Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December-2014 Volume 10 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2014 Volume 10 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Quercetin reversed lipopolysaccharide-induced inhibition of osteoblast differentiation through the mitogen‑activated protein kinase pathway in MC3T3-E1 cells

  • Authors:
    • Xin-Chun Wang
    • Nzhi-Jun Zhao
    • Chun Guo
    • Jing-Tao Chen
    • Jin-Ling Song
    • Li Gao
  • View Affiliations / Copyright

    Affiliations: Pharmaceutical Department, First Affiliated Hospital, Henan University, Kaifeng, Henan 47500, P.R. China, Department of Medicine, Luohe Medical College, Luohe, Henan 462002, P.R. China
  • Pages: 3320-3326
    |
    Published online on: October 14, 2014
       https://doi.org/10.3892/mmr.2014.2633
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Quercetin, a flavonoid found in onions and other vegetables, has potential inhibitory effects on bone resorption in vivo and in vitro. In our previous study it was identified that quercetin triggered the apoptosis of lipopolysaccharide (LPS)‑induced osteoclasts and inhibited bone resorption. Currently, little information is available detailing the effect of quercetin on osteoblast differentiation and bone formation in bacteria‑induced inflammatory diseases. The present study aimed to investigate the effect of quercetin on osteoblast differentiation in MC3T3‑E1 osteoblasts stimulated with LPS. LPS significantly downregulated the mRNA expression of osteoblast‑related genes in the MC3T3‑E1 cells. By contrast, quercetin significantly restored the LPS‑suppressed mRNA expression of osteoblast‑related genes in a dose‑dependent manner. Quercetin also restored the protein expression of Osterix in MC3T3‑E1 cells suppressed by LPS. Furthermore, quercetin selectively triggered the activation of the mitogen‑activated protein kinase (MAPK) pathway by enhancing the expression of extracellular signal-regulated kinase and reducing the expression of c‑Jun N‑terminal kinase. These data suggest that quercetin reversed the inhibition of osteoblast differentiation induced by LPS through MAPK signaling. These findings suggest that quercetin may be of potential use as a therapeutic agent to restore osteoblast function in bacteria‑induced bone diseases.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Roodman GD: Advances in bone biology: the osteoclast. Endocr Rev. 17:308–332. 1996.PubMed/NCBI

2 

Nair SP, Meghji S, Wilson M, et al: Bacterially induced bone destruction: Mechanisms and misconceptions. Infect Immun. 64:2371–2380. 1996.PubMed/NCBI

3 

Orcel P, Feuga M, Bielakoff J and De Vernejoul MC: Local bone injections of LPS and M-CSF increase bone resorption by different pathways in vivo in rats. Am J Physiol. 264:E391–E397. 1993.PubMed/NCBI

4 

Chiang CY, Kyritsis G, Graves DT and Amar S: Interleukin-1 and tumor necrosis factor activities partially account for calvarial bone resorption induced by local injection of lipopolysaccharide. Infect Immun. 67:4231–4236. 1999.

5 

Itoh K, Udagawa N, Kobayashi K, et al: Lipopolysaccharide promotes the survival of osteoclasts via Toll-like receptor 4, but cytokine production of osteoclasts in response to lipopolysaccharide is different from that of macrophages. J Immunol. 170:3688–3695. 2003. View Article : Google Scholar

6 

Islam S, Hassan F, Tumurkhuu G, et al: Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells. Biochem Biophys Res Commun. 360:346–351. 2007. View Article : Google Scholar : PubMed/NCBI

7 

Mörmann M, Thederan M, Nackchbandi I, et al: Lipopolysaccharides (LPS) induce the differentiation of human monocytes to osteoclasts in a tumour necrosis factor (TNF) alpha-dependent manner: a link between infection and pathological bone resorption. Mol Immunol. 45:3330–3337. 2008.PubMed/NCBI

8 

Zou W and Bar-Shavit Z: Dual modulation of osteoclast differentiation by lipopolysaccharide. J Bone Miner Res. 17:1211–1218. 2002. View Article : Google Scholar : PubMed/NCBI

9 

Kadono H, Kido J, Kataoka M, et al: Inhibition of osteoblastic cell differentiation by lipopolysaccharide extract from Porphyromonas gingivalis. Infect Immun. 67:2841–2846. 1999.PubMed/NCBI

10 

Xing Q, Ye Q, Fan M, et al: Porphyromonas gingivalis lipopolysaccharide inhibits the osteoblastic differentiation of preosteoblasts by activating Notch 1 signaling. J Cell Physiol. 225:106–114. 2010. View Article : Google Scholar

11 

Bandow K, Maeda A, Kakimoto K, et al: Molecular mechanisms of the inhibitory effect of lipopolysaccharide (LPS) on osteoblast differentiation. Biochem Biophys Res Commun. 402:755–761. 2010. View Article : Google Scholar

12 

Ochi H, Hara Y, Tagawa M, et al: The roles of TNFR1 in lipopolysaccharide-induced bone loss: dual effects of TNFR1 on bone metabolism via osteoclastogenesis and osteoblast survival. J Orthop Res. 28:657–663. 2010.PubMed/NCBI

13 

Wattel A, Kamel S, Mentaverri R, et al: Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitro osteoclastic bone resorption. Biochem Pharmacol. 65:35–42. 2003. View Article : Google Scholar

14 

Woo JT, Nakagawa H, Notoya M, et al: Quercetin suppresses bone resorption by inhibiting the differentiation and activation of osteoclasts. Biol Pharm Bull. 27:504–509. 2004. View Article : Google Scholar : PubMed/NCBI

15 

Siddiqui JA, Swarnkar G, Sharan K, et al: A naturally occurring rare analog of quercetin promotes peak bone mass achievement and exerts anabolic effect on osteoporotic bone. Osteoporos Int. 22:3013–3027. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Prouillet C, Mazière JC, Mazière C, et al: Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochem Pharmacol. 67:1307–1313. 2004. View Article : Google Scholar

17 

Notoya M, Tsukamoto Y, Nishimura H, et al: Quercetin, a flavonoid, inhibits the proliferation, differentiation, and mineralization of osteoblasts in vitro. Eur J Pharmacol. 485:89–96. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Matsuguchi T, Chiba N, Bandow K, et al: JNK activity is essential for Atf4 expression and late-stage osteoblast differentiation. J Bone Miner Res. 24:398–410. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Gutiérrez-Venegas G, Jiménez-Estrada M and Maldonado S: The effect of flavonoids on transduction mechanisms in lipopolysaccharide-treated human gingival fibroblasts. Int Immunopharmacol. 7:1199–1210. 2007.PubMed/NCBI

20 

Guo C, Hou GQ, Li XD, et al: Quercetin triggers apoptosis of lipopolysaccharide (LPS)-induced osteoclasts and inhibits bone resorption in RAW264.7 cells. Cell Physiol Biochem. 30:123–136. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.

22 

Kim HK, Cho SG, Kim JH, et al: Mevinolin enhances osteogenic genes (ALP, type I collagen and osteocalcin), CD44, CD47 and CD51 expression during osteogenic differentiation. Life Sci. 84:290–295. 2009. View Article : Google Scholar

23 

Thunyakitpisal P, Alvarez M, Tokunaga K, et al: Cloning and functional analysis of a family of nuclear matrix transcription factors (NP/NMP4) that regulate type I collagen expression in osteoblasts. J Bone Miner Res. 16:10–23. 2001. View Article : Google Scholar

24 

Kern B, Shen J, Starbuck M and Karsenty G: Cbfa1 contributes to the osteoblast-specific expression of type I collagen genes. J Biol Chem. 276:7101–7107. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Komori T, Yagi H, Nomura S, et al: Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 89:755–764. 1997. View Article : Google Scholar

26 

Nakashima K, Zhou X, Kunkel G, et al: The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 108:17–29. 2002. View Article : Google Scholar

27 

Fu H, Doll B, McNelis T and Hollinger JO: Osteoblast differentiation in vitro and in vivo promoted by Osterix. J Biomed Mater Res A. 83:770–778. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Kurata H, Guillot PV, Chan J and Fisk NM: Osterix induces osteogenic gene expression but not differentiation in primary human fetal mesenchymal stem cells. Tissue Eng. 13:1513–1523. 2007. View Article : Google Scholar : PubMed/NCBI

29 

Pearson G, Robinson F, Beers Gibson T, et al: Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 22:153–183. 2001.PubMed/NCBI

30 

Xia Z, Dickens M, Raingeaud J, et al: Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 270:1326–1331. 1995. View Article : Google Scholar : PubMed/NCBI

31 

Fister S, Günthert AR, Aicher B, et al: GnRH-II antagonists induce apoptosis in human endometrial, ovarian, and breast cancer cells via activation of stress-induced MAPKs p38 and JNK and proapoptotic protein Bax. Cancer Res. 69:6473–6481. 2009. View Article : Google Scholar

32 

Park GB, Kim YS, Lee HK, et al: Endoplasmic reticulum stress-mediated apoptosis of EBV-transformed B cells by cross-linking of CD70 is dependent upon generation of reactive oxygen species and activation of p38 MAPK and JNK pathway. J Immunol. 185:7274–7284. 2010. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang X, Zhao N, Guo C, Chen J, Song J and Gao L: Quercetin reversed lipopolysaccharide-induced inhibition of osteoblast differentiation through the mitogen‑activated protein kinase pathway in MC3T3-E1 cells. Mol Med Rep 10: 3320-3326, 2014.
APA
Wang, X., Zhao, N., Guo, C., Chen, J., Song, J., & Gao, L. (2014). Quercetin reversed lipopolysaccharide-induced inhibition of osteoblast differentiation through the mitogen‑activated protein kinase pathway in MC3T3-E1 cells. Molecular Medicine Reports, 10, 3320-3326. https://doi.org/10.3892/mmr.2014.2633
MLA
Wang, X., Zhao, N., Guo, C., Chen, J., Song, J., Gao, L."Quercetin reversed lipopolysaccharide-induced inhibition of osteoblast differentiation through the mitogen‑activated protein kinase pathway in MC3T3-E1 cells". Molecular Medicine Reports 10.6 (2014): 3320-3326.
Chicago
Wang, X., Zhao, N., Guo, C., Chen, J., Song, J., Gao, L."Quercetin reversed lipopolysaccharide-induced inhibition of osteoblast differentiation through the mitogen‑activated protein kinase pathway in MC3T3-E1 cells". Molecular Medicine Reports 10, no. 6 (2014): 3320-3326. https://doi.org/10.3892/mmr.2014.2633
Copy and paste a formatted citation
x
Spandidos Publications style
Wang X, Zhao N, Guo C, Chen J, Song J and Gao L: Quercetin reversed lipopolysaccharide-induced inhibition of osteoblast differentiation through the mitogen‑activated protein kinase pathway in MC3T3-E1 cells. Mol Med Rep 10: 3320-3326, 2014.
APA
Wang, X., Zhao, N., Guo, C., Chen, J., Song, J., & Gao, L. (2014). Quercetin reversed lipopolysaccharide-induced inhibition of osteoblast differentiation through the mitogen‑activated protein kinase pathway in MC3T3-E1 cells. Molecular Medicine Reports, 10, 3320-3326. https://doi.org/10.3892/mmr.2014.2633
MLA
Wang, X., Zhao, N., Guo, C., Chen, J., Song, J., Gao, L."Quercetin reversed lipopolysaccharide-induced inhibition of osteoblast differentiation through the mitogen‑activated protein kinase pathway in MC3T3-E1 cells". Molecular Medicine Reports 10.6 (2014): 3320-3326.
Chicago
Wang, X., Zhao, N., Guo, C., Chen, J., Song, J., Gao, L."Quercetin reversed lipopolysaccharide-induced inhibition of osteoblast differentiation through the mitogen‑activated protein kinase pathway in MC3T3-E1 cells". Molecular Medicine Reports 10, no. 6 (2014): 3320-3326. https://doi.org/10.3892/mmr.2014.2633
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team