|
1
|
Alzheimer’s Association: Alzheimer’s
disease facts and figures. Alzhemier’s Dement. 7:208–244. 2011.
View Article : Google Scholar
|
|
2
|
Brookmeyer R, Johnson E, Ziegler-Graham K
and Arrighi HM: Forecasting the global burden of Alzheimer’s
disease. Alzheimers Dement. 3:186–191. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Xie Z, Dong Y, Maeda U, Alfille P, Culley
DJ, Crosby G and Tanzi RE: The common inhalation anesthetic
isoflurane induces apoptosis and increases amyloid beta protein
levels. Anesthesiology. 104:988–994. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Planel E, Bretteville A, Liu L, Virag L,
Du AL, Yu WH, Dickson DW, Whittington RA and Duff KE: Acceleration
and persistence of neurofibrillary pathology in a mouse model of
tauopathy following anesthesia. FASEB J. 23:2595–2604. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Eckenhoff RG, Johansson JS, Wei H, Carnini
A, Kang B, Wei W, Pidikiti R, Keller JM and Eckenhoff MF: Inhaled
anesthetic enhancement of amyloid-beta oligomerization and
cytotoxicity. Anesthesiology. 101:703–709. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Le Freche H, Brouillette J,
Fernandez-Gomez FJ, et al: Tau phosphorylation and sevoflurane
anesthesia: An association to postoperative cognitive impairment.
Anesthesiology. 116:779–787. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Run X, Liang Z, Zhang L, Iqbal K,
Grundke-Iqbal I and Gong CX: Anesthesia induces phosphorylation of
tau. J Alzheimers Dis. 16:619–626. 2009.PubMed/NCBI
|
|
8
|
Tan W, Cao X, Wang J, Lv H, Wu B and Ma H:
Tau hyperphosphorylation is associated with memory impairment after
exposure to 1.5% isoflurane without temperature maintenance in
rats. Eur J Anaesthesiol. 27:835–841. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Xie Z and Tanzi RE: Alzheimer’s disease
and post-operative cognitive dysfunction. Exp Gerontol. 41:346–359.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Tang JX, Baranov D, Hammond M, Shaw LM,
Eckenhoff MF and Eckenhoff RG: Human Alzheimer and inflammation
biomarkers after anesthesia and surgery. Anesthesiology.
115:727–732. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Gasparini M, Vanacore N, Schiaffini C,
Brusa L, Panella M, Talarico G, Bruno G, Meco G and Lenzi GL: A
case-control study on Alzheimer’s disease and exposure to
anesthesia. Neurol Sci. 23:11–14. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Knopman DS, Petersen RC, Cha RH, Edland SD
and Rocca WA: Coronary artery bypass grafting is not a risk factor
for dementia or Alzheimer disease. Neurology. 65:986–990. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Grundke-Iqbal I, Iqbal K, Quinlan M, Tung
YC, Zaidi MS and Wisniewski HM: Microtubule-associated protein tau.
A component of Alzheimer paired helical filaments. J Biol Chem.
261:6084–6089. 1986.PubMed/NCBI
|
|
14
|
Selkoe DJ: Alzheimer’s disease: Genes,
proteins, and therapy. Physiol Rev. 81:741–766. 2001.PubMed/NCBI
|
|
15
|
Iqbal K and Grundke-Iqbal I: Alzheimer
neurofibrillary degeneration: Significance, etiopathogenesis,
therapeutics and prevention. J Cell Mol Med. 12:38–55. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Trojanowski JQ and Lee VM: Paired helical
filament tau in Alzheimer’s disease. The kinase connection. Am J
Pathol. 144:449–453. 1994.PubMed/NCBI
|
|
17
|
Xie Z and Xu Z: General anesthetics and
β-amyloid protein. Prog Neuropsychopharmacol Biol Psychiatry.
47:140–1446. 2013. View Article : Google Scholar
|
|
18
|
Gu Y, Misonou H, Sato T, Dohmae N, Takio K
and Ihara Y: Distinct intramembrane cleavage of the beta-amyloid
precursor protein family resembling gamma-secretase-like cleavage
of Notch. J Biol Chem. 276:35235–35238. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Sastre M, Steiner H, Fuchs K, Capell A,
Multhaup G, Condron MM, Teplow DB and Haass C: Presenilin-dependent
gamma-secretase processing of beta-amyloid precursor protein at a
site corresponding to the S3 cleavage of Notch. EMBO Rep.
2:835–841. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Yu C, Kim SH, Ikeuchi T, Xu H, Gasparini
L, Wang R and Sisodia SS: Characterization of a presenilin-mediated
amyloid precursor protein carboxyl-terminal fragment gamma.
Evidence for distinct mechanisms involved in gamma-secretase
processing of the APP and Notch1 transmembrane domains. J Biol
Chem. 276:43756–43760. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Miners JS, Baig S, Palmer J, Palmer LE,
Kehoe PG and Love S: Abeta-degrading enzymes in Alzheimer’s
disease. Brain Pathol. 18:240–252. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Bates KA, Verdile G, Li QX, Ames D, Hudson
P, Masters CL and Martins RN: Clearance mechanisms of Alzheimer’s
amyloid-beta peptide: Implications for therapeutic design and
diagnostic tests. Mol Psychiatry. 14:469–486. 2009. View Article : Google Scholar
|
|
23
|
Eckman EA and Eckman CB: Abeta-degrading
enzymes: Modulators of Alzheimer’s disease pathogenesis and targets
for therapeutic intervention. Biochem Soc Trans. 33:1101–1105.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Higuchi M, Iwata N and Saido TC:
Understanding molecular mechanisms of proteolysis in Alzheimer’s
disease: Progress toward therapeutic interventions. Biochim Biophys
Acta. 1751:60–67. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wang DS, Dickson DW and Malter JS:
beta-Amyloid degradation and Alzheimer’s disease. J Biomed
Biotechnol. 2006:584062006. View Article : Google Scholar
|
|
26
|
Turner AJ and Tanzawa K: Mammalian
membrane metallopeptidases: NEP, ECE, KELL, and PEX. FASEB J.
11:355–364. 1997.PubMed/NCBI
|
|
27
|
Turner AJ, Isaac RE and Coates D: The
neprilysin (NEP) family of zinc metalloendopeptidases: Genomics and
function. Bioessays. 23:261–269. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kanemitsu H, Tomiyama T and Mori H: Human
neprilysin is capable of degrading amyloid beta peptide not only in
the monomeric form but also the pathological oligomeric form.
Neurosci Lett. 350:113–116. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ho L, Qin W, Pompl PN, et al: Diet-induced
insulin resistance promotes amyloidosis in a transgenic mouse model
of Alzheimer’s disease. FASEB J. 18:902–904. 2004.PubMed/NCBI
|
|
30
|
Kuusisto J, Koivisto K, Mykkänen L,
Helkala EL, Vanhanen M, Hänninen T, Kervinen K, Kesäniemi YA,
Riekkinen PJ and Laakso M: Association between features of the
insulin resistance syndrome and Alzheimer’s disease independently
of apolipoprotein E4 phenotype: Cross sectional population based
study. BMJ. 315:1045–1049. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Edland SD, Wavrant-De Vriesé F, Compton D,
Smith GE, Ivnik R, Boeve BF, Tangalos EG and Petersen RC: Insulin
degrading enzyme (IDE) genetic variants and risk of Alzheimer’s
disease: Evidence of effect modification by apolipoprotein E
(APOE). Neurosci Lett. 345:21–24. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Raber J, Huang Y and Ashford JW: ApoE
genotype accounts for the vast majority of AD risk and AD
pathology. Neurobiol Aging. 25:641–650. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Cook DG, Leverenz JB, McMillan PJ, Kulstad
JJ, Ericksen S, Roth RA, Schellenberg GD, Jin LW, Kovacina KS and
Craft S: Reduced hippocampal insulin-degrading enzyme in late-onset
Alzheimer’s disease is associated with the apolipoprotein
E-epsilon4 allele. Am J Pathol. 162:313–319. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ashe KH and Zahs KR: Probing the biology
of Alzheimer’s disease in mice. Neuron. 66:631–645. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sakono M and Zako T: Amyloid oligomers:
Formation and toxicity of Abeta oligomers. FEBS J. 277:1348–1358.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Caughey B and Lansbury PT: Protofibrils,
pores, fibrils, and neurodegeneration: Separating the responsible
protein aggregates from the innocent bystanders. Annu Rev Neurosci.
26:267–298. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Haass C and Selkoe DJ: Soluble protein
oligomers in neurodegeneration: Lessons from the Alzheimer’s
amyloid beta-peptide. Nat Rev Mol Cell Biol. 8:101–112. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
LaFerla FM, Green KN and Oddo S:
Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev
Neurosci. 8:499–509. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Klein WL, Krafft GA and Finch CE:
Targeting small Abeta oligomers: The solution to an Alzheimer’s
disease conundrum? Trends Neurosci. 24:219–224. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Chiti F and Dobson CM: Protein misfolding,
functional amyloid, and human disease. Annu Rev Biochem.
75:333–366. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ferreira ST, Vieira MN and De Felice FG:
Soluble protein oligomers as emerging toxins in Alzheimer’s and
other amyloid diseases. IUBMB Life. 59:332–345. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Binder LI, Frankfurter A and Rebhun LI:
The distribution of tau in the mammalian central nervous system. J
Cell Biol. 101:1371–1378. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Buée L, Bussière T, Buée-Scherrer V,
Delacourte A and Hof PR: Tau protein isoforms, phosphorylation and
role in neurodegenerative disorders. Brain Res Brain Res Rev.
33:95–130. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Sergeant N, Bretteville A, Hamdane M, et
al: Biochemistry of Tau in Alzheimer’s disease and related
neurological disorders. Expert Rev Proteomics. 5:207–224. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ittner LM, Ke YD, Delerue F, et al:
Dendritic function of tau mediates amyloid-beta toxicity in
Alzheimer’s disease mouse models. Cell. 142:387–397. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sultan A, Nesslany F, Violet M, et al:
Nuclear tau, a key player in neuronal DNA protection. J Biol Chem.
286:4566–4575. 2011. View Article : Google Scholar :
|
|
47
|
Buée L, Troquier L, Burnouf S, et al: From
tau phosphorylation to tau aggregation: What about neuronal death?
Biochem Soc Trans. 38:967–972. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Iqbal K, Liu F, Gong CX and Grundke-Iqbal
I: Tau in Alzheimer disease and related tauopathies. Curr Alzheimer
Res. 7:656–664. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Braak H and Braak E: Staging of
Alzheimer’s disease-related neurofibrillary changes. Neurobiol
Aging. 16:271–284. 1995. View Article : Google Scholar
|
|
50
|
Grober E, Dickson D, Sliwinski MJ, Buschke
H, Katz M, Crystal H and Lipton RB: Memory and mental status
correlates of modified Braak staging. Neurobiol Aging. 20:573–579.
1999. View Article : Google Scholar
|
|
51
|
Van der Jeugd A, Ahmed T, Burnouf S, et
al: Hippocampal tauopathy in tau transgenic mice coincides with
impaired hippocampus-dependent learning and memory, and attenuated
late-phase long-term depression of synaptic transmission. Neurobiol
Learn Mem. 95:296–304. 2011. View Article : Google Scholar
|
|
52
|
Polydoro M, Acker CM, Duff K, Castillo PE
and Davies P: Age-dependent impairment of cognitive and synaptic
function in the htau mouse model of tau pathology. J Neurosci.
29:10741–10749. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kimura T, Yamashita S, Fukuda T, Park JM,
Murayama M, Mizoroki T, Yoshiike Y, Sahara N and Takashima A:
Hyperphosphorylated tau in parahippocampal cortex impairs place
learning in aged mice expressing wild-type human tau. EMBO J.
26:5143–5152. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Maccioni RB, Otth C, Concha II and Muñoz
JP: The protein kinase Cdk5. Structural aspects, roles in
neurogenesis and involvement in Alzheimer’s pathology. Eur J
Biochem. 268:1518–1527. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Tatebayashi Y, Planel E, Chui DH, et al:
c-jun N-terminal kinase hyperphosphorylates R406W tau at the PHF-1
site during mitosis. FASEB J. 20:762–764. 2006.PubMed/NCBI
|
|
56
|
Feinstein SC and Wilson L: Inability of
tau to properly regulate neuronal microtubule dynamics: A
loss-of-function mechanism by which tau might mediate neuronal cell
death. Biochim Biophys Acta. 1739:268–279. 2005. View Article : Google Scholar
|
|
57
|
Mandelkow EM, Stamer K, Vogel R, Thies E
and Mandelkow E: Clogging of axons by tau, inhibition of axonal
traffic and starvation of synapses. Neurobiol Aging. 24:1079–1085.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Trojanowski JQLV and Lee VM: Paired
helical filament tau in Alzheimer’s disease. The kinase connection
Am J Pathol. 144:449–453. 1994.
|
|
59
|
Terry RD: The pathogenesis of Alzheimer
disease: An alternative to the amyloid hypothesis. J Neuropathol
Exp Neurol. 55:1023–1025. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Guillozet AL, Weintraub S, Mash DC and
Mesulam MM: Neurofibrillary tangles, amyloid, and memory in aging
and mild cognitive impairment. Arch Neurol. 60:729–736. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Small SA and Duff K: Linking Abeta and tau
in late-onset Alzheimer’s disease: A dual pathway hypothesis.
Neuron. 60:534–542. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hardy J and Selkoe DJ: The amyloid
hypothesis of Alzheimer’s disease: Progress and problems on the
road to therapeutics. Science. 297:353–356. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Tanzi RE and Bertram L: Twenty years of
the Alzheimer’s disease amyloid hypothesis: A genetic perspective.
Cell. 120:545–555. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Jin M, Shepardson N, Yang T, Chen G, Walsh
D and Selkoe DJ: Soluble amyloid beta-protein dimers isolated from
Alzheimer cortex directly induce Tau hyperphosphorylation and
neuritic degeneration. Proc Natl Acad Sci USA. 108:5819–5824. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ma QL, Yang F, Rosario ER, et al:
β-amyloid oligomers induce phosphorylation of tau and inactivation
of insulin receptor substrate via c-Jun N-terminal kinase
signaling: Suppression by omega-3 fatty acids and curcumin. J
Neurosci. 29:9078–9089. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Oddo S, Caccamo A, Shepherd JD, Murphy MP,
Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y and LaFerla
FM: Triple-transgenic model of Alzheimer’s disease with plaques and
tangles: Intracellular Abeta and synaptic dysfunction. Neuron.
39:409–421. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bertram L and Tanzi RE: Thirty years of
Alzheimer’s disease genetics: The implications of systematic
meta-analyses. Nat Rev Neurosci. 9:768–778. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Liang G, Wang Q, Li Y, Kang B, Eckenhoff
MF, Eckenhoff RG and Wei H: A presenilin-1 mutation renders neurons
vulnerable to isoflurane toxicity. Anesth Analg. 106:492–500. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Filali M, Lalonde R, Theriault P, Julien
C, Calon F and Planel E: Cognitive and non-cognitive behaviors in
the triple transgenic mouse model of Alzheimer’s disease expressing
mutated APP, PS1, and Mapt (3xTg-AD). Behav Brain Res. 234:334–342.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Perucho J, Rubio I, Casarejos MJ, Gomez A,
Rodriguez-Navarro JA, Solano RM, De Yébenes JG and Mena MA:
Anesthesia with isoflurane increases amyloid pathology in mice
models of Alzheimer’s disease. J Alzheimers Dis. 19:1245–1257.
2010.
|
|
71
|
Lu Y, Wu X, Dong Y, Xu Z, Zhang Y and Xie
Z: Anesthetic sevoflurane causes neurotoxicity differently in
neonatal naïve and Alzheimer disease transgenic mice.
Anesthesiology. 112:1404–1416. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Prince JA, Feuk L, Gu HF, Johansson B,
Gatz M, Blennow K and Brookes AJ: Genetic variation in a haplotype
block spanning IDE influences Alzheimer disease. Hum Mutat.
22:363–371. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ertekin-Taner N, Allen M, Fadale D,
Scanlin L, Younkin L, Petersen RC, Graff-Radford N and Younkin SG:
Genetic variants in a haplotype block spanning IDE are
significantly associated with plasma Abeta42 levels and risk for
Alzheimer disease. Hum Mutat. 23:334–342. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Xie Z, Dong Y, Maeda U, Moir RD, Xia W,
Culley DJ, Crosby G and Tanzi RE: The inhalation anesthetic
isoflurane induces a vicious cycle of apoptosis and amyloid
beta-protein accumulation. J Neurosci. 27:1247–1254. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Xie Z, Dong Y, Maeda U, Moir R, Inouye SK,
Culley DJ, Crosby G and Tanzi RE: Isoflurane-induced apoptosis: A
potential pathogenic link between delirium and dementia. J Gerontol
A Biol Sci Med Sci. 61:1300–1306. 2006. View Article : Google Scholar
|
|
76
|
Xie Z, Culley DJ, Dong Y, Zhang G, Zhang
B, Moir RD, Frosch MP, Crosby G and Tanzi RE: The common inhalation
anesthetic isoflurane induces caspase activation and increases
amyloid beta-protein level in vivo. Ann Neurol. 64:618–627. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhang B, Tian M, Zheng H, Zhen Y, Yue Y,
Li T, Li S, Marcantonio ER and Xie Z: Effects of anesthetic
isoflurane and desflurane on human cerebrospinal fluid Aβ and τ
level. Anesthesiology. 119:52–60. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Dong Y, Xu Z, Zhang Y, McAuliffe S, Wang
H, Shen X, Yue Y and Xie Z: RNA interference-mediated silencing of
BACE and APP attenuates the isoflurane-induced caspase activation.
Med Gas Res. 1:52011. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhen Y, Dong Y, Wu X, Xu Z, Lu Y, Zhang Y,
Norton D, Tian M, Li S and Xie Z: Nitrous oxide plus isoflurane
induces apoptosis and increases β-amyloid protein levels.
Anesthesiology. 111:741–752. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Su D, Zhao Y, Xu H, Wang B, Chen X, Chen J
and Wang X: Isoflurane exposure during mid-adulthood attenuates
age-related spatial memory impairment in APP/PS1 transgenic mice.
PLoS One. 7:e501722012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Dong Y, Zhang G, Zhang B, Moir RD, Xia W,
Marcantonio ER, Culley DJ, Crosby G, Tanzi RE and Xie Z: The common
inha-lational anesthetic sevoflurane induces apoptosis and
increases beta-amyloid protein levels. Arch Neurol. 66:620–631.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Callaway JK, Jones NC, Royse AG and Royse
CF: Sevoflurane anesthesia does not impair acquisition learning or
memory in the Morris water maze in young adult and aged rats.
Anesthesiology. 117:1091–1101. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Chen CW, Lin WY, Chen KB, Wu YS, Kuo YC,
Liu HP and Li CY: Inhalational anesthetic sevoflurane rescues
retina function in Alzheimer’s disease transgenic Drosophila. Curr
Alzheimer Res. 10:1005–1014. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhang B, Dong Y, Zhang G, et al: The
inhalation anesthetic desflurane induces caspase activation and
increases amyloid beta-protein levels under hypoxic conditions. J
Biol Chem. 283:11866–11875. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Loop T, Dovi-Akue D, Frick M, et al:
Volatile anesthetics induce caspase-dependent,
mitochondria-mediated apoptosis in human T lymphocytes in vitro.
Anesthesiology. 102:1147–1157. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Yu Y and Zhang Y: Desflurane accelerates
neuronal cytotoxicity of Aβ by downregulating miR-214. Neurosci
Lett. 554:28–33. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Culley DJ, Baxter MG, Yukhananov R and
Crosby G: Long-term impairment of acquisition of a spatial memory
task following isoflurane-nitrous oxide anesthesia in rats.
Anesthesiology. 100:309–314. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kvolik S, Glavas-Obrovac L, Bares V and
Karner I: Effects of inhaled anesthetics halothane, sevoflurane,
and isoflurane on human cell lines. Life Sci. 77:2369–2383. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wei H, Kang B, Wei W, Liang G, Meng QC, Li
Y and Eckenhoff G: Isoflurane and sevoflurane affect cell survival
and BCL-2/BAX ratio differently. Brain Res. 1037:139–147. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Matsuoka H, Kurosawa S, Horinouchi T, Kato
M and Hashimoto Y: Inhaled anesthetics induce apoptosis in normal
peripheral lymphocytes in vitro. Anesthesiology. 95:1467–1472.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Brambrink AM, Evers AS, Avidan MS, Farber
NB, Smith DJ, et al: Isoflurane-induced neuroapoptosis in the
neonatal rhesus macaque brain. Anesthesiology. 112:834–841. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wei H, Liang G, Yang H, Wang Q, Hawkins B,
Madesh M, Wang S and Eckenhoff RG: The common inhalational
anesthetic isoflurane induces apoptosis via activation of inositol
1,4,5-trisphosphate receptors. Anesthesiology. 108:251–260. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zhang G, Dong Y, Zhang B, Ichinose F, Wu
X, Culley DJ, Crosby G, Tanzi RE and Xie Z: Isoflurane-induced
caspase-3 activation is dependent on cytosolic calcium and can be
attenuated by memantine. J Neurosci. 28:4551–4560. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zhang G, Dong Y, Zhang B, Ichinose F, Wu
X, Culley DJ, Crosby G, Tanzi RE and Xie Z: Isoflurane-induced
caspase-3 activation is dependent on cytosolic calcium and can be
attenuated by memantine. J Neurosci. 28:4551–4560. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhang Y, Xu Z, Wang H, Dong Y, Shi HN,
Culley DJ, Crosby G, Marcantonio ER, Tanzi RE and Xie Z:
Anesthetics isoflurane and desflurane differently affect
mitochondrial function, learning, and memory. Ann Neurol.
71:687–698. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zhang Y, Dong Y, Wu X, Lu Y, Xu Z, Knapp
A, Yue Y, Xu T and Xie Z: The mitochondrial pathway of anesthetic
isoflurane-induced apoptosis. J Biol Chem. 285:4025–4037. 2010.
View Article : Google Scholar :
|
|
97
|
Tang JX, Mardini F, Caltagarone BM,
Garrity ST, Li RQ, Bianchi SL, Gomes O, Laferla FM, Eckenhoff RG
and Eckenhoff MF: Anesthesia in presymptomatic Alzheimer’s disease:
A study using the triple-transgenic mouse model. Alzheimers Dement.
7:521–531.e1. 2011. View Article : Google Scholar
|
|
98
|
Dong Y, Wu X, Xu Z, Zhang Y and Xie Z:
Anesthetic isoflurane increases phosphorylated tau levels mediated
by caspase activation and Aβ generation. PLoS One. 7:e393862012.
View Article : Google Scholar
|
|
99
|
Planel E, Richter KE, Nolan CE, et al:
Anesthesia leads to tau hyperphosphorylation through inhibition of
phosphatase activity by hypothermia. J Neurosci. 27:3090–3097.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Planel E, Miyasaka T, Launey T, Chui DH,
Tanemura K, Sato S, Murayama O, Ishiguro K, Tatebayashi Y and
Takashima A: Alterations in glucose metabolism induce hypothermia
leading to tau hyperphosphorylation through differential inhibition
of kinase and phosphatase activities: Implications for Alzheimer’s
disease. J Neurosci. 24:2401–2411. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Holtzman A and Simon EW: Body temperature
as a risk factor for Alzheimer’s disease. Med Hypotheses.
55:440–444. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Liu W, Xu J, Wang H, et al:
Isoflurane-induced spatial memory impairment by a mechanism
independent of amyloid-beta levels and tau protein phosphorylation
changes in aged rats. Neurol Res. 34:3–10. 2012. View Article : Google Scholar
|
|
103
|
Menuet C, Borghgraef P, Voituron N,
Gestreau C, Gielis L, Devijver H, Dutschmann M, Van Leuven F and
Hilaire G: Isoflurane anesthesia precipitates tauopathy and upper
airways dysfunction in pre-symptomatic Tau.P301L mice: Possible
implication for neurodegenerative diseases. Neurobiol Dis.
46:234–243. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhang B, Tian M, Zhen Y, Yue Y, Sherman J,
Zheng H, Li S, Tanzi RE, Marcantonio ER and Xie Z: The effects of
isoflurane and desflurane on cognitive function in humans. Anesth
Analg. 114:410–415. 2012. View Article : Google Scholar
|
|
105
|
Bianchi SL, Tran T, Liu C, Lin S, Li Y,
Keller JM, Eckenhoff RG and Eckenhoff MF: Brain and behavior
changes in 12-month-old Tg2576 and nontransgenic mice exposed to
anesthetics. Neurobiol Aging. 29:1002–1010. 2008. View Article : Google Scholar
|
|
106
|
Wan Y, Xu J, Meng F, et al: Cognitive
decline following major surgery is associated with gliosis,
β-amyloid accumulation, and τ phosphorylation in old mice. Crit
Care Med. 38:2190–2198. 2010. View Article : Google Scholar : PubMed/NCBI
|