Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2015 Volume 12 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2015 Volume 12 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Identification and function analysis of contrary genes in Dupuytren's contracture

  • Authors:
    • Xianglu Ji
    • Feng Tian
    • Lijie Tian
  • View Affiliations / Copyright

    Affiliations: Department of Hand and Foot Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110003, P.R. China
  • Pages: 482-488
    |
    Published online on: March 9, 2015
       https://doi.org/10.3892/mmr.2015.3458
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The present study aimed to analyze the expression of genes involved in Dupuytren's contracture (DC), using bioinformatic methods. The profile of GSE21221 was downloaded from the gene expression ominibus, which included six samples, derived from fibroblasts and six healthy control samples, derived from carpal‑tunnel fibroblasts. A Distributed Intrusion Detection System was used in order to identify differentially expressed genes. The term contrary genes is proposed. Contrary genes were the genes that exhibited opposite expression pattterns in the positive and negative groups, and likely exhibited opposite functions. These were identified using Coexpress software. Gene ontology (GO) function analysis was conducted for the contrary genes. A network of GO terms was constructed using the reduce and visualize gene ontology database. Significantly expressed genes (801) and contrary genes (98) were screened. A significant association was observed between Chitinase‑3‑like protein 1 and ten genes in the positive gene set. Positive regulation of transcription and the activation of nuclear factor‑κB (NF‑κB)‑inducing kinase activity exhibited the highest degree values in the network of GO terms. In the present study, the expression of genes involved in the development of DC was analyzed, and the concept of contrary genes proposed. The genes identified in the present study are involved in the positive regulation of transcription and activation of NF‑κB‑inducing kinase activity. The contrary genes and GO terms identified in the present study may potentially be used for DC diagnosis and treatment.

Introduction

Dupuytren’s contracture (DC) is a progressive tissue disorder that affects the palmar fascia, and results in digital flexion contracture (1–3). DC incidence ranges from 3–40% worldwide and primarily affects patients >50 years (4). Therefore, it is necessary to investigate novel diagnostic and therapeutic approaches for patients with DC.

A number of treatments for DC have been evaluated, such as radiotherapy, topical vitamin A and E application, and dimethyl sulfoxide injection. However, these approaches have proven unsuitable or ineffective for the clinical treatment of DC (5). More recently, research has focused on potential treatments targeting the molecular processes underlying DC (6,7). Fibrogenic cytokines, which may be capable of inducing the growth of fibroblasts, are involved in the molecular mechanisms underlying DC (8). Satish et al (9) demonstrated that the expression of type XV collagen α 1 chain, proteoglycan 4 and fibulin-1, which are components of the extracellular matrix, is downregulated in DC fibroblasts compared with controls. The following miRNAs were found to be associated with the β-catenin pathway in DC tissue samples: Zinc finger of the cerebellum 1, wingless-type mouse mammary tumor virus integration site 5A and transforming growth factor β 1, (10). Musculoaponeurotic fibrosarcoma oncogene homolog B has been reported to be expressed in DC samples and not in healthy samples (11). Furthermore, a number of matrix metalloproteinases (MMPs), including MMP 13, MMP 16 and MMP 19 are expressed in DC samples but not in healthy samples (12). However, the pathogenesis of DC remains poorly understood. It is therefore necessary to investigate the pathology of DC in order to develop diagnostic and therapeutic approaches to DC.

In the present study, statistical analysis was performed, in order to develop gene expression profiles for samples from patients with DC and from healthy controls. The significantly differentially expressed genes (DEGs) between DC patients and healthy controls were measured. Hierarchical clustering analysis was performed for the DEGs. Antagonistic contrary genes, which exhibited opposite expression patterns in the positive and negative groups, and likely exhibited opposite functions, were then identified. A gene ontology (GO) function analysis was conducted and a network of GO terms was constructed.

Materials and methods

DEG identification

The GSE21221 expression profile was downloaded from the gene expression omnibus (GEO) database. This included six samples from DC-derived fibroblasts and six control samples from carpal-tunnel-derived fibroblasts, and was conducted using GPL2507 Sentrix® Human-6 Expression BeadChip and GPL10301 GE Healthcare CodeLink Human Whole Genome Bioarray (9). DEGs (P<0.05) were identified using the Distributed Intrusion Detection System (DIDS) (13) with R package version 1.1.

Hierarchical cluster analysis

Hierarchical cluster analysis for DEGs was performed in order to investigate the patterns of DEG classification and co-expression using TreeView (14). Genes whose expression values were present in >80% of samples had a standard deviation (SD) >2 were selected. Expression values were logarithmically standardized using TreeView. The correlations in the similarity matrix were subsequently calculated and a hierarchical cluster analysis was performed.

Identification of contrary genes

A Pearson correlation coefficient was calculated using the co-express software (www.bioinformatics.lu/CoExpress), which analyzes the association between mRNA and miRNA expression. miRNA targets were predicted using TargetScan (http://www.targetscan.org/) and starBase (15). Genes with high expression values <520 and SD value <560 were removed. Between-experiment-normalization was then performed. Genes with a Pearson correlation coefficient >0.9 were defined as positive. Genes that were negatively associated with at least one gene in the positive gene group (Pearson correlation coefficient, <−0.9 and correlation coefficient, <−0.5 with all the genes in the positive gene group) were defined as negative. Genes in the positive and negative groups exhibited opposite expression patterns. Therefore, in the present study these genes are termed contrary genes, which exhibited opposite expression patterns in the positive and negative groups, and likely exhibited opposite functions.

Function annotation analysis of DEGs

A genecard database (16) was used in order to conduct function analysis of DEGs annotated with GO terms. Cluster analysis was conducted using reduce and visualize gene ontology (REViGO) (17), in order to identify the GO terms (similarity threshold: 0.7). Semantic similarity was measured using the SimRel algorithm (18).

System network analysis

A function network of GO terms was produced using the REViGO database (17), and network visualization was performed using cytoscape version 2.8 (19). A network analysis plugin (20) was then used in order to analyze the network topology and to identify the significant GO terms in the network.

Results

DEG identification

The distribution of SD values was used in order to indicate the level of homogeneity in the data. The results suggested that the data exhibited low levels of homogeneity (Fig. 1). A DIDS analysis was performed in order to identify DEGs in the DC samples that had significantly higher expression than normal range, this resulted in the identification of 801 DEGs (P<0.05).

Figure 1

SD values of genes in (A) GPL2507 and (B) GPL10301. The x-axis represents the SD ranges. Black columns represent the SD values of genes in the healthy control group and the white column represent the SD values of genes in the Dupuytren’s contracture group. SD, standard deviation.

Hierarchical cluster analysis

Using the hierarchical clustering method, significant DEGs (775) were identified among the 801 DEGs. Fig. 2 represents a heatmap produced using the cluster software, TreeView. The results suggested that the control and DC samples were clustered in three groups: Clusters one, two and three. In cluster one, genes in the control samples were upregulated, whereas those in the DC samples were significantly downregulated. In cluster two, genes in the control samples were upregulated and in the DC samples, upregulated and downregulated genes were observed. In cluster three, genes in the control samples were downregulated, whereas those in the DC samples were upregulated. In cluster three, DC and healthy samples were distinct from one another, whereas in clusters one and two, DC and healthy samples were not distinct. Therefore, genes associated with cluster three, may be useful for the development of diagnostic markers associated with DC.

Figure 2

Heatmap of 775 genes. The x-axis represents the genes and the y-axis represents the samples. Green nodes represent downregulated genes and red nodes represent upregulated genes.

Identification of contrary genes

Coexpress software was used in order to conduct a correlation analysis. The average expression value of the 801 DEGs was 523 and the average SD value was 2.24×102. Following filtering and standardization of the data, 98 contrary genes were identified. The average expression value of the 98 contrary genes was 3.45×103 and the SD value was 5.56×102. Subsequently, 18 significantly correlated contrary gene pairs were identified (Table I). Chitinase-3-like protein 1 (CHI3L1) was negatively correlated with the following ten DEGs in the positive group: DEAD (Asp-Glu-Ala-Asp) box helicase 3; X-Linked (DDX3X); nuclear factor erythroid 2-related factor 2 (NFE2L2); γ-interferon-inducible protein 16 (IFI16); integral membrane protein 2B (ITM2B); Niemann-Pick disease, type C1 (NPC1); rho family GTPase 3 (RND3), family with sequence similarity 129 A (FAM129A); eukaryotic translation initiation factor 2, subunit 3 γ (EIF2S3), laminin, α 4 (LAMA4); and aldo-keto reductase family 1, member C2 (AKR1C2; Fig. 3).

Figure 3

Expression levels of the ten genes from the positive group and the gene from the negative group, CHI3L1, in 12 samples (samples 1-6 are DC samples and samples 7–12 are healthy samples). The x-axis represents the 12 samples and the y-axis represents the expression levels following standardization. The black line represents the expression level of CHI3L1 and the grey line represents the expression levels of ten genes in the positive group. CHI3L1, chitinase-3-like protein 1; DC, Dupuytren’s contracture; DDX3X, DEAD (Asp-Glu-Ala-Asp) box helicase 3 X-Linked; NFE2L2, nuclear factor erythroid 2-related factor 2; IFI16, γ-interferon-inducible protein 16; ITM2B, integral membrane protein 2B; NPC1, Niemann-Pick disease type C1; RND3, rho family GTPase 3; FAM129A, family with sequence similarity 129 A; EIF2S3, eukaryotic translation initiation factor 2 subunit 3 γ; LAMA4, laminin α 4; and AKR1C2, aldo-keto reductase family 1 member C2.

Table I

Significantly correlated genes and correlation coefficients.

Table I

Significantly correlated genes and correlation coefficients.

Node ID1Node ID2Correlation coefficientNode ID1Node ID2Correlation coefficient
CHI3L1EIF2S3−0.9273EPHX1ATF4−0.90163
SFRP1MASP10.91333FAM12AAKR1C20.9186
SFRP1FBLN10.9048SAA1ATF4−0.9023
FBLN1MASP10.93677NFE2L2AKR1C20.94147
FBLN1CLU0.90097LAMA4AKR1C20.94183
COL15A1RAB9A−0.90623ITM2BAKR1C20.92597
RND3AKR1C20.92937RNF19AATF4−0.904
EIF2S3AKR1C20.92647IFI16AKR1C20.90557
DDX3XAKR1C20.9201NPC1AKR1C20.91037

[i] CHI3LI, chitinase-3-like protein 1; SFRP, secreted frizzled-related protein 1; FBLN, fibulin; COL15A1, collagen type XV α 1; RND3, rho family GTPase 3; EIF2S3, eukaryotic translation initiation factor 2 subunit 3; DDX3X, DEAD (Asp-Glu-Ala-Asp) box helicase 3, X-linked; MASP1, mannan-binding lectin serine protease 1; CLU, clusterin; RAB, ras-related protein; AKR1C2, aldo-keto reductase family 1, member C2; EPHX1, epoxide hydrolase 1; FAM12A, family with sequence similarity 12, member A; SAA1, serum amyloid A1; NFE2L2, nuclear factor (erythroid-derived 2)-like 2; LAMA, laminin; ITM2B, integral membrane protein 2B; RNF19A, ring finger protein 19A; IFI16, γ-interferon-inducible protein 16; NPC1, Niemann-Pick disease, type C1; ATF4, activating transcription factor 4.

Function annotation analysis

A GO function annotation analysis was performed for the CHI3L1 gene and the ten genes with which it was negatively correlated, which resulted in the identification of 132 GO terms. The 132 GO terms were subsequently grouped into three clusters corresponding to the clusters in Fig 2 (Table II). The results suggested that the genes in cluster one are involved in blood vessel development, hemopoiesis and myeloid cell differentiation. Genes in cluster two are involved in cell proliferation, and the negative and positive regulation of cell death. Genes in cluster three are involved in the negative regulation in protein phosphorylation, glycosylation, ubiquitination and phosphorylation.

Table II

Cluster analysis of GO functions.

Table II

Cluster analysis of GO functions.

GO IDGO termFrequency (%)Plot sizeUniqueness
Cluster one
 GO: 0001568Blood vessel development1.363.0250.814
 GO: 0030097Hemopoiesis1.463.0530.796
 GO: 0030099Myeloid cell differentiation0.642.6940.781
Cluster two
 GO: 0008283Cell proliferation4.083.5010.874
 GO: 0060548Negative regulation of cell death1.813.1480.674
 GO: 0030307Positive regulation of cell growth0.212.210.722
 GO: 0008284Positive regulation of cell proliferation1.653.1070.712
Cluster three
 GO: 0001933Negative regulation of protein phosphorylation0.492.5840.666
 GO: 0006486Protein glycosylation0.732.7550.787
 GO: 0016567Protein ubiquitination1.313.0070.819
 GO: 0006468Protein phosphorylation5.223.6080.786

[i] Frequency represents the frequency of the GO terms in the Genecards database and plot size represents the size of GO terms in the integral distribution after correction. Uniqueness represents the average similarity of the GO terms. GO, gene ontology.

System network analysis

A system network of the 132 GO terms was constructed (Fig. 4). GO terms exhibiting semantic similarities were removed. This resulted in 86 GO terms and 257 edges, which represent the associations between GO terms. The GO terms, level of positive regulation of transcription and activation of nuclear factor-κB (NF-κB)-inducing kinase activity, exhibited degree levels of 19 and 16, respectively.

Figure 4

System network of 132 GO terms. The nodes represent the GO terms and the edges represent the associations. GO, gene ontology.

Discussion

In the present study, a DIDS analysis was conducted, which resulted in the identification of 801 DEGs. A positive and a negative group of DEGs were obtained. Opposing DEGs in the two groups are termed contrary genes in the present study. A network of GO terms was constructed, following a functional analysis, for the CHI3L1 gene and the ten genes with which it was negatively correlated (Table III).

Table III

GO terms exhibiting the ten highest degrees in the network which was constructed based on the GO function of CHI3L1 and ten positive genes.

Table III

GO terms exhibiting the ten highest degrees in the network which was constructed based on the GO function of CHI3L1 and ten positive genes.

GO termDegree
Positive regulation of transcription19
Activation of NF-κB-inducing kinase activity16
Negative regulation of protein phosphorylation14
Endoplasmic reticulum unfolded protein response14
Cellular response to oxidative stress12
Positive regulation of apoptotic process12
Cellular response to steroid hormone stimulus12
GTP catabolism12
Positive regulation of translation12
Positive regulation of ERK1 and ERK2 cascade11

[i] GO, gene ontology; CHI3L1, chitinase-3-like protein 1; ERK, extracellular signal-regulated kinase; GTP, guanosine-5′-triphosphate.

Hierarchical clustering analysis was performed for 775 DEGs, which resulted in three clusters. Differences were observed between the expression patterns of genes in these three clusters. Contrary genes were identified based the correlation of gene expression level between the DEGs. CHI3L1 expression was found to be negatively correlated with the expression of ten DEGs in the positive group. CHI3L1 is a secreted glycoprotein, which may be termed YKL-40. Forrester et al (21) performed a genome-wide analysis of exon arrays, which demonstrated that CHI3L1 expression was higher in primary fibroblasts obtained from patients with Dupuytren’s disease, compared with that in fibroblasts from healthy patients. In the present study, CHI3L1 expression was higher in the DC group than in the control group. Activation of NF-κB-inducing kinase activity exhibited a high value in the GO term network. CHI3L1 has been shown to be induced by inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1, in articular chondrocytes, and this induction requires sustained activation of NF-κB (22). Furthermore, it has been reported that the expression of TNF-α and interleukin-1 was significantly higher in patients with DC compared with that in controls (23). Therefore, CHI3L1 may be involved in the pathology of DC, via the induction of NF-κB kinase activity. However, the involvement of CHI3L1 in the development of DC requires further analysis. In the present study, the following ten genes were negatively correlated with CHI3L1: DDX3X, NFE2L2, IFI16, ITM2B, NPC1, RND3, FAM129A, EIF2S3, LAMA4 and AKR1C2. To the best of our knowledge, the present study is the first to demonstrate a potential association between these ten genes and DC development. DD3X (24), NFE2L2 (25), IFI16 (26), NPC1 (27), RND3 (28) and AKR1C2 (29) have been found to be positively correlated with inflammation. Therefore, these genes may be associated with DC development. However, the association between these genes and CHI3L1, and their involvement in DC, require further investigation, in order to understand the molecular mechanisms underlying DC development.

Positive regulation of transcription demonstrated the highest degree in the GO term network. The transcription factor gene, Zf9 is associated with DC pathogenesis (30). The expression of the contractile phenotype in Dupuytren’s nodular cells is determined by the post-transcriptional regulation of α-smooth muscle actin (31). Therefore, the regulation of transcription may be involved in the pathogenesis of DC.

In the present study, the expression of genes involved in DC was analyzed, and the term, contrary genes, was proposed. The expression of CHI3L1, was shown to be negatively correlated with that of ten other genes. These genes are involved in the positive regulation of transcription and in the activation of NF-κB-inducing kinase activity. Therefore, the results of the present study may be of use in the development of diagnostic markers and treatment for DC.

References

1 

Murphey MD, Ruble CM, Tyszko SM, Zbojniewicz AM, Potter BK and Miettinen M: From the archines of the AFIP: musculoskeletal fibromatoses: radiologic-pathologic correlation. Radiographics. 29:2143–2173. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Van Rijssen A and Werker P: Percutaneous needle fasciotomy in dupuytren’s disease. J Hand Surg Br. 31:498–501. 2006. View Article : Google Scholar : PubMed/NCBI

3 

Reilly RM, Stern PJ and Goldfarb CA: A retrospective review of the management of Dupuytren’s nodules. J Hand Surg Am. 30:1014–1018. 2005. View Article : Google Scholar : PubMed/NCBI

4 

Loos B, Puschkin V and Horch RE: 50 years experience with Dupuytren’s contracture in the Erlangen University Hospital - a retrospective analysis of 2919 operated hands from 1956 to 2006. BMC Musculoskelet Disord. 8:602007. View Article : Google Scholar

5 

Hurst LC and Badalamente MA: Nonoperative treatment of Dupuytren’s disease. Hand Clin. 15:97–107. 1999.

6 

Aggarwal BB and Shishodia S: Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol. 71:1397–1421. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Shimokawa H and Takeshita A: Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol. 25:1767–1775. 2005. View Article : Google Scholar : PubMed/NCBI

8 

Cordova A, Tripoli M, Corradino B, Napoli P and Moschella F: Dupuytren’s contracture: an update of biomolecular aspects and therapeutic perspectives. Journ Hand Surg Br. 30:557–562. 2005. View Article : Google Scholar

9 

Satish L, LaFramboise WA, O’Gorman DB, et al: Identification of differentially expressed genes in fibroblasts derived from patients with Dupuytren’s Contracture. BMC Med Genomics. 1:102008. View Article : Google Scholar

10 

Mosakhani N, Guled M, Lahti L, et al: Unique microRNA profile in Dupuytren’s contracture supports deregulation of β-catenin pathway. Mod Pathol. 23:1544–1552. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Lee LC, Zhang AY, Chong AK, Pham H, Longaker MT and Chang J: Expression of a novel gene, MafB, in Dupuytren’s disease. J Hand Surg Am. 31:211–218. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Johnston P, Larson D, Clark IM and Chojnowski AJ: Metalloproteinase gene expression correlates with clinical outcome in Dupuytren’s disease. J Hand Surg Am. 33:1160–1167. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Snapp SR, Brentano J, Dias GV, et al: DIDS (distributed intrusion detection system)-motivation, architecture, and an early prototype. Proceedings of the 14th National Computer Security Conference Washington, DC, USA: Epstein J and Picciotto J: http://citeseeristpsu.edu/snapp91didshtmlurisimpleciteseeristpsu.edu/snapp91didshtml. pp. 167–176. 1991

14 

Page RD: Visualizing phylogenetic trees using TreeView. Curr Protoc Bioinformatics. 6:Unit 6.2. 2002. View Article : Google Scholar

15 

Yang JH, Li JH, Shao P, Zhou H, Chen YQ and Qu LH: starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res. 39:D202–D209. 2011. View Article : Google Scholar

16 

Rebhan M, Chalifa-Caspi V, Prilusky J and Lancet D: GeneCards: a novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics. 14:656–664. 1998. View Article : Google Scholar : PubMed/NCBI

17 

Supek F, Bošnjak M, Škunca N and Šmuc T: REVIGO summarizes and visualizes long lists of gene ontology terms. PloS One. 6:e218002011. View Article : Google Scholar : PubMed/NCBI

18 

Zhang L and Hermanns H: Deciding simulations on probabilistic automata. Automated Technology for Verification and Analysis (ATVA), 5th International Symposium. Namjoshi KS, et al: Springer-Verlag; Heidelberg: pp. 207–222. 2007, View Article : Google Scholar

19 

Smoot ME, Ono K, Ruscheinski J, Wang PL and Ideker T: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 27:431–432. 2011. View Article : Google Scholar :

20 

Saito R, Smoot ME, Ono K, et al: A travel guide to Cytoscape plugins. Nat Methods. 9:1069–1076. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Forrester HB, Temple-Smith P, Ham S, de Kretser D, Southwick G and Sprung CN: Genome-wide analysis using exon arrays demonstrates an important role for expression of extra-cellular matrix, fibrotic control and tissue remodelling genes in Dupuytren’s disease. PLoS One. 8:e590562013. View Article : Google Scholar

22 

Recklies AD, Ling H, White C and Bernier SM: Inflammatory cytokines induce production of CHI3L1 by articular chondrocytes. J Biol Chem. 280:41213–41221. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Baird KS, Crossan JF and Ralston SN: Abnormal growth factor and cytokine expression in Dupuytren’s contracture. J Clin Pathol. 46:425–428. 1993. View Article : Google Scholar : PubMed/NCBI

24 

Wang L, Lawrence MS, Wan Y, et al: SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med. 365:2497–2506. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Saw C, Wu Q and Kong A: Anti-cancer and potential chemo-preventive actions of ginseng by activating Nrf2 (NFE2L2) anti-oxidative stress/anti-inflammatory pathways. Chin Med. 5:372010. View Article : Google Scholar

26 

Veeranki S, Duan X, Panchanathan R, Liu H and Choubey D: IFI16 protein mediates the anti-inflammatory actions of the type-I interferons through suppression of activation of caspase-1 by inflammasomes. PLoS One. 6:e270402011. View Article : Google Scholar : PubMed/NCBI

27 

Liao G, Cheung S, Galeano J, Ji AX, Qin Q and Bi X: Allopregnanolone treatment delays cholesterol accumulation and reduces autophagic/lysosomal dysfunction and inflammation in Npc1−/− mouse brain. Brain Res. 1270:140–151. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Kurtz KM and Breslin JW: Rnd3 accelerates termination of thrombin-induced Rho activation in endothelial cells. FASEB J. Meeting Abstract Suppl. 762.142009.

29 

Wang HW, Lin CP, Chiu JH, et al: Reversal of inflammation-associated dihydrodiol dehydrogenases (AKR1C1 and AKR1C2) overexpression and drug resistance in nonsmall cell lung cancer cells by wogonin and chrysin. Int J Cancer. 120:2019–2027. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Bayat A, Watson JS, Stanley JK, Ferguson MW and Ollier WE: Genetic susceptibility to dupuytren disease: association of Zf9 transcription factor gene. Plast Reconstr Surg. 111:2133–2139. 2003. View Article : Google Scholar : PubMed/NCBI

31 

Verjee LS, Midwood K, Davidson D, Eastwood M and Nanchahal J: Post-transcriptional regulation of alpha-smooth muscle actin determines the contractile phenotype of Dupuytren’s nodular cells. J Cell Physiol. 224:681–690. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ji X, Tian F and Tian L: Identification and function analysis of contrary genes in Dupuytren's contracture. Mol Med Rep 12: 482-488, 2015.
APA
Ji, X., Tian, F., & Tian, L. (2015). Identification and function analysis of contrary genes in Dupuytren's contracture. Molecular Medicine Reports, 12, 482-488. https://doi.org/10.3892/mmr.2015.3458
MLA
Ji, X., Tian, F., Tian, L."Identification and function analysis of contrary genes in Dupuytren's contracture". Molecular Medicine Reports 12.1 (2015): 482-488.
Chicago
Ji, X., Tian, F., Tian, L."Identification and function analysis of contrary genes in Dupuytren's contracture". Molecular Medicine Reports 12, no. 1 (2015): 482-488. https://doi.org/10.3892/mmr.2015.3458
Copy and paste a formatted citation
x
Spandidos Publications style
Ji X, Tian F and Tian L: Identification and function analysis of contrary genes in Dupuytren's contracture. Mol Med Rep 12: 482-488, 2015.
APA
Ji, X., Tian, F., & Tian, L. (2015). Identification and function analysis of contrary genes in Dupuytren's contracture. Molecular Medicine Reports, 12, 482-488. https://doi.org/10.3892/mmr.2015.3458
MLA
Ji, X., Tian, F., Tian, L."Identification and function analysis of contrary genes in Dupuytren's contracture". Molecular Medicine Reports 12.1 (2015): 482-488.
Chicago
Ji, X., Tian, F., Tian, L."Identification and function analysis of contrary genes in Dupuytren's contracture". Molecular Medicine Reports 12, no. 1 (2015): 482-488. https://doi.org/10.3892/mmr.2015.3458
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team