193. 2006. View Article : Google Scholar : PubMed/NCBI

53 

Machado A, Herrera AJ, Venero JL, et al: inflammatory animal model for Parkinson’s disease: the intranigral injection of lps induced the inflammatory process along with the selective degeneration of nigrostriatal dopaminergic neurons. ISRN Neurol. 2011:4761582011.

54 

Sawada M, Imamura K and Nagatsu T: Role of cytokines in inflammatory process in Parkinson’s disease. J Neural Transm Suppl. 70:373–381. 2006.

55 

Nagatsu T and Sawada M: Inflammatory process in Parkinson’s disease: role for cytokines. Curr Pharm Des. 11:999–1016. 2005.

56 

Mount MP, Lira A, Grimes D, et al: Involvement of interferon-gamma in microglial-mediated loss of dopaminergic neurons. J Neurosci. 27:3328–3337. 2007. View Article : Google Scholar : PubMed/NCBI

57 

Litteljohn D, Mangano E, Shukla N and Hayley S: Interferon-gamma deficiency modifies the motor and co-morbid behavioral pathology and neurochemical changes provoked by the pesticide paraquat. Neuroscience. 164:1894–1906. 2009. View Article : Google Scholar

58 

Mogi M, Kondo T, Mizuno Y and Nagatsu T: p53 protein, interferon-gamma, and NF-kappaB levels are elevated in the parkinsonian brain. Neurosci Lett. 414:94–97. 2007. View Article : Google Scholar : PubMed/NCBI

59 

Chen H, O’Reilly EJ, Schwarzschild MA and Ascherio A: Peripheral inflammatory biomarkers and risk of Parkinson’s disease. Am J Epidemiol. 167:90–95. 2008.

60 

Gonzalez-Aparicio R, Flores JA and Fernandez-Espejo EE: Antiparkinsonian trophic action of glial cell line-derived neurotrophic factor and transforming growth factor beta1 is enhanced after co-infusion in rats. Exp Neurol. 226:136–147. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Rota E, Bellone G, Rocca P, Bergamasco B, Emanuelli G and Ferrero P: Increased intrathecal TGF-beta1, but not IL-12, IFN-gamma and IL-10 levels in Alzheimer’s disease patients. Neurol Sci. 27:33–39. 2006.

62 

Rentzos M, Nikolaou C, Andreadou E, et al: Circulating interleukin-10 and interleukin-12 in Parkinson’s disease. Acta Neurol Scand. 119:332–337. 2009.PubMed/NCBI

63 

Arimoto T, Choi DY, Lu X, et al: Interleukin-10 protects against inflammation-mediated degeneration of dopaminergic neurons in substantia nigra. Neurobiol Aging. 28:894–906. 2007. View Article : Google Scholar : PubMed/NCBI

64 

Qian L, Block ML, Wei SJ, et al: Interleukin-10 protects lipopolysaccharide-induced neurotoxicity in primary midbrain cultures by inhibiting the function of NADPH oxidase. J Pharmacol Exp Ther. 319:44–52. 2006. View Article : Google Scholar

65 

Sánchez-Capelo A, Colin P, Guibert B, Biguet NF and Mallet J: Transforming growth factor beta 1 overexpression in the nigrostriatal system increases the dopaminergic deficit of MPTP mice. Mol Cell Neurosci. 23:614–625. 2003.PubMed/NCBI

66 

Qian L, Wei SJ, Zhang D, et al: Potent anti-inflammatory and neuroprotective effects of TGF-beta 1 are mediated through the inhibition of ERK and p47PHOX-Ser345 phosphorylation and translocation in microglia. J Immunol. 181:660–668. 2008. View Article : Google Scholar : PubMed/NCBI

67 

Ross OA, O’Neill C, Rea IM, et al: Functional promoter region polymorphism of the proinflammatory chemokine IL-8 gene associates with Parkinson’s disease in the Irish. Hum Immunol. 65:340–346. 2004.PubMed/NCBI

68 

Nishimura M, Kuno S, Mizuta I, et al: Influence of monocyte chemoattractant protein 1 gene polymorphism on age at onset of sporadic Parkinson’s disease. Mov Disord. 18:953–955. 2003.PubMed/NCBI

69 

Shimoji M, Pagan F, Healton EB and Mocchetti I: CXCR4 and CXCL12 expression is increased in the nigro-striatal system of Parkinson’s disease. Neurotox Res. 16:318–328. 2009.PubMed/NCBI

70 

Edman LC, Mira H, Erices A, et al: Alpha-chemokines regulate proliferation, neurogenesis, and dopaminergic differentiation of ventral midbrain precursors and neurospheres. Stem Cells. 26:1891–1900. 2008. View Article : Google Scholar

71 

Tsai SJ, Chao CY and Yin MC: Preventive and therapeutic effects of caffeic acid against inflammatory injury in striatum of MPTP-treated mice. Eur J Pharmacol. 670:441–447. 2011. View Article : Google Scholar : PubMed/NCBI

72 

Wang Q, Zheng H, Zhang ZF and Zhang YX: Ginsenoside Rg1 modulates COX-2 expression in the substantia nigra of mice with MPTP-induced Parkinson disease through the P38 signaling pathway. Nan Fang Yi Ke Da Xue Xue Bao. 28:1594–1598. 2008.(In Chinese).

73 

Wang Y, Zhang Y, Wei Z, Li H, Zhou H and Zhang Z and Zhang Z: JNK inhibitor protects dopaminergic neurons by reducing COX-2 expression in the MPTP mouse model of subacute Parkinson’s disease. J Neurol Sci. 285:172–177. 2009.PubMed/NCBI

74 

Gupta A, Dhir A, Kumar A and Kulkarni SK: Protective effect of cyclooxygenase (COX)-inhibitors against drug-induced catatonia and MPTP-induced striatal lesions in rats. Pharmacol Biochem Behav. 94:219–226. 2009. View Article : Google Scholar : PubMed/NCBI

75 

Moghaddam HF, Hemmati A, Nazari Z, Mehrab H, Abid KM and Ardestani MS: Effects of aspirin and celecoxib on rigidity in a rat model of Parkinson’s disease. Pak J Biol Sci. 10:3853–3858. 2007.PubMed/NCBI

76 

Litteljohn D, Mangano EN and Hayley S: Cyclooxygenase-2 deficiency modifies the neurochemical effects, motor impairment and co-morbid anxiety provoked by paraquat administration in mice. Eur J Neurosci. 28:707–716. 2008. View Article : Google Scholar : PubMed/NCBI

77 

Hoang T, Choi DK, Nagai M, et al: Neuronal NOS and cyclooxygenase-2 contribute to DNA damage in a mouse model of Parkinson disease. Free Radic Biol Med. 47:1049–1056. 2009. View Article : Google Scholar : PubMed/NCBI

78 

McClain JA, Phillips LL and Fillmore HL: Increased MMP-3 and CTGF expression during lipopolysaccharide-induced dopaminergic neurodegeneration. Neurosci Lett. 460:27–31. 2009. View Article : Google Scholar

79 

Kim EM and Hwang O: Role of matrix metalloproteinase-3 in neurodegeneration. J Neurochem. 116:22–32. 2011. View Article : Google Scholar : PubMed/NCBI

80 

Shin EJ, Kim EM, Lee JA, Rhim H and Hwang O: Matrix metalloproteinase-3 is activated by HtrA2/Omi in dopaminergic cells: relevance to Parkinson’s disease. Neurochem Int. 60:249–256. 2012.PubMed/NCBI

81 

Kim YS, Kim SS, Cho JJ, et al: Matrix metalloproteinase-3: a novel signaling proteinase from apoptotic neuronal cells that activates microglia. J Neurosci. 25:3701–3711. 2005. View Article : Google Scholar : PubMed/NCBI

82 

Choi DH, Kim YJ, Kim YG, Joh TH, Beal MF and Kim YS: Role of matrix metalloproteinase 3-mediated alpha-synuclein cleavage in dopaminergic cell death. J Biol Chem. 286:14168–14177. 2011. View Article : Google Scholar : PubMed/NCBI

83 

Kim YS, Choi DH, Block ML, et al: A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation. FASEB J. 21:179–187. 2007. View Article : Google Scholar : PubMed/NCBI

84 

Choi DH, Kim EM, Son HJ, et al: A novel intracellular role of matrix metalloproteinase-3 during apoptosis of dopaminergic cells. J Neurochem. 106:405–415. 2008. View Article : Google Scholar : PubMed/NCBI

85 

Lorenzl S, Albers DS, Narr S, Chirichigno J and Beal MF: Expression of MMP-2, MMP-9, and MMP-1 and their endogenous counterregulators TIMP-1 and TIMP-2 in postmortem brain tissue of Parkinson’s disease. Exp Neurol. 178:13–20. 2002.PubMed/NCBI

86 

Lorenzl S, Calingasan N, Yang L, et al: Matrix metalloproteinase-9 is elevated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Neuromolecular Med. 5:119–132. 2004. View Article : Google Scholar : PubMed/NCBI

87 

Nomura N, Miyajima N, Sazuka T, et al: Prediction of the coding sequences of unidentified human genes. I The coding sequences of 40 new genes (KIAA0001-KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG-1 (supplement). DNA Res. 1:47–56. 1994. View Article : Google Scholar

88 

Tabeta K, Georgel P, Janssen E, et al: Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci USA. 101:3516–3521. 2004. View Article : Google Scholar : PubMed/NCBI

89 

Atkinson TJ: Toll-like receptors, transduction-effector pathways, and disease diversity: evidence of an immunobiological paradigm explaining all human illness? Int Rev Immunol. 27:255–281. 2008. View Article : Google Scholar

90 

Bsibsi M, Ravid R, Gveric D and van Noort JM: Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol. 61:1013–1021. 2002.PubMed/NCBI

91 

Lehnardt S, Massillon L, Follett P, et al: Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA. 100:8514–8519. 2003. View Article : Google Scholar : PubMed/NCBI

92 

Panaro MA, Lofrumento DD, Saponaro C, et al: Expression of TLR4 and CD14 in the central nervous system (CNS) in a MPTP mouse model of Parkinson’s-like disease. Immunopharmacol Immunotoxicol. 30:729–740. 2008.PubMed/NCBI

93 

Noelker C, Morel L, Lescot T, et al: Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease. Sci Rep. 3:13932013. View Article : Google Scholar : PubMed/NCBI

94 

Kim C, Ho DH, Suk JE, et al: Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun. 4:15622013.PubMed/NCBI

95 

Letiembre M, Liu Y, Walter S, et al: Screening of innate immune receptors in neurodegenerative diseases: a similar pattern. Neurobiol Aging. 30:759–768. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Groemping Y and Rittinger K: Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J. 386:401–416. 2005. View Article : Google Scholar : PubMed/NCBI

97 

Babior BM: NADPH oxidase: an update. Blood. 93:1464–1476. 1999.PubMed/NCBI

98 

Anantharam V, Kaul S, Song C, Kanthasamy A and Kanthasamy AG: Pharmacological inhibition of neuronal NADPH oxidase protects against 1-methyl-4-phenylpyridinium (MPP+)-induced oxidative stress and apoptosis in mesencephalic dopaminergic neuronal cells. Neurotoxicology. 28:988–997. 2007. View Article : Google Scholar

99 

Cristóvão AC, Choi DH, Baltazar G, Beal MF and Kim YS: The role of NADPH oxidase 1-derived reactive oxygen species in paraquat-mediated dopaminergic cell death. Antioxid Redox Signal. 11:2105–2118. 2009.PubMed/NCBI

100 

Wu DC, Teismann P, Tieu K, et al: NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA. 100:6145–6150. 2003.

101 

Liangliang X, Yonghui H, Shunmei E, Shoufang G, Wei Z and Jiangying Z: Dominant-positive HSF1 decreases alpha-synuclein level and alpha-synuclein-induced toxicity. Mol Biol Rep. 37:1875–1881. 2010. View Article : Google Scholar : PubMed/NCBI

102 

Benn SC and Woolf CJ: Adult neuron survival strategies - slamming on the brakes. Nat Rev Neurosci. 5:686–700. 2004. View Article : Google Scholar : PubMed/NCBI

103 

Meriin AB and Sherman MY: Role of molecular chaperones in neurodegenerative disorders. Int J Hyperthermia. 21:403–419. 2005. View Article : Google Scholar : PubMed/NCBI

104 

Auluck PK, Chan HY, Trojanowski JQ, Lee VM and Bonini NM: Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science. 295:865–868. 2002.PubMed/NCBI

105 

Tantucci M, Mariucci G, Taha E, et al: Induction of heat shock protein 70 reduces the alteration of striatal electrical activity caused by mitochondrial impairment. Neuroscience. 163:735–740. 2009. View Article : Google Scholar : PubMed/NCBI

106 

Pan T, Li X, Xie W, Jankovic J and Le W: Valproic acid-mediated Hsp70 induction and anti-apoptotic neuroprotection in SH-SY5Y cells. FEBS Lett. 579:6716–6720. 2005. View Article : Google Scholar : PubMed/NCBI

107 

Shen HY, He JC, Wang Y, Huang QY and Chen JF: Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice. J Biol Chem. 280:39962–39969. 2005. View Article : Google Scholar : PubMed/NCBI

108 

Dedmon MM, Christodoulou J, Wilson MR and Dobson CM: Heat shock protein 70 inhibits alpha-synuclein fibril formation via preferential binding to prefibrillar species. J Biol Chem. 280:14733–14740. 2005. View Article : Google Scholar : PubMed/NCBI

109 

Liu M, Aneja R, Sun X, et al: Parkin regulates Eg5 expression by Hsp70 ubiquitination-dependent inactivation of c-Jun NH2-terminal kinase. J Biol Chem. 283:35783–35788. 2008. View Article : Google Scholar : PubMed/NCBI

110 

Uryu K, Richter-Landsberg C, Welch W, et al: Convergence of heat shock protein 90 with ubiquitin in filamentous alpha-synuclein inclusions of alpha-synucleinopathies. Am J Pathol. 168:947–961. 2006. View Article : Google Scholar : PubMed/NCBI

111 

Calabrese V, Mancuso C, Ravagna A, et al: In vivo induction of heat shock proteins in the substantia nigra following L-DOPA administration is associated with increased activity of mitochondrial complex I and nitrosative stress in rats: regulation by glutathione redox state. J Neurochem. 101:709–717. 2007. View Article : Google Scholar

112 

Kulathingal J, Ko LW, Cusack B and Yen SH: Proteomic profiling of phosphoproteins and glycoproteins responsive to wild-type alpha-synuclein accumulation and aggregation. Biochim Biophys Acta. 1794:211–224. 2009. View Article : Google Scholar : PubMed/NCBI

113 

Wang L, Xie C, Greggio E, et al: The chaperone activity of heat shock protein 90 is critical for maintaining the stability of leucine-rich repeat kinase 2. J Neurosci. 28:3384–3391. 2008. View Article : Google Scholar : PubMed/NCBI

114 

Liu J, Zhang JP, Shi M, et al: Rab11a and HSP90 regulate recycling of extracellular alpha-synuclein. J Neurosci. 29:1480–1485. 2009. View Article : Google Scholar : PubMed/NCBI

115 

Cassarino DS, Halvorsen EM, Swerdlow RH, et al: Interaction among mitochondria, mitogen-activated protein kinases, and nuclear factor-kappaB in cellular models of Parkinson’s disease. J Neurochem. 74:1384–1392. 2000.PubMed/NCBI

116 

Wilms H, Rosenstiel P, Sievers J, Deuschl G, Zecca L and Lucius R: Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. FASEB J. 17:500–502. 2003.PubMed/NCBI

117 

Yang HJ, Wang L, Xia YY, Chang PN and Feng ZW: NF-kappaB mediates MPP+ induced apoptotic cell death in neuroblastoma cells SH-EP1 through JNK and c-Jun/AP-1. Neurochem Int. 56:128–134. 2010. View Article : Google Scholar : PubMed/NCBI

118 

Panet H, Barzilai A, Daily D, Melamed E and Offen D: Activation of nuclear transcription factor kappa B (NF-kappaB) is essential for dopamine-induced apoptosis in PC12 cells. J Neurochem. 77:391–398. 2001. View Article : Google Scholar : PubMed/NCBI

119 

Wang X, Qin ZH, Leng Y, et al: Prostaglandin A1 inhibits rotenone-induced apoptosis in SH-SY5Y cells. J Neurochem. 83:1094–1102. 2002. View Article : Google Scholar : PubMed/NCBI

120 

Weingarten P, Bermak J and Zhou QY: Evidence for non-oxidative dopamine cytotoxicity: potent activation of NF-kappa B and lack of protection by anti-oxidants. J Neurochem. 76:1794–1804. 2001. View Article : Google Scholar : PubMed/NCBI

121 

Kenchappa RS and Ravindranath V: Glutaredoxin is essential for maintenance of brain mitochondrial complex I: studies with MPTP. FASEB J. 17:717–719. 2003.PubMed/NCBI

122 

Liang ZQ, Li YL, Zhao XL, et al: NF-kappaB contributes to 6-hydroxydopamine-induced apoptosis of nigral dopaminergic neurons through p53. Brain Res. 1145:190–203. 2007. View Article : Google Scholar : PubMed/NCBI

123 

Williams CA, Lin Y, Maynard A and Cheng SY: Involvement of NF kappa B in potentiated effect of mn-containing dithiocarbamates on MPP(+) induced cell death. Cell Mol Neurobiol. 33:815–823. 2013. View Article : Google Scholar : PubMed/NCBI

124 

Pranski E, Van Sanford CD, Dalal N, et al: NF-κB activity is inversely correlated to RNF11 expression in Parkinson’s disease. Neurosci Lett. 547:16–20. 2013.

125 

Dehmer T, Heneka MT, Sastre M, Dichgans J and Schulz JB: Protection by pioglitazone in the MPTP model of Parkinson’s disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS activation. J Neurochem. 88:494–501. 2004.PubMed/NCBI

126 

Ghosh A, Roy A, Liu X, et al: Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA. 104:18754–18759. 2007.PubMed/NCBI

127 

Soós J, Engelhardt JI, Siklós L, Havas L and Majtényi K: The expression of PARP, NF-kappa B and parvalbumin is increased in Parkinson disease. Neuroreport. 15:1715–1718. 2004.PubMed/NCBI

128 

Cao JP, Wang HJ, Yu JK, Liu HM and Gao DS: The involvement of NF-kappaB p65/p52 in the effects of GDNF on DA neurons in early PD rats. Brain Res Bull. 76:505–511. 2008. View Article : Google Scholar : PubMed/NCBI

129 

Wang J, Du XX, Jiang H and Xie JX: Curcumin attenuates 6-hydroxydopamine-induced cytotoxicity by anti-oxidation and nuclear factor-kappa B modulation in MES23.5 cells. Biochem Pharmacol. 78:178–183. 2009. View Article : Google Scholar : PubMed/NCBI

130 

Bonifati V, Rizzu P, Squitieri F, et al: DJ-1 (PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol Sci. 24:159–160. 2003. View Article : Google Scholar : PubMed/NCBI

131 

Taira T, Saito Y, Niki T, Iguchi-Ariga SM, Takahashi K and Ariga H: DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep. 5:213–218. 2004. View Article : Google Scholar : PubMed/NCBI

132 

Inden M, Taira T, Kitamura Y, et al: PARK7 DJ-1 protects against degeneration of nigral dopaminergic neurons in Parkinson’s disease rat model. Neurobiol Dis. 24:144–158. 2006.PubMed/NCBI

133 

Yanagida T, Takata K, Inden M, et al: Distribution of DJ-1, Parkinson’s disease-related protein PARK7, and its alteration in 6-hydroxydopamine-treated hemiparkinsonian rat brain. J Pharmacol Sci. 102:243–247. 2006.

134 

Yanagisawa D, Kitamura Y, Inden M, et al: DJ-1 protects against neurodegeneration caused by focal cerebral ischemia and reperfusion in rats. J Cereb Blood Flow Metab. 28:563–578. 2008. View Article : Google Scholar : PubMed/NCBI

135 

Zhou W and Freed CR: DJ-1 up-regulates glutathione synthesis during oxidative stress and inhibits A53T alpha-synuclein toxicity. J Biol Chem. 280:43150–43158. 2005. View Article : Google Scholar : PubMed/NCBI

136 

Lavara-Culebras E and Paricio N: Drosophila DJ-1 mutants are sensitive to oxidative stress and show reduced lifespan and motor deficits. Gene. 400:158–165. 2007. View Article : Google Scholar : PubMed/NCBI

137 

Andres-Mateos E, Perier C, Zhang L, et al: DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc Natl Acad Sci USA. 104:14807–14812. 2007. View Article : Google Scholar

138 

Goldberg MS, Pisani A, Haburcak M, et al: Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron. 45:489–496. 2005. View Article : Google Scholar

139 

Kim RH, Smith PD, Aleyasin H, et al: Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci USA. 102:5215–5220. 2005. View Article : Google Scholar

140 

Chen L, Cagniard B, Mathews T, et al: Age-dependent motor deficits and dopaminergic dysfunction in DJ-1 null mice. J Biol Chem. 280:21418–21426. 2005. View Article : Google Scholar

141 

Yamaguchi H and Shen J: Absence of dopaminergic neuronal degeneration and oxidative damage in aged DJ-1-deficient mice. Mol Neurodegener. 2:102007. View Article : Google Scholar : PubMed/NCBI

142 

Waak J, Weber SS, Görner K, et al: Oxidizable residues mediating protein stability and cytoprotective interaction of DJ-1 with apoptosis signal-regulating kinase 1. J Biol Chem. 284:14245–14257. 2009. View Article : Google Scholar

143 

Chandran JS, Lin X, Zapata A, et al: Progressive behavioral deficits in DJ-1-deficient mice are associated with normal nigrostriatal function. Neurobiol Dis. 29:505–514. 2008. View Article : Google Scholar

144 

Mullett SJ, Hamilton RL and Hinkle DA: DJ-1 immunoreactivity in human brain astrocytes is dependent on infarct presence and infarct age. Neuropathology. 29:125–131. 2009. View Article : Google Scholar : PubMed/NCBI

145 

Mullett SJ and Hinkle DA: DJ-1 knock-down in astrocytes impairs astrocyte-mediated neuroprotection against rotenone. Neurobiol Dis. 33:28–36. 2009. View Article : Google Scholar : PubMed/NCBI

146 

Kang WY, Yang Q, Jiang XF, et al: Salivary DJ-1 could be an indicator of Parkinson’s disease progression. Front Aging Neurosci. 6:1022014.PubMed/NCBI

147 

Shadrach KG, Rayborn ME, Hollyfield JG and Bonilha VL: DJ-1-dependent regulation of oxidative stress in the retinal pigment epithelium (RPE). PLoS One. 8:e679832013. View Article : Google Scholar : PubMed/NCBI

148 

Liu F, Nguyen JL, Hulleman JD, Li L and Rochet JC: Mechanisms of DJ-1 neuroprotection in a cellular model of Parkinson’s disease. J Neurochem. 105:2435–2453. 2008.PubMed/NCBI

149 

Neumann M, Müller V, Görner K, Kretzschmar HA, Haass C and Kahle PJ: Pathological properties of the Parkinson’s disease-associated protein DJ-1 in alpha-synucleinopathies and tauopathies: relevance for multiple system atrophy and Pick’s disease. Acta Neuropathol. 107:489–496. 2004.

150 

Waragai M, Wei J, Fujita M, et al: Increased level of DJ-1 in the cerebrospinal fluids of sporadic Parkinson’s disease. Biochem Biophys Res Commun. 345:967–972. 2006.PubMed/NCBI

151 

Kumaran R, Vandrovcova J, Luk C, et al: Differential DJ-1 gene expression in Parkinson’s disease. Neurobiol Dis. 36:393–400. 2009.

152 

Nural H, He P, Beach T, Sue L, Xia W and Shen Y: Dissembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson’s disease patients. Mol Neurodegener. 4:232009.

153 

Xie Z, Zhuang X and Chen L: DJ-1 mRNA anatomical localization and cell type identification in the mouse brain. Neurosci Lett. 465:214–219. 2009. View Article : Google Scholar : PubMed/NCBI

154 

Lev N, Roncevic D, Ickowicz D, Melamed E and Offen D: Role of DJ-1 in Parkinson’s disease. J Mol Neurosci. 29:215–225. 2006.

155 

Lev N, Ickowicz D, Barhum Y, Lev S, Melamed E and Offen D: DJ-1 protects against dopamine toxicity. J Neural Transm. 116:151–160. 2009. View Article : Google Scholar : PubMed/NCBI

156 

Pei L, Castrillo A and Tontonoz P: Regulation of macrophage inflammatory gene expression by the orphan nuclear receptor Nur77. Mol Endocrinol. 20:786–794. 2006. View Article : Google Scholar : PubMed/NCBI

157 

Doi Y, Oki S, Ozawa T, Hohjoh H, Miyake S and Yamamura T: Orphan nuclear receptor NR4A2 expressed in T cells from multiple sclerosis mediates production of inflammatory cytokines. Proc Natl Acad Sci USA. 105:8381–8386. 2008. View Article : Google Scholar : PubMed/NCBI

158 

Pei L, Castrillo A, Chen M, Hoffmann A and Tontonoz P: Induction of NR4A orphan nuclear receptor expression in macrophages in response to inflammatory stimuli. J Biol Chem. 280:29256–29262. 2005. View Article : Google Scholar : PubMed/NCBI

159 

Maheux J, Ethier I, Rouillard C and Lévesque D: Induction patterns of transcription factors of the nur family (nurr1, nur77, and nor-1) by typical and atypical antipsychotics in the mouse brain: implication for their mechanism of action. J Pharmacol Exp Ther. 313:460–473. 2005. View Article : Google Scholar

160 

Gilbert F, Morissette M, St-Hilaire M, et al: Nur77 gene knockout alters dopamine neuron biochemical activity and dopamine turnover. Biol Psychiatry. 60:538–547. 2006. View Article : Google Scholar : PubMed/NCBI

161 

Jankovic J, Chen S and Le WD: The role of Nurr1 in the development of dopaminergic neurons and Parkinson’s disease. Prog Neurobiol. 77:128–138. 2005.

162 

Pan T, Zhu W, Zhao H, et al: Nurr1 deficiency predisposes to lactacystin-induced dopaminergic neuron injury in vitro and in vivo. Brain Res. 1222:222–229. 2008. View Article : Google Scholar : PubMed/NCBI

163 

Fan X, Luo G, Ming M, et al: Nurr1 expression and its modulation in microglia. Neuroimmunomodulation. 16:162–170. 2009. View Article : Google Scholar : PubMed/NCBI

164 

Bensinger SJ and Tontonoz P: A Nurr1 pathway for neuroprotection. Cell. 137:26–28. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yan J, Fu Q, Cheng L, Zhai M, Wu W, Huang L and Du G: Inflammatory response in Parkinson's disease (Review). Mol Med Rep 10: 2223-2233, 2014.
APA
Yan, J., Fu, Q., Cheng, L., Zhai, M., Wu, W., Huang, L., & Du, G. (2014). Inflammatory response in Parkinson's disease (Review). Molecular Medicine Reports, 10, 2223-2233. https://doi.org/10.3892/mmr.2014.2563
MLA
Yan, J., Fu, Q., Cheng, L., Zhai, M., Wu, W., Huang, L., Du, G."Inflammatory response in Parkinson's disease (Review)". Molecular Medicine Reports 10.5 (2014): 2223-2233.
Chicago
Yan, J., Fu, Q., Cheng, L., Zhai, M., Wu, W., Huang, L., Du, G."Inflammatory response in Parkinson's disease (Review)". Molecular Medicine Reports 10, no. 5 (2014): 2223-2233. https://doi.org/10.3892/mmr.2014.2563
Copy and paste a formatted citation
x
Spandidos Publications style
Yan J, Fu Q, Cheng L, Zhai M, Wu W, Huang L and Du G: Inflammatory response in Parkinson's disease (Review). Mol Med Rep 10: 2223-2233, 2014.
APA
Yan, J., Fu, Q., Cheng, L., Zhai, M., Wu, W., Huang, L., & Du, G. (2014). Inflammatory response in Parkinson's disease (Review). Molecular Medicine Reports, 10, 2223-2233. https://doi.org/10.3892/mmr.2014.2563
MLA
Yan, J., Fu, Q., Cheng, L., Zhai, M., Wu, W., Huang, L., Du, G."Inflammatory response in Parkinson's disease (Review)". Molecular Medicine Reports 10.5 (2014): 2223-2233.
Chicago
Yan, J., Fu, Q., Cheng, L., Zhai, M., Wu, W., Huang, L., Du, G."Inflammatory response in Parkinson's disease (Review)". Molecular Medicine Reports 10, no. 5 (2014): 2223-2233. https://doi.org/10.3892/mmr.2014.2563
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team