|
1
|
Nadeau I and Kamen A: Production of
adenovirus vector for gene therapy. Biotechnol Adv. 20:475–489.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Rowe WP, Huebner RJ, Gilmore LK, Parrott
RH and Ward TG: Isolation of a cytopathogenic agent from human
adenoids undergoing spontaneous degeneration in tissue culture.
Proc Soc Exp Biol Med. 84:570–573. 1953; View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Berkner KL: Development of adenovirus
vectors for the expression of heterologous genes. Biotechniques.
6:616–629. 1988.PubMed/NCBI
|
|
4
|
Berkner KL: Expression of heterologous
sequences in adenoviral vectors. Curr Top Microbiol Immunol.
158:39–66. 1992.PubMed/NCBI
|
|
5
|
Engelhardt JF, Ye X, Doranz B and Wilson
JM: Ablation of E2A in recombinant adenoviruses improves transgene
persistence and decreases inflammatory response in mouse liver.
Proc Natl Acad Sci USA. 91:6196–6200. 1994; View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Hehir KM, Armentano D, Cardoza LM,
Choquette TL, Berthelette PB, White GA, Couture LA, Everton MB,
Keegan J, Martin JM, et al: Molecular characterization of
replication-competent variants of adenovirus vectors and genome
modifications to prevent their occurrence. J Virol. 70:8459–8467.
1996.PubMed/NCBI
|
|
7
|
Parks RJ and Graham FL: A helper-dependent
system for adenovirus vector production helps define a lower limit
for efficient DNA packaging. J Virol. 71:3293–3298. 1997.PubMed/NCBI
|
|
8
|
Sato M, Suzuki S, Kubo S and Mitani K:
Replication and packaging of helper-dependent adenoviral vectors.
Gene Ther. 9:472–476. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wilmott RW, Amin RS, Perez CR, Wert SE,
Keller G, Boivin GP, Hirsch R, De Inocencio J, Lu P, Reising SF, et
al: Safety of adenovirus-mediated transfer of the human cystic
fibrosis transmembrane conductance regulator cDNA to the lungs of
nonhuman primates. Hum Gene Ther. 7:301–318. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Fukazawa T, Matsuoka J, Yamatsuji T, Maeda
Y, Durbin ML and Naomoto Y: Adenovirus-mediated cancer gene therapy
and virotherapy (Review). Int J Mol Med. 25:3–10. 2010.PubMed/NCBI
|
|
11
|
Bauerschmitz GJ, Barker SD and Hemminki A:
Adenoviral gene therapy for cancer: From vectors to targeted and
replication competent agents (Review). Int J Oncol. 21:1161–1174.
2002.PubMed/NCBI
|
|
12
|
Jounaidi Y, Doloff JC and Waxman DJ:
Conditionally replicating adenoviruses for cancer treatment. Curr
Cancer Drug Targets. 7:285–301. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Power AT and Bell JC: Taming the Trojan
horse: Optimizing dynamic carrier cell/oncolytic virus systems for
cancer biotherapy. Gene Ther. 15:772–779. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wei F, Wang H, Chen X, Li C and Huang Q:
Dissecting the roles of E1A and E1B in adenoviral replication and
RCAd-enhanced RDAd transduction efficacy on tumor cells. Cancer
Biol Ther. 15:1358–1366. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lee CH, Kasala D, Na Y, Lee MS, Kim SW,
Jeong JH and Yun CO: Enhanced therapeutic efficacy of an
adenovirus-PEI-bile-acid complex in tumors with low coxsackie and
adenovirus receptor expression. Biomaterials. 35:5505–5516. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Heise C, Hermiston T, Johnson L, Brooks G,
Sampson-Johannes A, Williams A, Hawkins L and Kirn D: An adenovirus
E1A mutant that demonstrates potent and selective systemic
anti-tumoral efficacy. Nat Med. 6:1134–1139. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Andriole GL, Crawford ED, Grubb RL III,
Buys SS, Chia D, Church TR, Fouad MN, Gelmann EP, Kvale PA, Reding
DJ, et al: Mortality results from a randomized prostate-cancer
screening trial. N Engl J Med. 360:1310–1319. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Matsuyama H, Baba Y, Yamakawa G, Yamamoto
N and Naito K: Diagnostic value of prostate-specific
antigen-related parameters in discriminating prostate cancer. Int J
Urol. 7:409–414. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ravery V and Boccon-Gibod L: Free/total
prostate-specific antigen ratio-hope and controversies. Eur Urol.
31:385–388. 1997.PubMed/NCBI
|
|
20
|
Schröder FH, Hugosson J, Roobol MJ,
Tammela TL, Ciatto S, Nelen V, Kwiatkowski M, Lujan M, Lilja H,
Zappa M, et al: Screening and prostate-cancer mortality in a
randomized European study. N Engl J Med. 360:1320–1328. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yousef GM and Diamandis EP: The new human
tissue kallikrein gene family: Structure, function, and association
to disease. Endocr Rev. 22:184–204. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Chen Y, DeWeese T, Dilley J, Zhang Y, Li
Y, Ramesh N, Lee J, Pennathur-Das R, Radzyminski J, Wypych J, et
al: CV706, a prostate cancer-specific adenovirus variant, in
combination with radiotherapy produces synergistic antitumor
efficacy without increasing toxicity. Cancer Res. 61:5453–5460.
2001.PubMed/NCBI
|
|
23
|
Rodriguez R, Schuur ER, Lim HY, Henderson
GA, Simons JW and Henderson DR: Prostate attenuated replication
competent adenovirus (ARCA) CN706: A selective cytotoxic for
prostate-specific antigen-positive prostate cancer cells. Cancer
Res. 57:2559–2563. 1997.PubMed/NCBI
|
|
24
|
DeWeese TL, Van Der Poel H, Li S, Mikhak
B, Drew R, Goemann M, Hamper U, DeJong R, Detorie N, Rodriguez R,
et al: A phase I trial of CV706, a replication-competent, PSA
selective oncolytic adenovirus, for the treatment of locally
recurrent prostate cancer following radiation therapy. Cancer Res.
61:7464–7472. 2001.PubMed/NCBI
|
|
25
|
Wang L, Dong J, Wei M, Wen W, Gao J, Zhang
Z and Qin W: Selective and augmented β-glucuronidase expression
combined with DOX-GA3 application elicits the potent suppression of
prostate cancer. Oncol Rep. 35:1417–1424. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Matuo Y, Nishi N, Negi T, Tanaka Y and
Wada F: Isolation and characterization of androgen-dependent
non-histone chromosomal protein from dorsolateral prostate of rats.
Biochem Biophys Res Commun. 109:334–340. 1982. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Spence AM, Sheppard PC, Davie JR, Matuo Y,
Nishi N, McKeehan WL, Dodd JG and Matusik RJ: Regulation of a
bifunctional mRNA results in synthesis of secreted and nuclear
probasin. Proc Natl Acad Sci USA. 86:7843–7847. 1989; View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Greenberg NM, DeMayo FJ, Sheppard PC,
Barrios R, Lebovitz R, Finegold M, Angelopoulou R, Dodd JG,
Duckworth ML, Rosen JM, et al: The rat probasin gene promoter
directs hormonally and developmentally regulated expression of a
heterologous gene specifically to the prostate in transgenic mice.
Mol Endocrinol. 8:230–239. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Trujillo MA, Oneal MJ, McDonough S, Qin R
and Morris JC: A probasin promoter, conditionally replicating
adenovirus that expresses the sodium iodide symporter (NIS) for
radiovirotherapy of prostate cancer. Gene Ther. 17:1325–1332. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Andriani F, Nan B, Yu J, Li X, Weigel NL,
McPhaul MJ, Kasper S, Kagawa S, Fang B, Matusik RJ, et al: Use of
the probasin promoter ARR2PB to express Bax in androgen
receptor-positive prostate cancer cells. J Natl Cancer Inst.
93:1314–1324. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Eder M, Eisenhut M, Babich J and Haberkorn
U: PSMA as a target for radiolabelled small molecules. Eur J Nucl
Med Mol Imaging. 40:819–823. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Heston WD: Significance of
prostate-specific membrane antigen (PSMA). A neurocarboxypeptidase
and membrane folate hydrolase. Urologe A. 35:400–407. 1996.(In
German). View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Minner S, Wittmer C, Graefen M, Salomon G,
Steuber T, Haese A, Huland H, Bokemeyer C, Yekebas E, Dierlamm J,
et al: High level PSMA expression is associated with early PSA
recurrence in surgically treated prostate cancer. Prostate.
71:281–288. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Rinker-Schaeffer CW, Hawkins AL, Su SL,
Israeli RS, Griffin CA, Isaacs JT and Heston WD: Localization and
physical mapping of the prostate-specific membrane antigen (PSM)
gene to human chromosome 11. Genomics. 30:105–108. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ross JS, Sheehan CE, Fisher HA, Kaufman RP
Jr, Kaur P, Gray K, Webb I, Gray GS, Mosher R and Kallakury BV:
Correlation of primary tumor prostate-specific membrane antigen
expression with disease recurrence in prostate cancer. Clin Cancer
Res. 9:6357–6362. 2003.PubMed/NCBI
|
|
36
|
Sweat SD, Pacelli A, Murphy GP and
Bostwick DG: Prostate-specific membrane antigen expression is
greatest in prostate adenocarcinoma and lymph node metastases.
Urology. 52:637–640. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhang Y, Guo Z, Du T, Chen J, Wang W, Xu
K, Lin T and Huang H: Prostate specific membrane antigen (PSMA): A
novel modulator of p38 for proliferation, migration, and survival
in prostate cancer cells. Prostate. 73:835–841. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Gao XF, Zhou T, Chen GH, Xu CL, Ding YL
and Sun YH: Radioiodine therapy for castration-resistant prostate
cancer following prostate-specific membrane antigen
promoter-mediated transfer of the human sodium iodide symporter.
Asian J Androl. 16:120–123. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zeng H, Wei Q, Huang R, Chen N, Dong Q,
Yang Y and Zhou Q: Recombinant adenovirus mediated
prostate-specific enzyme pro-drug gene therapy regulated by
prostate-specific membrane antigen (PSMA) enhancer/promoter. J
Androl. 28:827–835. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bussemakers MJ, van Bokhoven A, Verhaegh
GW, Smit FP, Karthaus HF, Schalken JA, Debruyne FM, Ru N and Isaacs
WB: DD3: A new prostate-specific gene, highly overexpressed in
prostate cancer. Cancer Res. 59:5975–5979. 1999.PubMed/NCBI
|
|
41
|
de Kok JB, Verhaegh GW, Roelofs RW,
Hessels D, Kiemeney LA, Aalders TW, Swinkels DW and Schalken JA:
DD3 (PCA3), a very sensitive and specific marker to detect prostate
tumors. Cancer Res. 62:2695–2698. 2002.PubMed/NCBI
|
|
42
|
Hessels D, Gunnewiek JM Klein, van Oort I,
Karthaus HF, van Leenders GJ, van Balken B, Kiemeney LA, Witjes JA
and Schalken JA: DD3(PCA3)-based molecular urine analysis for the
diagnosis of prostate cancer. Eur Urol. 44:8–16. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Fan JK, Wei N, Ding M, Gu JF, Liu XR, Li
BH, Qi R, Huang WD, Li YH, Xiong XQ, et al: Targeting
Gene-ViroTherapy for prostate cancer by DD3-driven oncolytic
virus-harboring interleukin-24 gene. Int J Cancer. 127:707–717.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mao LJ, Zheng JN, Li W, Wang JQ, Chen JC
and Sun XQ: Construction of an oncolytic adenovirus expressing
small hairpin RNA and targeting the SATB1 gene. Zhonghua Nan Ke
Xue. 16:679–683. 2010.(In Chinese). PubMed/NCBI
|
|
45
|
Bodnar AG, Ouellette M, Frolkis M, Holt
SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S and
Wright WE: Extension of life-span by introduction of telomerase
into normal human cells. Science. 279:349–352. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Cong YS, Wen J and Bacchetti S: The human
telomerase catalytic subunit hTERT: Organization of the gene and
characterization of the promoter. Hum Mol Genet. 8:137–142. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Gu J, Andreeff M, Roth JA and Fang B:
hTERT promoter induces tumor-specific Bax gene expression and cell
killing in syngenic mouse tumor model and prevents systemic
toxicity. Gene Ther. 9:30–37. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kyo S, Kanaya T, Takakura M, Tanaka M,
Yamashita A, Inoue H and Inoue M: Expression of human telomerase
subunits in ovarian malignant, borderline and benign tumors. Int J
Cancer. 80:804–809. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Bostwick DG: Prospective origins of
prostate carcinoma. Prostatic intraepithelial neoplasia and
atypical adenomatous hyperplasia. Cancer. 78:330–336. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Iczkowski KA, Pantazis CG, McGregor DH, Wu
Y and Tawfik OW: Telomerase reverse transcriptase subunit
immunoreactivity: A marker for high-grade prostate carcinoma.
Cancer. 95:2487–2493. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Paradis V, Dargère D, Laurendeau I, Benoît
G, Vidaud M, Jardin A and Bedossa P: Expression of the RNA
component of human telomerase (hTR) in prostate cancer, prostatic
intraepithelial neoplasia, and normal prostate tissue. J Pathol.
189:213–218. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhang W, Kapusta LR, Slingerland JM and
Klotz LH: Telomerase activity in prostate cancer, prostatic
intraepithelial neoplasia, and benign prostatic epithelium. Cancer
Res. 58:619–621. 1998.PubMed/NCBI
|
|
53
|
Sato D, Kurihara Y, Kondo S, Shirota T,
Urata Y, Fujiwara T and Shintani S: Antitumor effects of
telomerase-specific replication-selective oncolytic viruses for
adenoid cystic carcinoma cell lines. Oncol Rep. 30:2659–2664. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Tazawa H, Kagawa S and Fujiwara T:
Oncolytic adenovirus-induced autophagy: Tumor-suppressive effect
and molecular basis. Acta Med Okayama. 67:333–342. 2013.PubMed/NCBI
|
|
55
|
Yano S, Tazawa H, Hashimoto Y, Shirakawa
Y, Kuroda S, Nishizaki M, Kishimoto H, Uno F, Nagasaka T, Urata Y,
et al: A genetically engineered oncolytic adenovirus decoys and
lethally traps quiescent cancer stem-like cells in S/G2/M phases.
Clin Cancer Res. 19:6495–6505. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yano S, Miwa S, Kishimoto H, Urata Y,
Tazawa H, Kagawa S, Bouvet M, Fujiwara T and Hoffman RM:
Eradication of osteosarcoma by fluorescence-guided surgery with
tumor labeling by a killer-reporter adenovirus. J Orthop Res.
34:836–844. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yano S, Takehara K, Miwa S, Kishimoto H,
Hiroshima Y, Murakami T, Urata Y, Kagawa S, Bouvet M, Fujiwara T
and Hoffman RM: Improved resection and outcome of colon-cancer
liver metastasis with fluorescence-guided surgery using in situ GFP
labeling with a telomerase-dependent adenovirus in an orthotopic
mouse model. PLoS One. 11:e01487602016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yano S, Takehara K, Miwa S, Kishimoto H,
Tazawa H, Urata Y, Kagawa S, Bouvet M, Fujiwara T and Hoffman RM:
Fluorescence-guided surgery of a highly-metastatic variant of human
triple-negative breast cancer targeted with a cancer-specific GFP
adenovirus prevents recurrence. Oncotarget. 7:75635–75647.
2016.PubMed/NCBI
|
|
59
|
Huang P, Watanabe M, Kaku H, Kashiwakura
Y, Chen J, Saika T, Nasu Y, Fujiwara T, Urata Y and Kumon H: Direct
and distant antitumor effects of a telomerase-selective oncolytic
adenoviral agent, OBP-301, in a mouse prostate cancer model. Cancer
Gene Ther. 15:315–322. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhang Y, Qi JC, Lian WF, Cai WQ, Li W and
Liu KL: The animal research of recombinant adenovirus controlled by
human telomerase reverse transcriptase promoter in the treatment of
human prostate cancer. Zhonghua Wai Ke Za Zhi. 44:1252–1255.
2006.(In Chinese). PubMed/NCBI
|
|
61
|
Bhang HE, Gabrielson KL, Laterra J, Fisher
PB and Pomper MG: Tumor-specific imaging through progression
elevated gene-3 promoter-driven gene expression. Nat Med.
17:123–129. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Greco A, Di Benedetto A, Howard CM, Kelly
S, Nande R, Dementieva Y, Miranda M, Brunetti A, Salvatore M,
Claudio L, et al: Eradication of therapy-resistant human prostate
tumors using an ultrasound-guided site-specific cancer terminator
virus delivery approach. Mol Ther. 18:295–306. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Sarkar D, Su ZZ, Vozhilla N, Park ES,
Gupta P and Fisher PB: Dual cancer-specific targeting strategy
cures primary and distant breast carcinomas in nude mice. Proc Natl
Acad Sci USA. 102:14034–14039. 2005; View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Su ZZ, Sarkar D, Emdad L, Duigou GJ, Young
CS, Ware J, Randolph A, Valerie K and Fisher PB: Targeting gene
expression selectively in cancer cells by using the
progression-elevated gene-3 promoter. Proc Natl Acad Sci USA.
102:1059–1064. 2005; View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Su ZZ, Shi Y and Fisher PB: Subtraction
hybridization identifies a transformation progression-associated
gene PEG-3 with sequence homology to a growth arrest and DNA
damage-inducible gene. Proc Natl Acad Sci USA. 94:9125–9130. 1997;
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Sarkar D, Lebedeva IV, Su ZZ, Park ES,
Chatman L, Vozhilla N, Dent P, Curiel DT and Fisher PB: Eradication
of therapy-resistant human prostate tumors using a cancer
terminator virus. Cancer Res. 67:5434–5442. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Fisher LW, Whitson SW, Avioli LV and
Termine JD: Matrix sialoprotein of developing bone. J Biol Chem.
258:12723–12727. 1983.PubMed/NCBI
|
|
68
|
Tye CE, Rattray KR, Warner KJ, Gordon JA,
Sodek J, Hunter GK and Goldberg HA: Delineation of the
hydroxyapatite-nucleating domains of bone sialoprotein. J Biol
Chem. 278:7949–7955. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Fedarko NS, Jain A, Karadag A, Van Eman MR
and Fisher LW: Elevated serum bone sialoprotein and osteopontin in
colon, breast, prostate, and lung cancer. Clin Cancer Res.
7:4060–4066. 2001.PubMed/NCBI
|
|
70
|
Tu Q, Zhang J, Fix A, Brewer E, Li YP,
Zhang ZY and Chen J: Targeted overexpression of BSP in osteoclasts
promotes bone metastasis of breast cancer cells. J Cell Physiol.
218:135–145. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Waltregny D, Bellahcène A, Van Riet I,
Fisher LW, Young M, Fernandez P, Dewé W, de Leval J and Castronovo
V: Prognostic value of bone sialoprotein expression in clinically
localized human prostate cancer. J Natl Cancer Inst. 90:1000–1008.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Canales BK, Li Y, Thompson MG, Gleason JM,
Chen Z, Malaeb B, Corey DR, Herbert BS, Shay JW and Koeneman KS:
Small molecule, oligonucleotide-based telomerase template
inhibition in combination with cytolytic therapy in an in vitro
androgen-independent prostate cancer model. Urol Oncol. 24:141–151.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Li Y, Kacka M, Thompson M, Hsieh JT and
Koeneman KS: Conditionally replicating adenovirus therapy utilizing
bone sialoprotein promoter (Ad-BSP-E1a) in an in vivo study of
treating androgen-independent intraosseous prostate cancer. Urol
Oncol. 29:624–633. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Shariat SF, Semjonow A, Lilja H, Savage C,
Vickers AJ and Bjartell A: Tumor markers in prostate cancer I:
Blood-based markers. Acta Oncol. 50 Suppl 1:S61–S75. 2011.
View Article : Google Scholar
|
|
75
|
Vickers AJ, Cronin AM, Roobol MJ, Savage
CJ, Peltola M, Pettersson K, Scardino PT, Schröder FH and Lilja H:
A four-kallikrein panel predicts prostate cancer in men with recent
screening: Data from the European randomized study of screening for
prostate cancer, rotterdam. Clin Cancer Res. 16:3232–3239. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Jansen FH, Roobol M, Jenster G, Schröder
FH and Bangma CH: Screening for prostate cancer in 2008 II: The
importance of molecular subforms of prostate-specific antigen and
tissue kallikreins. Eur Urol. 55:563–574. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Steuber T, Vickers AJ, Haese A, Becker C,
Pettersson K, Chun FK, Kattan MW, Eastham JA, Scardino PT, Huland H
and Lilja H: Risk assessment for biochemical recurrence prior to
radical prostatectomy: Significant enhancement contributed by human
glandular kallikrein 2 (hK2) and free prostate specific antigen
(PSA) in men with moderate PSA-elevation in serum. Int J Cancer.
118:1234–1240. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Mattsson JM, Ravela S, Hekim C, Jonsson M,
Malm J, Närvänen A, Stenman UH and Koistinen H: Proteolytic
activity of prostate-specific antigen (PSA) towards protein
substrates and effect of peptides stimulating PSA activity. PLoS
One. 9:e1078192014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yu DC, Sakamoto GT and Henderson DR:
Identification of the transcriptional regulatory sequences of human
kallikrein 2 and their use in the construction of calydon virus
764, an attenuated replication competent adenovirus for prostate
cancer therapy. Cancer Res. 59:1498–1504. 1999.PubMed/NCBI
|
|
80
|
Gardner TA, Lee SJ, Lee SD, Li X,
Shirakawa T, Kwon DD, Park RY, Ahn KY and Jung C: Differential
expression of osteocalcin during the metastatic progression of
prostate cancer. Oncol Rep. 21:903–908. 2009.PubMed/NCBI
|
|
81
|
Thulin M Hagberg, Jennbacken K, Damber JE
and Welén K: Osteoblasts stimulate the osteogenic and metastatic
progression of castration-resistant prostate cancer in a novel
model for in vitro and in vivo studies. Clin Exp Metastasis.
31:269–283. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Koizumi M, Yonese J, Fukui I and Ogata E:
Metabolic gaps in bone formation may be a novel marker to monitor
the osseous metastasis of prostate cancer. J Urol. 167:1863–1866.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Nimptsch K, Rohrmann S, Nieters A and
Linseisen J: Serum undercarboxylated osteocalcin as biomarker of
vitamin K intake and risk of prostate cancer: A nested case-control
study in the Heidelberg cohort of the European prospective
investigation into cancer and nutrition. Cancer Epidemiol
Biomarkers Prev. 18:49–56. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Pi M and Quarles LD: GPRC6A regulates
prostate cancer progression. Prostate. 72:399–409. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Koeneman KS, Kao C, Ko SC, Yang L, Wada Y,
Kallmes DF, Gillenwater JY, Zhau HE, Chung LW and Gardner TA:
Osteocalcin-directed gene therapy for prostate-cancer bone
metastasis. World J Urol. 18:102–110. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Kubo H, Gardner TA, Wada Y, Koeneman KS,
Gotoh A, Yang L, Kao C, Lim SD, Amin MB, Yang H, et al: Phase I
dose escalation clinical trial of adenovirus vector carrying
osteocalcin promoter-driven herpes simplex virus thymidine kinase
in localized and metastatic hormone-refractory prostate cancer. Hum
Gene Ther. 14:227–241. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Matsubara S, Wada Y, Gardner TA, Egawa M,
Park MS, Hsieh CL, Zhau HE, Kao C, Kamidono S, Gillenwater JY and
Chung LW: A conditional replication-competent adenoviral vector,
Ad-OC-E1a, to cotarget prostate cancer and bone stroma in an
experimental model of androgen-independent prostate cancer bone
metastasis. Cancer Res. 61:6012–6019. 2001.PubMed/NCBI
|
|
88
|
Hsieh CL, Yang L, Miao L, Yeung F, Kao C,
Yang H, Zhau HE and Chung LW: A novel targeting modality to enhance
adenoviral replication by vitamin D(3) in androgen-independent
human prostate cancer cells and tumors. Cancer Res. 62:3084–3092.
2002.PubMed/NCBI
|
|
89
|
Dash R, Su ZZ, Lee SG, Azab B, Boukerche
H, Sarkar D and Fisher PB: Inhibition of AP-1 by SARI negatively
regulates transformation progression mediated by CCN1. Oncogene.
29:4412–4423. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Harris LG, Pannell LK, Singh S, Samant RS
and Shevde LA: Increased vascularity and spontaneous metastasis of
breast cancer by hedgehog signaling mediated upregulation of cyr61.
Oncogene. 31:3370–3380. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Lv H, Fan E, Sun S, Ma X, Zhang X, Han DM
and Cong YS: Cyr61 is up-regulated in prostate cancer and
associated with the p53 gene status. J Cell Biochem. 106:738–744.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Sarkar S, Quinn BA, Shen XN, Dash R, Das
SK, Emdad L, Klibanov AL, Wang XY, Pellecchia M, Sarkar D and
Fisher PB: Therapy of prostate cancer using a novel cancer
terminator virus and a small molecule BH-3 mimetic. Oncotarget.
6:10712–10727. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Lee SJ, Kim HS, Yu R, Lee K, Gardner TA,
Jung C, Jeng MH, Yeung F, Cheng L and Kao C: Novel
prostate-specific promoter derived from PSA and PSMA enhancers. Mol
Ther. 6:415–421. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Adamson RE, Frazier AA, Evans H, Chambers
KF, Schenk E, Essand M, Birnie R, Mitry RR, Dhawan A and Maitland
NJ: In vitro primary cell culture as a physiologically relevant
method for preclinical testing of human oncolytic adenovirus. Hum
Gene Ther. 23:218–30. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Cheng WS, Dzojic H, Nilsson B, Totterman
TH and Essand M: An oncolytic conditionally replicating adenovirus
for hormone-dependent and hormone-independent prostate cancer.
Cancer Gene Ther. 13:13–20. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Danielsson A, Dzojic H, Nilsson B and
Essand M: Increased therapeutic efficacy of the prostate-specific
oncolytic adenovirus Ad[I/PPT-E1A] by reduction of the insulator
size and introduction of the full-length E3 region. Cancer Gene
Ther. 15:203–213. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Dzojic H, Cheng WS and Essand M: Two-step
amplification of the human PPT sequence provides specific gene
expression in an immunocompetent murine prostate cancer model.
Cancer Gene Ther. 14:233–240. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Cheng WS, Kraaij R, Nilsson B, Van Der
Weel L, de Ridder CM, Totterman TH and Essand M: A novel
TARP-promoter-based adenovirus against hormone-dependent and
hormone-refractory prostate cancer. Mol Ther. 10:355–364. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Kraaij R, Van Der Weel L, de Ridder CM,
Van Der Korput HA, Zweistra JL, van Rijswijk AL, Bangma CH and
Trapman J: A small chimeric promoter for high prostate-specific
transgene expression from adenoviral vectors. Prostate. 67:829–839.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Liu C, Zhang Y, Liu MM, Zhou H, Chowdhury
W, Lupold SE, Deweese TL and Rodriguez R: Evaluation of continuous
low dose rate versus acute single high dose rate radiation combined
with oncolytic viral therapy for prostate cancer. Int J Radiat
Biol. 86:220–229. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Suzuki K, Fueyo J, Krasnykh V, Reynolds
PN, Curiel DT and Alemany R: A conditionally replicative adenovirus
with enhanced infectivity shows improved oncolytic potency. Clin
Cancer Res. 7:120–126. 2001.PubMed/NCBI
|
|
102
|
Cody JJ, Rivera AA, Lyons GR, Yang SW,
Wang M, Ashley JW, Meleth S, Feng X, Siegal GP and Douglas JT:
Expression of osteoprotegerin from a replicating adenovirus
inhibits the progression of prostate cancer bone metastases in a
murine model. Lab Invest. 93:268–278. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Dong W, van Ginkel JW, Au KY, Alemany R,
Meulenberg JJ and van Beusechem VW: ORCA-010, a novel
potency-enhanced oncolytic adenovirus, exerts strong antitumor
activity in preclinical models. Hum Gene Ther. 25:897–904. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Magnusson MK, Kraaij R, Leadley RM, De
Ridder CM, van Weerden WM, Van Schie KA, Van Der Kroeg M, Hoeben
RC, Maitland NJ and Lindholm L: A transductionally retargeted
adenoviral vector for virotherapy of Her2/neu-expressing prostate
cancer. Hum Gene Ther. 23:70–82. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Shen YH, Yang F, Wang H, Cai ZJ, Xu YP,
Zhao A, Su Y, Zhang G and Zhu SX: Arg-Gly-Asp (RGD)-modified
E1A/E1B double mutant adenovirus enhances antitumor activity in
prostate cancer cells in vitro and in mice. PLoS One.
11:e01471732016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Azab BM, Dash R, Das SK, Bhutia SK, Sarkar
S, Shen XN, Quinn BA, Dent P, Dmitriev IP, Wang XY, et al: Enhanced
prostate cancer gene transfer and therapy using a novel serotype
chimera cancer terminator virus (Ad.5/3-CTV). J Cell Physiol.
229:34–43. 2014.PubMed/NCBI
|
|
107
|
Oneal MJ, Trujillo MA, Davydova J,
McDonough S, Yamamoto M and Morris JC III: Effect of increased
viral replication and infectivity enhancement on radioiodide uptake
and oncolytic activity of adenovirus vectors expressing the sodium
iodide symporter. Cancer Gene Ther. 20:195–200. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Hakkarainen T, Rajecki M, Sarparanta M,
Tenhunen M, Airaksinen AJ, Desmond RA, Kairemo K and Hemminki A:
Targeted radiotherapy for prostate cancer with an oncolytic
adenovirus coding for human sodium iodide symporter. Clin Cancer
Res. 15:5396–5403. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Rajecki M, Kanerva A, Stenman UH, Tenhunen
M, Kangasniemi L, Särkioja M, Ala-Opas MY, Alfthan H, Sankila A,
Rintala E, et al: Treatment of prostate cancer with Ad5/3Delta24hCG
allows non-invasive detection of the magnitude and persistence of
virus replication in vivo. Mol Cancer Ther. 6:742–751. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Xu W, Zhang Z, Yang Y, Hu Z, Wang CH,
Morgan M, Wu Y, Hutten R, Xiao X, Stock S, et al: Ad5/48 hexon
oncolytic virus expressing sTGFβRIIFc produces reduced hepatic and
systemic toxicities and inhibits prostate cancer bone metastases.
Mol Ther. 22:1504–1517. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Kim JS, Lee SD, Lee SJ and Chung MK:
Development of an immunotherapeutic adenovirus targeting
hormone-independent prostate cancer. Onco Targets Ther.
6:1635–1642. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Hwang JE, Joung JY, Shin SP, Choi MK, Kim
JE, Kim YH, Park WS, Lee SJ and Lee KH: Ad5/35E1aPSESE4: A novel
approach to marking circulating prostate tumor cells with a
replication competent adenovirus controlled by PSA/PSMA
transcription regulatory elements. Cancer Lett. 372:57–64. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Heise C, Sampson-Johannes A, Williams A,
McCormick F, Von Hoff DD and Kirn DH: ONYX-015, an E1B
gene-attenuated adenovirus, causes tumor-specific cytolysis and
antitumoral efficacy that can be augmented by standard
chemotherapeutic agents. Nat Med. 3:639–645. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Mao LJ, Zhang J, Liu N, Fan L, Yang DR,
Xue BX, Shan YX and Zheng JN: Oncolytic virus carrying shRNA
targeting SATB1 inhibits prostate cancer growth and metastasis.
Tumour Biol. 36:9073–9081. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Ding M, Cao X, Xu HN, Fan JK, Huang HL,
Yang DQ, Li YH, Wang J, Li R and Liu XY: Prostate cancer-specific
and potent antitumor effect of a DD3-controlled oncolytic virus
harboring the PTEN gene. PLoS One. 7:e351532012. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Radhakrishnan S, Miranda E, Ekblad M,
Holford A, Pizarro MT, Lemoine NR and Halldén G: Efficacy of
oncolytic mutants targeting pRb and p53 pathways is synergistically
enhanced when combined with cytotoxic drugs in prostate cancer
cells and tumor xenografts. Hum Gene Ther. 21:1311–1325. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Oberg D, Yanover E, Adam V, Sweeney K,
Costas C, Lemoine NR and Halldén G: Improved potency and
selectivity of an oncolytic E1ACR2 and E1B19K deleted adenoviral
mutant in prostate and pancreatic cancers. Clin Cancer Res.
16:541–553. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Satoh M, Wang H, Ishidoya S, Abe H, Moriya
T, Hamada H and Arai Y: Oncolytic virotherapy for prostate cancer
by E1A, E1B mutant adenovirus. Urology. 70:1243–1248. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
DeWeese TL, Van Der Poel H, Li S, Mikhak
B, Drew R, Goemann M, Hamper U, DeJong R, Detorie N, Rodriguez R,
et al: A phase I trial of CV706, a replication-competent, PAS
selective oncolytic adenovirus, for the treatment of locally
recurrent prostate cancer following radiation therapy. Cancer Res.
61:7464–7472. 2001.PubMed/NCBI
|
|
120
|
Freytag SO, Khil M, Stricker H, Peabody J,
Menon M, DePeralta-Venturina M, Nafziger D, Pegg J, Paielli D,
Brown S, et al: Phase I study of replication-competent
adenovirus-mediated double suicide gene therapy for the treatment
of locally recurrent prostate cancer. Cancer Res. 62:4968–4976.
2002.PubMed/NCBI
|
|
121
|
Freytag SO, Stricker H, Peabody J, Pegg J,
Paielli D, Movsas B, Barton KN, Brown SL, Lu M and Kim JH:
Five-year follow-up of trial of replication-competent
adenovirus-mediated suicide gene therapy for treatment of prostate
cancer. Mol Ther. 15:636–642. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Small EJ, Carducci MA, Burke JM, Rodriguez
R, Fong L, van Ummersen L, Yu DC, Aimi J, Ando D, Working P, et al:
A phase I trial of intravenous CG7870, a replication-selective,
prostate-specific antigen-targeted oncolytic adenovirus, for the
treatment of hormone-refractory, metastatic prostate cancer. Mol
Ther. 14:107–117. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Kanerva A, Nokisalmi P, Diaconu I, Koski
A, Cerullo V, Liikanen I, Tähtinen S, Oksanen M, Heiskanen R,
Pesonen S, et al: Antiviral and antitumor T-cell immunity in
patients treated with GM-CSF-coding oncolytic adenovirus. Clin
Cancer Res. 19:2734–72744. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Breitbach CJ, Burke J, Jonker D,
Stephenson J, Haas AR, Chow LQ, Nieva J, Hwang TH, Moon A, Patt R,
et al: Intravenous delivery of a multi-mechanistic cancer-targeted
oncolytic poxvirus in humans. Nature. 477:99–102. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Harrington KJ, Puzanov I, Hecht JR, Hodi
FS, Szabo Z, Murugappan S and Kaufman HL: Clinical development of
talimogene laherparepvec (T-VEC): A modified herpes simplex virus
type-1-derived oncolytic immunotherapy. Expert Rev Anticancer Ther.
15:1389–1403. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Lu Y, Zhang Y, Chang G and Zhang J:
Comparison of prostate-specific promoters and the use of PSP-driven
virotherapy for prostate cancer. Biomed Res Int. 2013:6246322013.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Martiniello-Wilks R, Tsatralis T, Russell
P, Brookes DE, Zandvliet D, Lockett LJ, Both GW, Molloy PL and
Russell PJ: Transcription-targeted gene therapy for
androgen-independent prostate cancer. Cancer Gene Ther. 9:443–452.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Zhang M, Wang J, Li C, Hu N, Wang K, Ji H,
He D, Quan C, Li X, Jin N and Li Y: Potent growth-inhibitory effect
of a dual cancer-specific oncolytic adenovirus expressing apoptin
on prostate carcinoma. Int J Oncol. 42:1052–1060. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Xie X, Zhao X, Liu Y, Young CY, Tindall
DJ, Slawin KM and Spencer DM: Robust prostate-specific expression
for targeted gene therapy based on the human kallikrein 2 promoter.
Hum Gene Ther. 12:549–561. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Li X, Zhang YP, Kim HS, Bae KH, Stantz KM,
Lee SJ, Jung C, Jiménez JA, Gardner TA, Jeng MH and Kao C: Gene
therapy for prostate cancer by controlling adenovirus E1a and E4
gene expression with PSES enhancer. Cancer Res. 65:1941–1951. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Jimenez JA, Li X, Zhang YP, Bae KH,
Mohammadi Y, Pandya P, Kao C and Gardner TA: Antitumor activity of
Ad-IU2, a prostate-specific replication-competent adenovirus
encoding the apoptosis inducer, TRAIL. Cancer Gene Ther.
17:180–191. 2010. View Article : Google Scholar : PubMed/NCBI
|