|
1
|
Wang J, Feng J, Jia W, Chang S, Li S and
Li Y: Lignin engineering through laccase modification: A promising
field for energy plant improvement. Biotechnol Biofuels. 8:1452015.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Citrin DE, Shankavaram U, Horton JA,
Shield W III, Zhao S, Asano H, White A, Sowers A, Thetford A and
Chung EJ: Role of type II pneumocyte senescence in
radiation-induced lung fibrosis. J Natl Cancer Inst. 105:1474–1484.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Siegel R, DeSantis C, Virgo K, Stein K,
Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S, et al:
Cancer treatment and survivorship statistics, 2012. CA Cancer J
Clin. 62:220–241. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Schabath MB, Nguyen A, Wilson P, Sommerer
KR, Thompson ZJ and Chiappori AA: Temporal trends from 1986 to 2008
in overall survival of small cell lung cancer patients. Lung
Cancer. 86:14–21. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Pedicini P, Strigari L, Benassi M, Caivano
R, Fiorentino A, Nappi A, Salvatore M and Storto G: Critical dose
and toxicity index of organs at risk in radiotherapy: analyzing the
calculated effects of modified dose fractionation in non-small cell
lung cancer. Med Dosim. 39:23–30. 2014. View Article : Google Scholar
|
|
6
|
Kuilman T, Michaloglou C, Mooi WJ and
Peeper DS: The essence of senescence. Genes Dev. 24:2463–2479.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Linton PJ, Gurney M, Sengstock D, Mentzer
RM Jr and Gottlieb RA: This old heart: Cardiac aging and autophagy.
J Mol Cell Cardiol. 83:44–54. 2015. View Article : Google Scholar
|
|
8
|
Park YH: Stem cell therapy for
sensorineural hearing loss, still alive? J Audiol Otol. 19:63–67.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Durham AL and Adcock IM: The relationship
between COPD and lung cancer. Lung Cancer. 90:121–127. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Farup J, Madaro L, Puri PL and Mikkelsen
UR: Interactions between muscle stem cells, mesenchymal-derived
cells and immune cells in muscle homeostasis, regeneration and
disease. Cell Death Dis. 6:e18302015. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Mikhed Y, Daiber A and Steven S:
Mitochondrial oxidative stress, mitochondrial DNA damage and their
role in age-related vascular dysfunction. Int J Mol Sci.
16:15918–15953. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hill RP: Radiation effects on the
respiratory system. Brit J Radiol Suppl. 27:75–81. 2005. View Article : Google Scholar
|
|
13
|
Ley B, Brown KK and Collard HR: Molecular
biomarkers in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell
Mol Physiol. 307:L681–L691. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hernandez Bort JA, Hackl M, Höflmayer H,
Jadhav V, Harreither E, Kumar N, Ernst W, Grillari J and Borth N:
Dynamic mRNA and miRNA profiling of CHO-K1 suspension cell
cultures. Biotechnol J. 7:500–515. 2012. View Article : Google Scholar
|
|
15
|
Xie L, Zhou J, Zhang S, Chen Q, Lai R,
Ding W, Song C, Meng X and Wu J: Integrating microRNA and mRNA
expression profiles in response to radiation-induced injury in rat
lung. Radiat Oncol. 9:1112014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chauhan V and Howland M: Gene expression
responses in human lung fibroblasts exposed to alpha particle
radiation. Toxicol In Vitro. 28:1222–1229. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhang B and Horvath S: A general framework
for weighted gene co-expression network analysis. Stat Appl Genet
Mol Biol. 4:2005.
|
|
18
|
Chou WC, Cheng AL, Brotto M and Chuang CY:
Visual gene-network analysis reveals the cancer gene co-expression
in human endometrial cancer. BMC Genomics. 15:3002014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
de Jong S, Boks MP, Fuller TF, Strengman
E, Janson E, de Kovel CG, Ori AP, Vi N, Mulder F, Blom JD, et al: A
gene co-expression network in whole blood of schizophrenia patients
is independent of antipsychotic-use and enriched for
brain-expressed genes. PLoS One. 7:e394982012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Clarke C, Madden SF, Doolan P, Aherne ST,
Joyce H, O'Driscoll L, Gallagher WM, Hennessy BT, Moriarty M, Crown
J, et al: Correlating transcriptional networks to breast cancer
survival: A large-scale coexpression analysis. Carcinogenesis.
34:2300–2308. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Barrett T, Troup DB, Wilhite SE, Ledoux P,
Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar
R, et al: NCBI GEO: Mining tens of millions of expression
profiles-database and tools update. Nucleic Acids Res. 35D760–D765.
(Database issue)2007. View Article : Google Scholar
|
|
22
|
Gautier L, Cope L, Bolstad BM and Irizarry
RA: affy-analysis of Affymetrix GeneChip data at the probe level.
Bioinformatics. 20:307–315. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Gentleman RC, Carey VJ, Bates DM, Bolstad
B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al:
Bioconductor: Open software development for computational biology
and bioinformatics. Genome Biol. 5:R802004. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Tejera E, Bernardes J and Rebelo I:
Co-expression network analysis and genetic algorithms for gene
prioritization in preeclampsia. BMC Med Genomics. 6:512013.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yip AM and Horvath S: Gene network
interconnectedness and the generalized topological overlap measure.
BMC Bioinformatics. 8:222007. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lecca P and Re A: Detecting modules in
biological networks by edge weight clustering and entropy
significance. Front Genet. 6:2652015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Langfelder P, Zhang B and Horvath S:
Defining clusters from a hierarchical cluster tree: The Dynamic
tree cut package for R. Bioinformatics. 24:719–720. 2008.
View Article : Google Scholar
|
|
28
|
Langfelder P and Horvath S: Eigengene
networks for studying the relationships between co-expression
modules. BMC Syst Biol. 1:542007. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Langfelder P, Luo R, Oldham MC and Horvath
S: Is my network module preserved and reproducible? PLoS Comput
Biol. 7:e10010572011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Tan N, Chung MK, Smith JD, Hsu J, Serre D,
Newton DW, Castel L, Soltesz E, Pettersson G, Gillinov AM, et al:
Weighted gene coexpression network analysis of human left atrial
tissue identifies gene modules associated with atrial fibrillation.
Circ Cardiovasc Genet. 6:362–371. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Peña-Castillo L, Mercer RG, Gurinovich A,
Callister SJ, Wright AT, Westbye AB, Beatty JT and Lang AS: Gene
co-expression network analysis in Rhodobacter capsulatus and
application to comparative expression analysis of Rhodobacter
sphaeroides. BMC Genomics. 15:7302014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Filteau M, Pavey SA, St-Cyr J and
Bernatchez L: Gene coexpression networks reveal key drivers of
phenotypic divergence in lake whitefish. Mol Biol Evol.
30:1384–1396. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Langfelder P and Horvath S: WGCNA: An R
package for weighted correlation network analysis. BMC
Bioinformatics. 9:5592008. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Liu J, Yang XY and Shi WJ: Identifying
differentially expressed genes and pathways in two types of
non-small cell lung cancer: Adenocarcinoma and squamous cell
carcinoma. Genet Mol Res. 13:95–102. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Aiba Y, Yamazaki T, Okada T, Gotoh K,
Sanjo H, Ogata M and Kurosaki T: BANK negatively regulates Akt
activation and subsequent B cell responses. Immunity. 24:259–268.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kozyrev SV, Abelson AK, Wojcik J, Zaghlool
A, Linga Reddy MV, Sanchez E, Gunnarsson I, Svenungsson E, Sturfelt
G, Jönsen A, et al: Functional variants in the B-cell gene BANK1
are associated with systemic lupus erythematosus. Nat Genet.
40:211–216. 2008. View
Article : Google Scholar : PubMed/NCBI
|
|
37
|
Rueda B, Gourh P, Broen J, Agarwal SK,
Simeon C, Ortego-Centeno N, Vonk MC, Coenen M, Riemekasten G,
Hunzelmann N, et al: BANK1 functional variants are associated with
susceptibility to diffuse systemic sclerosis in Caucasians. Ann
Rheum Dis. 69:700–705. 2010. View Article : Google Scholar :
|
|
38
|
Wu M, Liu Y, Di X, Kang H, Zeng H, Zhao Y,
Cai K, Pang T, Wang S, Yao Y and Hu X: EIF4E over-expresses and
enhances cell proliferation and cell cycle progression in
nasopharyngeal carcinoma. Med Oncol. 30:4002013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Blesa JR, Hernández JM and Hernández-Yago
J: NRF-2 transcription factor is essential in promoting human
Tomm70 gene expression. Mitochondrion. 3:251–259. 2004. View Article : Google Scholar
|
|
40
|
Kim Y, Kim HD and Kim J: Cytoplasmic
ribosomal protein S3 (rpS3) plays a pivotal role in mitochondrial
DNA damage surveillance. Biochim Biophys Acta. 1833:2943–2952.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Sen N, Paul BD, Gadalla MM, Mustafa AK,
Sen T, Xu R, Kim S and Snyder SH: Hydrogen sulfide-linked
sulfhydration of NF-kB mediates its antiapoptotic actions. Mol
Cell. 45:13–24. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Liu XY, Wei B, Shi HX, Shan YF and Wang C:
Tom70 mediates activation of interferon regulatory factor 3 on
mitochondria. Cell Res. 20:994–1011. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kasama Y, Saito M, Takano T, Nishimura T,
Satoh M, Wang Z, Ali SN, Harada S, Kohara M and Tsukiyama-Kohara K:
Translocase of outer mitochondrial membrane 70 induces interferon
response and is impaired by hepatitis C virus NS3. Virus Res.
163:405–409. 2012. View Article : Google Scholar
|
|
44
|
Resnitzky D, Yarden A, Zipori D and Kimchi
A: Autocrine beta-related interferon controls c-myc suppression and
growth arrest during hematopoietic cell differentiation. Cell.
46:31–40. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Bertolin G, Ferrando-Miguel R, Jacoupy M,
Traver S, Grenier K, Greene AW, Dauphin A, Waharte F, Bayot A,
Salamero J, et al: The TOMM machinery is a molecular switch in
PINK1 and PARK2/PARKIN-dependent mitochondrial clearance.
Autophagy. 9:1801–1817. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kang HT, Lee KB, Kim SY, Choi HR and Park
SC: Autophagy impairment induces premature senescence in primary
human fibroblasts. PLoS One. 6:e233672011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Xiao H, Han B, Lodyga M, Bai XH, Wang Y
and Liu M: The actin-binding domain of actin filament-associated
protein (AFAP) is involved in the regulation of cytoskeletal
structure. Cell Mol Life Sci. 69:1137–1151. 2012. View Article : Google Scholar
|
|
48
|
Snyder BN1, Cho Y, Qian Y, Coad JE, Flynn
DC and Cunnick JM: AFAP1L1 is a novel adaptor protein of the AFAP
family that interacts with cortactin and localizes to invadosomes.
Eur J Cell Biol. 90:376–389. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Frame MC: Newest findings on the oldest
oncogene; how activated src does it. J Cell Sci. 117:989–998. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhang J, Park SI, Artime MC, Summy JM,
Shah AN, Bomser JA, Dorfleutner A, Flynn DC and Gallick GE:
AFAP-110 is overex-pressed in prostate cancer and contributes to
tumorigenic growth by regulating focal contacts. J Clin Invest.
117:2962–2973. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Han B, Xiao H, Xu J, Lodyga M, Bai XH, Jin
T and Liu M: Actin filament associated protein mediates c-Src
related SRE/AP-1 transcriptional activation. FEBS Lett.
585:471–477. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ye N, Ding Y, Wild C, Shen Q and Zhou J:
Small molecule inhibitors targeting activator protein 1 (AP-1). J
Med Chem. 57:6930–6948. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Hofmann S, Vögtle T, Bender M, Rose-John S
and Nieswandt B: The SLAM family member CD84 is regulated by ADAM10
and calpain in platelets. J Thromb Haemost. 10:2581–2592. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wang A, Batteux F and Wakeland EK: The
role of SLAM/CD2 polymorphisms in systemic autoimmunity. Curr Opin
Immunol. 22:706–714. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Binsky-Ehrenreich I, Marom A, Sobotta MC,
Shvidel L, Berrebi A, Hazan-Halevy I, Kay S, Aloshin A, Sagi I and
Goldenberg DM: CD84 is a survival receptor for CLL cells. Oncogene.
33:1006–1016. 2014. View Article : Google Scholar
|
|
56
|
Tangye SG, Nichols KE, Hare NJ and van de
Weerdt BC: Functional requirements for interactions between CD84
and Src homology 2 domain-containing proteins and their
contribution to human T cell activation. J Immunol. 171:2485–2495.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Asakawa H, Hayashi A, Haraguchi T and
Hiraoka Y: Dissociation of the Nuf2-Ndc80 complex releases
centromeres from the spindle-pole body during meiotic prophase in
fission yeast. Mol Biol Cell. 16:2325–2338. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Sundin LJ, Guimaraes GJ and Deluca JG: The
NDC80 complex proteins Nuf2 and Hec1 make distinct contributions to
kinetochore-microtubule attachment in mitosis. Mol Biol Cell.
22:759–768. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
DeLuca JG, Dong Y, Hergert P, Strauss J,
Hickey JM, Salmon ED and McEwen BF: Hec1 and nuf2 are core
components of the kinetochore outer plate essential for organizing
microtubule attachment sites. Mol Biol Cell. 16:519–531. 2005.
View Article : Google Scholar :
|
|
60
|
Brobeil A, Graf M, Eiber M and Wimmer M:
Interaction of PTPIP51 with Tubulin, CGI-99 and Nuf2 During cell
cycle progression. Biomolecules. 2:122–142. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kaneko N, Miura K, Gu Z, Karasawa H,
Ohnuma S, Sasaki H, Tsukamoto N, Yokoyama S, Yamamura A, Nagase H,
et al: siRNA-mediated knockdown against CDCA1 and KNTC2, both
frequently overexpressed in colorectal and gastric cancers,
suppresses cell proliferation and induces apoptosis. Biochem
Biophys Res Commun. 390:1235–1240. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Suzuki H, Fukuhara M, Yamaura T, et al:
Multiple therapeutic peptide vaccines consisting of combined novel
cancer testis antigens and anti-angiogenic peptides for patients
with non-small cell lung cancer. J Transl Med. 11:972013.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Jung KA and Kwak MK: The Nrf2 system as a
potential target for the development of indirect antioxidants.
Molecules. 15:7266–7291. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Fujita R, Takayama-Tsujimoto M, Satoh H,
Gutiérrez L, Aburatani H, Fujii S, Sarai A, Bresnick EH, Yamamoto M
and Motohashi H: NF-E2 p45 is important for establishing normal
function of platelets. Mol Cell Biol. 33:2659–2670. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Gasiorek JJ, Nouhi Z and Blank V: Abnormal
differentiation of erythroid precursors in p45 NF-E2(−/−) mice. Exp
Hematol. 40:393–400. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yigit N, Covey S, Barouk-Fox S, Turker T,
Geyer JT and Orazi A: Nuclear factor-erythroid 2, nerve growth
factor receptor, and CD34-microvessel density are differentially
expressed in primary myelofibrosis, polycythemia vera, and
essential thrombocythemia. Hum Pathol. 46:1217–1225. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Chan JY, Kwong M, Lo M, Emerson R and
Kuypers FA: Reduced oxidative-stress response in red blood cells
from p45NFE2-deficient mice. Blood. 97:2151–2158. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Leontieva OV and Blagosklonny MV: Tumor
promoter-induced cellular senescence: Cell cycle arrest followed by
geroconversion. Oncotarget. 5:12715–12727. 2014. View Article : Google Scholar
|
|
69
|
Demidenko ZN and Blagosklonny MV: Growth
stimulation leads to cellular senescence when the cell cycle is
blocked. Cell Cycle. 7:3355–3361. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Demidenko ZN, Zubova SG, Bukreeva EI,
Pospelov VA, Pospelova TV and Blagosklonny MV: Rapamycin
decelerates cellular senescence. Cell Cycle. 8:1888–1895. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Serrano M, Lin AW, McCurrach ME, Beach D
and Lowe SW: Oncogenic ras provokes premature cell senescence
associated with accumulation of p53 and p16INK4a. Cell. 88:593–602.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhu J, Woods D, McMahon M and Bishop JM:
Senescence of human fibroblasts induced by oncogenic Raf. Genes
Dev. 12:2997–3007. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Liao EC, Hsu YT, Chuah QY, Lee YJ, Hu JY,
Huang TC, Yang PM and Chiu SJ: Radiation induces senescence and a
bystander effect through metabolic alterations. 5:e12552014.
|
|
74
|
Ghosh AK and Li J: A stereoselective
synthesis of (+)-herbox-idiene/GEX1A. Org Lett. 13:66–69. 2011.
View Article : Google Scholar :
|
|
75
|
Yokoi A, Kotake Y, Takahashi K, Kadowaki
T, Matsumoto Y, Minoshima Y, Sugi NH, Sagane K, Hamaguchi M, Iwata
M and Mizui Y: Biological validation that SF3b is a target of the
antitumor macrolide pladienolide. Febs J. 278:4870–4880. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Pawellek A, McElroy S, Samatov T, Mitchell
L, Woodland A, Ryder U, Gray D, Lührmann R and Lamond AI:
Identification of small molecule inhibitors of pre-mRNA splicing. J
Biol Chem. 289:34683–34698. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Hegde AN, Haynes KA, Bach SV and Beckelman
BC: Local ubiquitin-proteasome-mediated proteolysis and long-term
synaptic plasticity. Front Mol Neurosci. 7:962014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Xu Y, Li N, Xiang R and Sun P: Emerging
roles of the p38 MAPK and PI3K/AKT/mTOR pathways in
oncogene-induced senescence. Trends Biochem Sci. 39:268–276. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Muñoz-Espín D and Serrano M: Cellular
senescence: From physiology to pathology. Nat Rev Mol Cell Biol.
15:482–496. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Carrillo J, González A, Manguán-García C,
Pintado-Berninches L and Perona R: p53 pathway activation by
telomere attrition in X-DC primary fibroblasts occurs in the
absence of ribosome biogenesis failure and as a consequence of DNA
damage. Clin Transl Oncol. 16:529–538. 2014. View Article : Google Scholar
|
|
81
|
Wang Y, Yu H, Zhang J, Gao J, Ge X and Lou
G: Hesperidin inhibits HeLa cell proliferation through apoptosis
mediated by endoplasmic reticulum stress pathways and cell cycle
arrest. BMC Cancer. 15:6822015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wiel C, Lallet-Daher H, Gitenay D, Gras B,
Le Calvé B, Augert A, Ferrand M, Prevarskaya N, Simonnet H,
Vindrieux D and Bernard D: Endoplasmic reticulum calcium release
through ITPR2 channels leads to mitochondrial calcium accumulation
and senescence. Nat Commun. 5:37922014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhu B, Ferry CH, Markell LK, Blazanin N,
Glick AB, Gonzalez FJ and Peters JM: The nuclear receptor
peroxisome proliferator-activated receptor-β/Δ (PPARβ/Δ) promotes
oncogene-induced cellular senescence through repression of
endoplasmic reticulum stress. J Biol Chem. 289:20102–20119. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Choque B, Catheline D, Rioux V and Legrand
P: Linoleic acid: Between doubts and certainties. Biochimie.
96:14–21. 2014. View Article : Google Scholar
|
|
85
|
Kim MH, Kim MO, Kim YH, Kim JS and Han HJ:
Linoleic acid induces mouse embryonic stem cell proliferation via
Ca2+/PKC, PI3K/Akt, and MAPKs. Cell Physiol Biochem. 23:53–64.
2009. View Article : Google Scholar : PubMed/NCBI
|