|
1
|
Schwartz PJ, Stramba-Badiale M, Crotti L,
et al: Prevalence of the congenital long-QT syndrome. Circulation.
120:1761–1740. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Nader A, Massumi A, Cheng J and Razavi M:
Inherited arrhythmic disorders: long QT and Brugada syndromes. Tex
Heart Inst J. 34:67–75. 2007.PubMed/NCBI
|
|
3
|
Obeyesekere MN, Klein GJ, Modi S, et al:
How to perform and interpret provocative testing for the diagnosis
of Brugada syndrome, long-QT syndrome, and catecholaminergic
polymorphic ventricular tachycardia. Circ Arrhythm Electrophysiol.
4:958–964. 2011. View Article : Google Scholar
|
|
4
|
Bartos DC, Duchatelet S, Burgess DE, et
al: R231C mutation in KCNQ1 causes long QT syndrome type 1 and
familial atrial fibrillation. Heart Rhythm. 8:48–55. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Chen YH, Xu SJ, Bendahhou S, et al: KCNQ1
gain-of-function mutation in familial atrial fibrillation. Science.
299:251–254. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Tester DJ and Ackerman MJ: Genetic testing
for potentially lethal, highly treatable inherited
cardiomyopathies/channelopathies in clinical practice. Circulation.
123:1021–1037. 2011. View Article : Google Scholar
|
|
7
|
Antzelevitch C and Yan GX: J wave
syndromes. Heart Rhythm. 7:549–558. 2010. View Article : Google Scholar
|
|
8
|
Antzelevitch C, Yan GX and Viskin S:
Rationale for the use of the terms J-wave syndromes and early
repolarization. J Am Coll Cardiol. 57:1587–1590. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Antzelevitch C: Genetic, molecular and
cellular mechanisms underlying the J wave syndromes. Circ J.
76:1054–1065. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hayashi M, Denjoy I, Extramiana F, et al:
Incidence and risk factors of arrhythmic events in
catecholaminergic polymorphic ventricular tachycardia. Circulation.
119:2426–2434. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Leenhardt A, Lucet V, Denjoy I, Grau F,
Ngoc DD and Coumel P: Catecholaminergic polymorphic
ventricular-tachycardia in children. A 7-year follow-up of 21
patients. Circulation. 91:1512–1519. 1995.PubMed/NCBI
|
|
12
|
Itzhaki I, Maizels L, Huber I, et al:
Modeling of catecholaminergic polymorphic ventricular tachycardia
with patient-specific human-induced pluripotent stem cells. J Am
Coll Cardiol. 60:990–1000. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Laitinen PJ, Brown KM, Piippo K, et al:
Mutations of the cardiac ryanodine receptor (RyR2) gene in familial
polymorphic ventricular tachycardia. Circulation. 103:485–490.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Priori SG, Napolitano C, Tiso N, et al:
Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie
catecholaminergic polymorphic ventricular tachycardia. Circulation.
103:196–200. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kauferstein S, Kiehne N, Neumann T,
Pitschner H and Bratzke H: Cardiac gene defects can cause sudden
cardiac death in young people. Dtsch Arztebl Int. 106:41–47.
2009.PubMed/NCBI
|
|
16
|
Mohamed U, Napolitano C and Priori SG:
Molecular and electrophysiological bases of catecholaminergic
polymorphic ventricular tachycardia. J Cardiovasc Electrophysiol.
18:791–797. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Delisle BP, Anson BD, Rajamani S and
January CT: Biology of cardiac arrhythmias: ion channel protein
trafficking. Circ Res. 94:1418–1428. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Gong Q, Zhang L, Vincent GM, Horne BD and
Zhou Z: Nonsense mutations in hERG cause a decrease in mutant mRNA
transcripts by nonsense-mediated mRNA decay in human long-QT
syndrome. Circulation. 116:17–24. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wu J, Naiki N, Ding WG, et al: A molecular
mechanism for adrenergic-induced long QT syndrome. J Am Coll
Cardiol. 63:819–827. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Schwartz PJ, Spazzolini C, Priori SG, et
al: Who are the long-QT syndrome patients who receive an
implantable cardioverter-defibrillator and what happens to them?:
data from the European Long-QT Syndrome Implantable
Cardioverter-Defibrillator (LQTS ICD) Registry. Circulation.
122:1272–1282. 2010. View Article : Google Scholar
|
|
21
|
Goel AK, Berger S, Pelech A and Dhala A:
Implantable cardioverter defibrillator therapy in children with
long QT syndrome. Pediatr Cardiol. 25:370–378. 2004.PubMed/NCBI
|
|
22
|
Benito B, Guasch E, Rivard L and Nattel S:
Clinical and mechanistic issues in early repolarization of normal
variants and lethal arrahythmia syndromes. J Am Coll Cardiol.
56:1177–1186. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Takahashi K, Tanabe K, Ohnuki M, et al:
Induction of pluripotent stem cells from adult human fibroblasts by
defined factors. Cell. 131:861–872. 2007. View Article : Google Scholar
|
|
24
|
Takahashi K and Yamanaka S: Induction of
pluripotent stem cells from mouse embryonic and adult fibroblast
cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Sun N, Longaker MT and Wu JC: Human iPS
cell-based therapy: considerations before clinical applications.
Cell Cycle. 9:880–885. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Miyazaki S, Yamamoto H, Miyoshi N, et al:
Emerging methods for preparing iPS cells. Jpn J Clin Oncol.
42:773–779. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Carey BW, Markoulaki S, Hanna J, et al:
Reprogramming of murine and human somatic cells using a single
polycistronic vector. Proc Natl Acad Sci USA. 106:157–162. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Desponts C and Ding S: Using small
molecules to improve generation of induced pluripotent stem cells
from somatic cells. Methods Mol Biol. 636:207–218. 2010. View Article : Google Scholar
|
|
29
|
Hou P, Li Y, Zhang X, et al: Pluripotent
stem cells induced from mouse somatic cells by small-molecule
compounds. Science. 341:651–654. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Deng W: Induced pluripotent stem cells:
paths to new medicines. A catalyst for disease modelling, drug
discovery and regenerative therapy. EMBO Rep. 11:161–165. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhang R, Zhang L-H and Xie X: iPSCs and
small molecules: a reciprocal effort towards better approaches for
drug discovery. Acta Pharmacol Sin. 34:765–776. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Liu H, Zhu F, Yong J, et al: Generation of
induced pluripotent stem cells from adult rhesus monkey
fibroblasts. Cell Stem Cell. 3:587–590. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Morizane A, Doi D, Kikuchi T, Okita K,
Hotta A, Kawasaki T, et al: Direct comparison of autologous and
allogeneic transplantation of iPSC-derived neural cells in the
brain of a nonhuman primate. Stem Cell Reports. 1:283–292. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Okamoto S and Takahashi M: Induction of
retinal pigment epithelial cells from monkey iPS cells. Invest
Ophthalmol Vis Sci. 52:8785–8790. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Mackay-Sim A: Patient-derived stem cells:
pathways to drug discovery for brain diseases. Front Cell Neurosci.
7:292013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Dimos JT, Rodolfa KT, Niakan KK, et al:
Induced pluripotent stem cells generated from patients with ALS can
be differentiated into motor neurons. Science. 321:1218–1221. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ebert AD, Yu J, Rose FF Jr, et al: Induced
pluripotent stem cells from a spinal muscular atrophy patient.
Nature. 457:277–281. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Lee G, Papapetrou EP, Kim H, et al:
Modelling pathogenesis and treatment of familial dysautonomia using
patient-specific iPSCs. Nature. 461:402–406. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Park I-H, Arora N, Huo H, et al:
Disease-specific induced pluripotent stem cells. Cell. 134:877–886.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Amenduni M, De Filippis R, Cheung AYL, et
al: iPS cells to model CDKL5-related disorders. Eur J Hum Genet.
19:1246–1255. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Webb S: iPS cell technology gains momentum
in drug discovery. Nat Rev Drug Discov. 8:263–264. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Gunaseeli I, Doss MX, Antzelevitch C,
Hescheler J and Sachinidis A: Induced pluripotent stem cells as a
model for accelerated patient- and disease-specific drug discovery.
Curr Med Chem. 17:759–766. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhou Q: Progress and prospects in stem
cell therapy and drug discovery. Acta Pharmacol Sin. 34:717–718.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mordwinkin NM, Burridge PW and Wu JC: A
review of human pluripotent stem cell-derived cardiomyocytes for
high-throughput drug discovery, cardiotoxicity screening, and
publication standards. J Cardiovasc Transl Res. 6:22–30. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Merkle FT and Eggan K: Modeling human
disease with pluripotent stem cells: from genome association to
function. Cell Stem Cell. 12:656–668. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Siller R, Greenhough S, Park IH and
Sullivan GJ: Modelling human disease with pluripotent stem cells.
Curr Gene Ther. 13:99–110. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Morishima T, Watanabe K, Niwa A, et al:
Genetic correction of HAX 1 in induced pluripotent stem cells from
a patient with severe congenital neutropenia improves defective
granulopoiesis. Haematologica. 99:19–27. 2014. View Article : Google Scholar
|
|
48
|
Wang Y, Zheng CG, Jiang Y, et al: Genetic
correction of beta-thalassemia patient-specific iPS cells and its
use in improving hemoglobin production in irradiated SCID mice.
Cell Res. 22:637–648. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Choi SM, Kim Y, Shim JS, et al: Efficient
drug screening and gene correction for treating liver disease using
patient-specific stem cells. Hepatology. 57:2458–2468. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Raya A, Rodriguez-Piza I, Guenechea G, et
al: Disease-corrected haematopoietic progenitors from Fanconi
anaemia induced pluripotent stem cells. Nature. 460:53–59. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kazuki Y, Hiratsuka M, Takiguchi M, et al:
Complete genetic correction of iPS cells from Duchenne muscular
dystrophy. Mol Ther. 18:386–393. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Li H, Haurigot V, Doyon Y, et al: In vivo
genome editing restores haemostasis in a mouse model of
haemophilia. Nature. 475:217–221. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wu G, Liu N, Rittelmeyer I, et al:
Generation of healthy mice from gene-corrected disease-specific
induced pluripotent stem cells. PLoS Biol. 9:e10010992011.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Corti S, Nizzardo M, Simone C, et al:
Genetic correction of human induced pluripotent stem cells from
patients with spinal muscular atrophy. Sci Transl Med.
4:165ra1622012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Fattahi F, Asgari S, Pournasr B, et al:
Disease-corrected hepatocyte-like cells from familial
hypercholesterolemia-induced pluripotent stem cells. Mol
Biotechnol. 54:863–873. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lunn MR and Wang CH: Spinal muscular
atrophy. Lancet. 371:2120–2133. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Robinton DA and Daley GQ: The promise of
induced pluripotent stem cells in research and therapy. Nature.
481:295–305. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wernig M, Zhao J-P, Pruszak J, et al:
Neurons derived from reprogrammed fibroblasts functionally
integrate into the fetal brain and improve symptoms of rats with
Parkinson’s disease. Proc Natl Acad Sci USA. 105:5856–5861.
2008.PubMed/NCBI
|
|
59
|
Malan D, Friedrichs S, Fleischmann BK and
Sasse P: Cardiomyocytes obtained from induced pluripotent stem
cells with long-QT syndrome 3 recapitulate typical disease-specific
features in vitro. Circ Res. 109:841–847. 2011. View Article : Google Scholar
|
|
60
|
Matsa E, Rajamohan D, Dick E, et al: Drug
evaluation in cardiomyocytes derived from human induced pluripotent
stem cells carrying a long QT syndrome type 2 mutation. Eur Heart
J. 32:952–962. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Mehta A, Sequiera GL, Sudibyo Y, et al:
Derivation and characterization of transgene free induced
pluripotent stem cell derived cardiomyocytes from asian patient
with long QT syndrome. Eur Heart J. 33:222012.
|
|
62
|
Itzhaki I, Maizels L, Huber I, et al:
Modelling the long QT syndrome with induced pluripotent stem cells.
Nature. 471:225–229. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lahti AL, Kujala VJ, Chapman H, et al:
Model for long QT syndrome type 2 using human iPS cells
demonstrates arrhythmogenic characteristics in cell culture. Dis
Model Mech. 5:220–230. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Moretti A, Bellin M, Welling A, et al:
Patient-specific induced pluripotent stem-cell models for long-QT
syndrome. N Engl J Med. 363:1397–1409. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Sadguna YB, Jianhua Z, Amanda H, et al:
Loss of ikr in lqt2 patient iPS-derived cardiomyocytes: nonsense
mediated decay as a potential mechanism? Abstract 15643. 2011,
http://circ.ahajournals.org/cgi/content/meeting_abstract/124/21_MeetingAbstracts/A15643.
|
|
66
|
Yazawa M, Hsueh B, Jia X, et al: Using
induced pluripotent stem cells to investigate cardiac phenotypes in
Timothy syndrome. Nature. 471:230–234. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Egashira T, Yuasa S, Suzuki T, et al:
Disease characterization using LQTS-specific induced pluripotent
stem cells. Cardiovasc Res. 95:419–429. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Matsa E, Dixon JE, Medway C, et al:
Allele-specific RNA interference rescues the long-QT syndrome
phenotype in human-induced pluripotency stem cell cardiomyocyte.
Eur Heart J. 35:1078–1087. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Okata S, Yuasa S, Yamane T, Furukawa T and
Fukuda K: The generation of induced pluripotent stem cells from a
patient with KCNH2 G603D, without LQT2 disease associated symptom.
J Med Dent Sci. 60:17–22. 2013.PubMed/NCBI
|
|
70
|
Schimpf R, Veltmann C, Wolpert C and
Borggrefe M: Arrhythmogenic hereditary syndromes: Brugada Syndrome,
long QT syndrome, short QT syndrome and CPVT. Minerva Cardioangiol.
58:623–636. 2010.PubMed/NCBI
|
|
71
|
Kron J, Oliver RP, Norsted S and Silka MJ:
The automatic implantable cardioverter-defibrillator in
young-patients. J Am Coll Cardiol. 16:896–902. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Groh WJ, Silka MJ, Oliver RP, Halperin BD,
McAnulty JH and Kron J: Use of implantable
cardioverter-defibrillators in the congenital long QT syndrome. Am
J Cardiol. 78:703–706. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Perry GY and Kosar EM: Problems in
managing patients with long QT syndrome and implantable
cardioverter defibrillators: a report of two cases. Pacing Clin
Electrophysiol. 19:863–867. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Takebe T, Sekine K, Enomura M, et al:
Vascularized and functional human liver from an iPSC-derived organ
bud transplant. Nature. 499:481–484. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lee AS, Tang C, Cao F, et al: Effects of
cell number on teratoma formation by human embryonic stem cells.
Cell Cycle. 8:2608–2612. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Cao F, Drukker M, Lin S, et al: Molecular
imaging of embryonic stem cell misbehavior and suicide gene
ablation. Cloning Stem Cells. 9:107–117. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Riggs JW, Barrilleaux BL, Varlakhanova N,
Bush KM, Chan V and Knoepfler PS: Induced pluripotency and
oncogenic transformation are related processes. Stem Cells Dev.
22:37–50. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Esteban MA, Xu J, Yang J, et al:
Generation of induced pluripotent stem cell lines from Tibetan
miniature pig. J Biol Chem. 284:17634–17640. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Ezashi T, Telugu BPVL, Alexenko AP,
Sachdev S, Sinha S and Roberts RM: Derivation of induced
pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci
USA. 106:10993–10998. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wu Z, Chen J, Ren J, et al: Generation of
pig induced pluripotent stem cells with a drug-inducible system. J
Mol Cell Biol. 1:46–54. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Stacey GN, Crook JM, Hei D and Ludwig T:
Banking human induced pluripotent stem cells: lessons learned from
embryonic stem cells? Cell Stem Cell. 13:385–388. 2013. View Article : Google Scholar : PubMed/NCBI
|