Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2015 Volume 12 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2015 Volume 12 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Screening for characteristic microRNAs between pre-invasive and invasive stages of cervical cancer

  • Authors:
    • Xiao‑Lu Zhu
    • Shang‑Yun Wen
    • Zhi‑Hong Ai
    • Juan Wang
    • Yan‑Li Xu
    • Yin‑Cheng Teng
  • View Affiliations / Copyright

    Affiliations: Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, P.R. China
    Copyright: © Zhu et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
  • Pages: 55-62
    |
    Published online on: February 17, 2015
       https://doi.org/10.3892/mmr.2015.3363
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The aim of the present study was to investigate the characteristic microRNAs (miRNAs) expressed during the pre‑invasive and invasive stages of cervical cancer. A gene expression profile (GSE7803) containing 21 invasive squamous cell cervical carcinoma samples, 10 normal squamous cervical epithelium samples and seven high‑grade squamous intraepithelial cervical lesion samples, was obtained from the Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified using significance analysis of microarray software, and a Gene Ontology (GO) enrichment analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery. The miRNAs that interacted with the identified DEGs were selected, based on the TarBase v5.0 database. Regulatory networks were constructed from these selected miRNAs along with their corresponding target genes among the DEGs. The regulatory networks were visualized using Cytoscape. A total of 1,160 and 756 DEGs were identified in the pre‑invasive and invasive stages of cervical cancer, respectively. The results of the GO enrichment demonstrated that the DEGs were predominantly involved in the immune response and the cell cycle, in the pre‑invasive and invasive stages, respectively. Furthermore, a total of 18 and 26 characteristic miRNAs were screened in the pre‑invasive and invasive stages, respectively. These miRNAs may be potential biomarkers and targets for the diagnosis and treatment of the different stages of cervical cancer.
View Figures

Figure 1

Figure 2

View References

1 

Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Parkin DM, Bray F, Ferlay J and Pisani P: Estimating the world cancer burden: Globocan 2000. Int J Cancer. 94:153–156. 2001. View Article : Google Scholar : PubMed/NCBI

3 

Colomiere M, Ward AC, Riley C, et al: Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial-mesenchymal transition in ovarian carcinomas. Br J Cancer. 100:134–144. 2009. View Article : Google Scholar :

4 

Ono K, Tanaka T, Tsunoda T, et al: Identification by cDNA microarray of genes involved in ovarian carcinogenesis. Cancer Res. 60:5007–5011. 2000.PubMed/NCBI

5 

Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B and Bartel DP: Prediction of plant microRNA targets. Cell. 110:513–520. 2002. View Article : Google Scholar : PubMed/NCBI

6 

Lu Y, Zhou Y, Qu W, Deng M and Zhang C: A Lasso regression model for the construction of microRNA-target regulatory networks. Bioinformatics. 27:2406–2413. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Ying SY, Chang DC and Lin SL: The microRNA (miRNA): Overview of the RNA genes that modulate gene function. Mol Biotech. 38:257–268. 2008. View Article : Google Scholar

8 

Pritchard CC, Kroh E, Wood B, et al: Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila). 5:492–497. 2012. View Article : Google Scholar

9 

Farazi TA, Hoell JI, Morozov P and Tuschl T: MicroRNAs in human cancer. Adv Exp Med Biol. 774:1–20. 2013.PubMed/NCBI

10 

Balch C, Naegeli K, Nam S, et al: A unique histone deacetylase inhibitor alters microRNA expression and signal transduction in chemoresistant ovarian cancer cells. Cancer Biol Ther. 13:681–693. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Aydoğdu E, Katchy A, Tsouko E, et al: MicroRNA-regulated gene networks during mammary cell differentiation are associated with breast cancer. Carcinogenesis. 33:1502–1511. 2012. View Article : Google Scholar

12 

Lu J, Getz G, Miska EA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI

13 

Garzon R, Fabbri M, Cimmino A, Calin GA and Croce CM: MicroRNA expression and function in cancer. Trends Mol Med. 12:580–587. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Cho WC: MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol. 42:1273–1281. 2010. View Article : Google Scholar

15 

Wu SF, Qian WY, Zhang JW, et al: Network motifs in the transcriptional regulation network of cervical carcinoma cells respond to EGF. Arch Gynecol Obstet. 287:771–777. 2013. View Article : Google Scholar

16 

Higareda-Almaraz JC, Enríquez-Gasca Mdel R, Hernández-Ortiz M, Resendis-Antonio O and Encarnación-Guevara S: Proteomic patterns of cervical cancer cell lines, a network perspective. BMC Sys Biol. 5:962011. View Article : Google Scholar

17 

Zhai Y, Kuick R, Nan B, et al: Gene expression analysis of preinvasive and invasive cervical squamous cell carcinomas identifies HOXC10 as a key mediator of invasion. Cancer Res. 67:10163–10172. 2007. View Article : Google Scholar : PubMed/NCBI

18 

Tusher VG, Tibshirani R and Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 98:5116–5121. 2001. View Article : Google Scholar : PubMed/NCBI

19 

Larsson O, Wahlestedt C and Timmons JA: Considerations when using the significance analysis of microarrays (SAM) algorithm. BMC Bioinformatics. 6:1292005. View Article : Google Scholar : PubMed/NCBI

20 

Dennis G Jr, Sherman BT, Hosack DA, et al: DAVID: Database for annotation, visualization and integrated discovery. Genome Biol. 4:P32003. View Article : Google Scholar

21 

Benjamini Y and Hochberg Y: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 57:289–300. 1995.

22 

Papadopoulos GL, Reczko M, Simossis VA, Sethupathy P and Hatzigeorgiou AG: The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Res. 37:D155–D158. 2009. View Article : Google Scholar :

23 

Shannon P, Markiel A, Ozier O, et al: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Zhang S, Jin G, Zhang XS and Chen L: Discovering functions and revealing mechanisms at molecular level from biological networks. Proteomics. 7:2856–2869. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Freeman LC: Centrality in social networks conceptual clarification. Soc Networks. 1:215–239. 1979. View Article : Google Scholar

26 

Fearon ER and Vogelstein B: A genetic model for colorectal tumorigenesis. Cell. 61:759–767. 1990. View Article : Google Scholar : PubMed/NCBI

27 

Ryu B, Jones J, Hollingsworth MA, Hruban RH and Kern SE: Invasion-specific genes in malignancy: serial analysis of gene expression comparisons of primary and passaged cancers. Cancer Res. 61:1833–1838. 2001.PubMed/NCBI

28 

Kitahara O, Furukawa Y, Tanaka T, et al: Alterations of gene expression during colorectal carcinogenesis revealed by cDNA microarrays after laser-capture microdissection of tumor tissues and normal epithelia. Cancer Res. 61:3544–3549. 2001.PubMed/NCBI

29 

Reddy KB, Jin G, Karode MC, Harmony JA and Howe PH: Transforming growth factor beta (TGF beta)-induced nuclear localization of apolipoprotein J/clusterin in epithelial cells. Biochemistry. 35:6157–6163. 1996. View Article : Google Scholar : PubMed/NCBI

30 

Yang CR, Leskov K, Hosley-Eberlein K, et al: Nuclear clusterin/XIP8, an x-ray-induced Ku70-binding protein that signals cell death. Proc Natl Acad Sci USA. 97:5907–5912. 2000. View Article : Google Scholar : PubMed/NCBI

31 

O’Sullivan J, Whyte L, Drake J and Tenniswood M: Alterations in the post-translational modification and intracellular trafficking of clusterin in MCF-7 cells during apoptosis. Cell Death Differ. 10:914–927. 2003. View Article : Google Scholar

32 

Klokov D, Leskov K, Araki S, et al: Low dose IR-induced IGF-1-sCLU expression: a p53-repressed expression cascade that interferes with TGFbeta1 signaling to confer a pro-survival bystander effect. Oncogene. 32:479–490. 2013. View Article : Google Scholar

33 

Choi I, Kim J, Park JY and Kang SW: Cotransin induces accumulation of a cytotoxic clusterin variant that cotranslationally rerouted to the cytosol. Exp Cell Res. 319:1073–1082. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Santin AD, Zhan F, Bignotti E, et al: Gene expression profiles of primary HPV16- and HPV18-infected early stage cervical cancers and normal cervical epithelium: identification of novel candidate molecular markers for cervical cancer diagnosis and therapy. Virology. 331:269–291. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Ahn WS, Bae SM, Lee JM, et al: Searching for pathogenic gene functions to cervical cancer. Gynecol Oncol. 93:41–48. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Harima Y, Ikeda K, Utsunomiya K, et al: Identification of genes associated with progression and metastasis of advanced cervical cancers after radiotherapy by cDNA microarray analysis. Int J Radiat Oncol. 75:1232–1239. 2009. View Article : Google Scholar

37 

Ishikawa A, Suga T, Shoji Y, et al: Genetic Variants of NPAT-ATM and AURKA are associated with an early adverse reaction in the gastrointestinal tract of patients with cervical cancer treated with pelvic radiation therapy. Int J Radiat Oncol. 81:1144–1152. 2011. View Article : Google Scholar

38 

Chen JJ, Silver D, Cantor S, Livingston DM and Scully R: BRCA1, BRCA2 and Rad51 operate in a common DNA damage response pathway. Cancer Res. 59(Suppl 7): 1752–1756. 1999.

39 

Narayan G, Arias-Pulido H, Nandula SV, et al: Promoter hyper-methylation of FANCF disruption of Fanconi Anemia-BRCA pathway in cervical cancer. Cancer Res. 64:2994–2997. 2004. View Article : Google Scholar : PubMed/NCBI

40 

Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A and Tuschl T: New microRNAs from mouse and human. RNA. 9:175–179. 2003. View Article : Google Scholar : PubMed/NCBI

41 

Makeyev EV, Zhang J, Carrasco MA and Maniatis T: The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell. 27:435–448. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Smirnova L, Gräfe A, Seiler A, Schumacher S, Nitsch R and Wulczyn FG: Regulation of miRNA expression during neural cell specification. Eur J Neurosci. 21:1469–1477. 2005. View Article : Google Scholar : PubMed/NCBI

43 

Krichevsky AM, King KS, Donahue CP, Khrapko K and Kosik KS: A microRNA array reveals extensive regulation of microRNAs during brain development. RNA. 9:1274–1281. 2003. View Article : Google Scholar : PubMed/NCBI

44 

Wilting SM, van Boerdonk RA, Henken FE, et al: Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Mol Cancer. 9:1672010. View Article : Google Scholar : PubMed/NCBI

45 

Wang X, Tang S, Le SY, et al: Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PloS one. 3:e25572008. View Article : Google Scholar : PubMed/NCBI

46 

Lee JW, Choi CH, Choi JJ, et al: Altered MicroRNA expression in cervical carcinomas. Clin Cancer Res. 14:2535–2542. 2008. View Article : Google Scholar : PubMed/NCBI

47 

van Solingen C, Seghers L, Bijkerk R, et al: Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med. 13:1577–1585. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Wang S, Aurora AB, Johnson BA, et al: The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 15:261–271. 2008. View Article : Google Scholar : PubMed/NCBI

49 

Meister J and Schmidt MH: miR-126 and miR-126*: new players in cancer. Scientific World Journal. 10:2090–2100. 2010. View Article : Google Scholar

50 

Sahasrabuddhe VV, Luhn P and Wentzensen N: Human papillomavirus and cervical cancer: biomarkers for improved prevention efforts. Future Microbiol. 6:1083–1098. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Liu L, Yu X, Guo X, et al: miR-143 is downregulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2. Mol Med Rep. 5:753–760. 2012.

52 

Wang F, Li Y, Zhou J, et al: miR-375 is down-regulated in squamous cervical cancer and inhibits cell migration and invasion via targeting transcription factor SP1. Am J Pathol. 179:2580–2588. 2011. View Article : Google Scholar : PubMed/NCBI

53 

Wei Q, Li YX, Liu M, Li X and Tang H: MiR-17-5p targets TP53INP1 and regulates cell proliferation and apoptosis of cervical cancer cells. IUBMB life. 64:697–704. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Pang RT, Leung CO, Ye TM, et al: MicroRNA-34a suppresses invasion through downregulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells. Carcinogenesis. 31:1037–1044. 2010. View Article : Google Scholar : PubMed/NCBI

55 

Trakooljul N, Hicks JA and Liu HC: Identification of target genes and pathways associated with chicken microRNA miR-143. Anim Genet. 41:357–364. 2010.PubMed/NCBI

56 

Gao W, Yu Y, Cao H, Shen H, Li X, Pan S and Shu Y: Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis. Biomed Pharmacother. 64:399–408. 2010. View Article : Google Scholar : PubMed/NCBI

57 

Ahmad I, Singh LB, Yang ZH, et al: Mir143 expression inversely correlates with nuclear ERK5 immunoreactivity in clinical prostate cancer. Br J Cancer. 108:149–154. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Deftereos G, Corrie SR, Feng Q, et al: Expression of mir-21 and mir-143 in cervical specimens ranging from histologically normal through to invasive cervical cancer. PLoS One. 6:e284232011. View Article : Google Scholar : PubMed/NCBI

59 

Zhang H, Cai X, Wang Y, Tang H, Tong D and Ji F: microRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2. Oncol Rep. 24:1363–1369. 2010.PubMed/NCBI

60 

Slaby O, Svoboda M, Fabian P, et al: Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology. 72:397–402. 2007. View Article : Google Scholar

61 

Kitade Y and Akao Y: MicroRNAs and their therapeutic potential for human diseases: microRNAs, miR-143 and-145, function as anti-oncomirs and the application of chemically modified miR-143 as an anti-cancer drug. J Pharmacol Sci. 114:276–280. 2010. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhu XL, Wen SY, Ai ZH, Wang J, Xu YL and Teng YC: Screening for characteristic microRNAs between pre-invasive and invasive stages of cervical cancer. Mol Med Rep 12: 55-62, 2015.
APA
Zhu, X., Wen, S., Ai, Z., Wang, J., Xu, Y., & Teng, Y. (2015). Screening for characteristic microRNAs between pre-invasive and invasive stages of cervical cancer. Molecular Medicine Reports, 12, 55-62. https://doi.org/10.3892/mmr.2015.3363
MLA
Zhu, X., Wen, S., Ai, Z., Wang, J., Xu, Y., Teng, Y."Screening for characteristic microRNAs between pre-invasive and invasive stages of cervical cancer". Molecular Medicine Reports 12.1 (2015): 55-62.
Chicago
Zhu, X., Wen, S., Ai, Z., Wang, J., Xu, Y., Teng, Y."Screening for characteristic microRNAs between pre-invasive and invasive stages of cervical cancer". Molecular Medicine Reports 12, no. 1 (2015): 55-62. https://doi.org/10.3892/mmr.2015.3363
Copy and paste a formatted citation
x
Spandidos Publications style
Zhu XL, Wen SY, Ai ZH, Wang J, Xu YL and Teng YC: Screening for characteristic microRNAs between pre-invasive and invasive stages of cervical cancer. Mol Med Rep 12: 55-62, 2015.
APA
Zhu, X., Wen, S., Ai, Z., Wang, J., Xu, Y., & Teng, Y. (2015). Screening for characteristic microRNAs between pre-invasive and invasive stages of cervical cancer. Molecular Medicine Reports, 12, 55-62. https://doi.org/10.3892/mmr.2015.3363
MLA
Zhu, X., Wen, S., Ai, Z., Wang, J., Xu, Y., Teng, Y."Screening for characteristic microRNAs between pre-invasive and invasive stages of cervical cancer". Molecular Medicine Reports 12.1 (2015): 55-62.
Chicago
Zhu, X., Wen, S., Ai, Z., Wang, J., Xu, Y., Teng, Y."Screening for characteristic microRNAs between pre-invasive and invasive stages of cervical cancer". Molecular Medicine Reports 12, no. 1 (2015): 55-62. https://doi.org/10.3892/mmr.2015.3363
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team