Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2018 Volume 17 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2018 Volume 17 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

TGF‑β signaling: A complex role in tumorigenesis (Review)

  • Authors:
    • Shuang Liu
    • Shuang Chen
    • Jun Zeng
  • View Affiliations / Copyright

    Affiliations: Department of Biochemistry and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, P.R. China, Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
  • Pages: 699-704
    |
    Published online on: November 6, 2017
       https://doi.org/10.3892/mmr.2017.7970
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Tumor progression can be affected by various cellular components of tumor cells and/or by tumor microenvironmental factors. The tumor microenvironment comprises a variety of nonmalignant stromal cells and inflammatory cytokines, which are pivotal in tumor promotion and progression. The transforming growth factor‑β (TGF‑β) ligands (TGF‑β1, 2 and 3) are secreted inflammatory cytokines, which are known to be involved in various aspects of tumor development through two transmembrane serine‑threonine kinase receptors, TGFβR1 and TGFβR2. TGF‑β promotes or inhibits tumorigenesis depending on the concurrent gene mutations and tissue microenvironment present through the small mothers against decapentaplegic (Smad) and non‑Smad pathways. This review aims to provide a comprehensive overview of the role of the TGF‑β pathway in tumor initiation and progression.
View Figures

Figure 1

Figure 2

View References

1 

Morris SM, Carter KT, Baek JY, Koszarek A, Yeh MM, Knoblaugh SE and Grady WM: TGF-β signaling alters the pattern of liver tumorigenesis induced by Pten inactivation. Oncogene. 34:3273–3282. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K, Sasaki J, Mizuno K, Hasegawa G, Kishimoto H, Iizuka M, et al: Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest. 113:1774–1783. 2004. View Article : Google Scholar : PubMed/NCBI

3 

Attisano L and Wrana JL: Signal integration in TGF-β, WNT, and Hippo pathways. F1000Prime Rep. 5:172013. View Article : Google Scholar : PubMed/NCBI

4 

Ikushima H and Miyazono K: TGFbeta signalling: A complex web in cancer progression. Nat Rev Cancer. 10:415–424. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Derynck R, Akhurst RJ and Balmain A: TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 29:117–129. 2001. View Article : Google Scholar : PubMed/NCBI

6 

Kiyono K, Suzuki HI, Morishita Y, Komuro A, Iwata C, Yashiro M, Hirakawa K, Kano MR and Miyazono K: c-Ski overexpression promotes tumor growth and angiogenesis through inhibition of transforming growth factor-beta signaling in diffuse-type gastric carcinoma. Cancer Sci. 100:1809–1816. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Komuro A, Yashiro M, Iwata C, Morishita Y, Johansson E, Matsumoto Y, Watanabe A, Aburatani H, Miyoshi H, Kiyono K, et al: Diffuse-type gastric carcinoma: Progression, angiogenesis, and transforming growth factor beta signaling. J Natl Cancer Inst. 101:592–604. 2009. View Article : Google Scholar : PubMed/NCBI

8 

Roberts AB and Wakefield LM: The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA. 100:8621–8623. 2003. View Article : Google Scholar : PubMed/NCBI

9 

Massagué J: TGF-beta signal transduction. Annu Rev Biochem. 67:753–791. 1998. View Article : Google Scholar : PubMed/NCBI

10 

Massagué J, Blain SW and Lo RS: TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 103:295–309. 2000. View Article : Google Scholar : PubMed/NCBI

11 

Wang Y, Liu T, Tang W, Deng B, Chen Y, Zhu J and Shen X: Hepatocellular carcinoma cells induce regulatory T cells and lead to poor prognosis via production of transforming growth factor-β1. Cell Physiol Biochem. 38:306–318. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Shen H, Guan D, Shen J, Wang M, Chen X, Xu T, Liu L and Shu Y: TGF-β1 induces erlotinib resistance in non-small cell lung cancer by down-regulating PTEN. Biomed Pharmacother. 77:1–6. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Yoshimoto T, Fujita T, Kajiya M, Matsuda S, Ouhara K, Shiba H and Kurihara H: Involvement of smad2 and Erk/Akt cascade in TGF-β1-induced apoptosis in human gingival epithelial cells. Cytokine. 75:165–173. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Dai C, Yang J and Liu Y: Transforming growth factor-beta1 potentiates renal tubular epithelial cell death by a mechanism independent of Smad signaling. J Biol Chem. 278:12537–12545. 2003. View Article : Google Scholar : PubMed/NCBI

15 

Lyons RM, Gentry LE, Purchio AF and Moses HL: Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin. J Cell Biol. 110:1361–1367. 1990. View Article : Google Scholar : PubMed/NCBI

16 

Andreasen PA, Kjøller L, Christensen L and Duffy MJ: The urokinase-type plasminogen activator system in cancer metastasis: A review. Int J Cancer. 72:1–22. 1997. View Article : Google Scholar : PubMed/NCBI

17 

Yu Q and Stamenkovic I: Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 14:163–176. 2000.PubMed/NCBI

18 

Mir FA, Contreras-Ruiz L and Masli S: Thrombospondin-1-dependent immune regulation by transforming growth factor-β2-exposed antigen-presenting cells. Immunology. 146:547–556. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Murphy-Ullrich JE and Poczatek M: Activation of latent TGF-beta by thrombospondin-1: Mechanisms and physiology. Cytokine Growth Factor Rev. 11:59–69. 2000. View Article : Google Scholar : PubMed/NCBI

20 

Dutta A, Li J, Fedele C, Sayeed A, Singh A, Violette SM, Manes TD and Languino LR: αvβ6 integrin is required for TGFβ1-mediated matrix metalloproteinase2 expression. Biochem J. 466:525–536. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Feng XH and Derynck R: Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol. 21:659–693. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Shi Y and Massagué J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 113:685–700. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Heldin CH, Miyazono K and ten Dijke P: TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 390:465–471. 1997. View Article : Google Scholar : PubMed/NCBI

24 

Park S, Jung HH, Park YH, Ahn JS and Im YH: ERK/MAPK pathways play critical roles in EGFR ligands-induced MMP1 expression. Biochem Biophys Res Commun. 407:680–686. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Cheng X, Gao W, Dang Y, Liu X, Li Y, Peng X and Ye X: Both ERK/MAPK and TGF-Beta/Smad signaling pathways play a role in the kidney fibrosis of diabetic mice accelerated by blood glucose fluctuation. J Diabetes Res. 2013:4637402013. View Article : Google Scholar : PubMed/NCBI

26 

Yu JS, Ramasamy TS, Murphy N, Holt MK, Czapiewski R, Wei SK and Cui W: PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation. Nat Commun. 6:72122015. View Article : Google Scholar : PubMed/NCBI

27 

Vo BT, Morton D Jr, Komaragiri S, Millena AC, Leath C and Khan SA: TGF-β effects on prostate cancer cell migration and invasion are mediated by PGE2 through activation of PI3K/AKT/mTOR pathway. Endocrinology. 154:1768–1779. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Singha PK, Pandeswara S, Geng H, Lan R, Venkatachalam MA and Saikumar P: TGF-β induced TMEPAI/PMEPA1 inhibits canonical Smad signaling through R-Smad sequestration and promotes non-canonical PI3K/Akt signaling by reducing PTEN in triple negative breast cancer. Genes Cancer. 5:320–336. 2014.PubMed/NCBI

29 

Reduced beta 2 glycoprotein I improve diabetic nephropathy via inhibiting TGF-β1-p38 MAPK pathway [Retraction]. Int J Clin Exp Med. 8:197922015.PubMed/NCBI

30 

Chen IT, Hsu PH, Hsu WC, Chen NJ and Tseng PH: Polyubiquitination of transforming growth factor β-activated Kinase 1 (TAK1) at lysine 562 residue regulates TLR4-mediated JNK and p38 MAPK activation. Sci Rep. 5:123002015. View Article : Google Scholar : PubMed/NCBI

31 

Suzuki T, Dai P, Hatakeyama T, Harada Y, Tanaka H, Yoshimura N and Takamatsu T: TGF-β signaling regulates pancreatic β-Cell proliferation through control of cell cycle regulator p27 expression. Acta Histochem Cytochem. 46:51–58. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Senturk S, Mumcuoglu M, Gursoy-Yuzugullu O, Cingoz B, Akcali KC and Ozturk M: Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Hepatology. 52:966–974. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Wang Y, Wu J, Lin B, Li X, Zhang H, Ding H, Chen X, Lan L and Luo H: Galangin suppresses HepG2 cell proliferation by activating the TGF-β receptor/Smad pathway. Toxicology. 326:9–17. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Guo C, Liu S, Dong P, Zhao D, Wang C, Tao Z and Sun MZ: Akbu-LAAO exhibits potent anti-tumor activity to HepG2 cells partially through produced H2O2 via TGF-β signal pathway. Sci Rep. 5:182152015. View Article : Google Scholar : PubMed/NCBI

35 

Cheng L, Zhang C, Li D, Zou J and Wang J: Transforming growth factor-β1 (TGF-β1) induces mouse precartilaginous stem cell proliferation through TGF-β receptor II (TGFRII)-Akt-β-catenin signaling. Int J Mol Sci. 15:12665–12676. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Kudo-Saito C, Shirako H, Takeuchi T and Kawakami Y: Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell. 15:195–206. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Hay ED: An overview of epithelio-mesenchymal transformation. Acta Anat (Basel). 154:8–20. 1995. View Article : Google Scholar : PubMed/NCBI

38 

Muthusamy BP, Budi EH, Katsuno Y, Lee MK, Smith SM, Mirza AM, Akhurst RJ and Derynck R: ShcA protects against epithelial-mesenchymal transition through compartmentalized inhibition of TGF-β-Induced Smad activation. PLoS Biol. 13:e10023252015. View Article : Google Scholar : PubMed/NCBI

39 

Xu J, Lamouille S and Derynck R: TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 19:156–172. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Lee JY, Chang JW, Yang WS, Kim SB, Park SK, Park JS and Lee SK: Albumin-induced epithelial-mesenchymal transition and ER stress are regulated through a common ROS-c-Src kinase-mTOR pathway: Effect of imatinib mesylate. Am J Physiol Renal Physiol. 300:F1214–1222. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR and Massagué J: TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 133:66–77. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Naka K: TGF-β signaling in cancer stem cells. Nihon Rinsho. 73:784–789. 2015.(In Japanese). PubMed/NCBI

43 

You H, Ding W and Rountree CB: Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor-beta. Hepatology. 51:1635–1644. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Chanmee T, Ontong P, Mochizuki N, Kongtawelert P, Konno K and Itano N: Excessive hyaluronan production promotes acquisition of cancer stem cell signatures through the coordinated regulation of Twist and the transforming growth factor β (TGF-β)-Snail signaling axis. J Biol Chem. 289:26038–26056. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Fan QM, Jing YY, Yu GF, Kou XR, Ye F, Gao L, Li R, Zhao QD, Yang Y, Lu ZH and Wei LX: Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett. 352:160–168. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Yu D, Shin HS, Lee YS and Lee YC: miR-106b modulates cancer stem cell characteristics through TGF-β/Smad signaling in CD44-positive gastric cancer cells. Lab Invest. 94:1370–1381. 2014. View Article : Google Scholar : PubMed/NCBI

47 

El Helou R, Wicinski J, Guille A, Adélaïde J, Finetti P, Bertucci F, Chaffanet M, Birnbaum D, Charafe-Jauffret E and Ginestier C: Brief reports: A distinct DNA methylation signature defines breast cancer stem cells and predicts cancer outcome. Stem Cells. 32:3031–3036. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Wang J, Shao N, Ding X, Tan B, Song Q, Wang N, Jia Y, Ling H and Cheng Y: Crosstalk between transforming growth factor-β signaling pathway and long non-coding RNAs in cancer. Cancer Lett. 370:296–301. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Martin M and Herceg Z: From hepatitis to hepatocellular carcinoma: A proposed model for cross-talk between inflammation and epigenetic mechanisms. Genome Med. 4:82012. View Article : Google Scholar : PubMed/NCBI

50 

Hernandez-Gea V, Toffanin S, Friedman SL and Llovet JM: Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology. 144:512–527. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Nana AW, Yang PM and Lin HY: Overview of transforming growth factor β superfamily involvement in glioblastoma initiation and progression. Asian Pac J Cancer Prev. 16:6813–6823. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Neuzillet C, de Gramont A, Tijeras-Raballand A, de Mestier L, Cros J, Faivre S and Raymond E: Perspectives of TGF-β inhibition in pancreatic and hepatocellular carcinomas. Oncotarget. 5:78–94. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Yang L, Pang Y and Moses HL: TGF-beta and immune cells: An important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 31:220–227. 2010. View Article : Google Scholar : PubMed/NCBI

54 

Yang L: TGFbeta, a potent regulator of tumor microenvironment and host immune response, implication for therapy. Curr Mol Med. 10:374–380. 2010. View Article : Google Scholar : PubMed/NCBI

55 

Chen J, Yao Y, Gong C, Yu F, Su S, Chen J, Liu B, Deng H, Wang F, Lin L, et al: CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell. 19:541–555. 2011. View Article : Google Scholar : PubMed/NCBI

56 

Pittet MJ: Behavior of immune players in the tumor microenvironment. Curr Opin Oncol. 21:53–59. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Condeelis J and Pollard JW: Macrophages: obligate partners for tumor cell migration, invasion and metastasis. Cell. 124:263–266. 2006. View Article : Google Scholar : PubMed/NCBI

58 

Storz P: Reactive oxygen species in tumor progression. Front Biosci. 10:1881–1896. 2005. View Article : Google Scholar : PubMed/NCBI

59 

Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, et al: Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature. 436:123–127. 2005. View Article : Google Scholar : PubMed/NCBI

60 

Pelicano H, Carney D and Huang P: ROS stress in cancer cells and therapeutic implications. Drug Resist Updat. 7:97–110. 2004. View Article : Google Scholar : PubMed/NCBI

61 

Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK and Lambeth JD: Cell transformation by the superoxide-generating oxidase Mox1. Nature. 401:79–82. 1999. View Article : Google Scholar : PubMed/NCBI

62 

Kalluri R: Basement membranes: Structure, assembly and role in tumour angiogenesis. Nat Rev Cancer. 3:422–433. 2003. View Article : Google Scholar : PubMed/NCBI

63 

Hasegawa Y, Takanashi S, Kanehira Y, Tsushima T, Imai T and Okumura K: Transforming growth factor-beta1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer. 91:964–971. 2001. View Article : Google Scholar : PubMed/NCBI

64 

Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordón-Cardo C, Guise TA and Massagué J: A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 3:537–549. 2003. View Article : Google Scholar : PubMed/NCBI

65 

Sánchez-Elsner T, Botella LM, Velasco B, Corbi A, Attisano L and Bernabéu C: Synergistic cooperation between hypoxia and transforming growth factor-beta pathways on human vascular endothelial growth factor gene expression. J Biol Chem. 276:38527–38535. 2001. View Article : Google Scholar : PubMed/NCBI

66 

Zhao J, Cheng Q, Ye P, Yang G, Liu S, Ao Q, Liu Y and Hu Y: Atorvastatin improves pathological changes in the aged kidney by upregulating peroxisome proliferator-activated receptor expression and reducing matrix metalloproteinase-9 and transforming growth factor-β1 levels. Exp Gerontol. 74:37–42. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Hua Y, Zhang W, Xie Z, Xu N and Lu Y: MMP-2 is mainly expressed in arterioles and contributes to cerebral vascular remodeling associated with TGF-β1 signaling. J Mol Neurosci. 59:317–325. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Şekerci ÇA, Işbilen B, Işman F, Akbal C, Şimşek F and Tarcan T: Urinary NGF, TGF-β1, TIMP-2 and bladder wall thickness predict neurourological findings in children with myelodysplasia. J Urol. 191:199–205. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Schwarte-Waldhoff I, Volpert OV, Bouck NP, Sipos B, Hahn SA, Klein-Scory S, Lüttges J, Klöppel G, Graeven U, Eilert-Micus C, et al: Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc Natl Acad Sci USA. 97:9624–9629. 2000. View Article : Google Scholar : PubMed/NCBI

70 

Xu J, Acharya S, Sahin O, Zhang Q, Saito Y, Yao J, Wang H, Li P, Zhang L, Lowery FJ, et al: 14-3-3ζ turns TGF-β's function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2. Cancer Cell. 27:177–192. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Akahira J, Sugihashi Y, Suzuki T, Ito K, Niikura H, Moriya T, Nitta M, Okamura H, Inoue S, Sasano H, et al: Decreased expression of 14-3-3 sigma is associated with advanced disease in human epithelial ovarian cancer: Its correlation with aberrant DNA methylation. Clin Cancer Res. 10:2687–2693. 2004. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu S, Chen S and Zeng J: TGF‑β signaling: A complex role in tumorigenesis (Review). Mol Med Rep 17: 699-704, 2018.
APA
Liu, S., Chen, S., & Zeng, J. (2018). TGF‑β signaling: A complex role in tumorigenesis (Review). Molecular Medicine Reports, 17, 699-704. https://doi.org/10.3892/mmr.2017.7970
MLA
Liu, S., Chen, S., Zeng, J."TGF‑β signaling: A complex role in tumorigenesis (Review)". Molecular Medicine Reports 17.1 (2018): 699-704.
Chicago
Liu, S., Chen, S., Zeng, J."TGF‑β signaling: A complex role in tumorigenesis (Review)". Molecular Medicine Reports 17, no. 1 (2018): 699-704. https://doi.org/10.3892/mmr.2017.7970
Copy and paste a formatted citation
x
Spandidos Publications style
Liu S, Chen S and Zeng J: TGF‑β signaling: A complex role in tumorigenesis (Review). Mol Med Rep 17: 699-704, 2018.
APA
Liu, S., Chen, S., & Zeng, J. (2018). TGF‑β signaling: A complex role in tumorigenesis (Review). Molecular Medicine Reports, 17, 699-704. https://doi.org/10.3892/mmr.2017.7970
MLA
Liu, S., Chen, S., Zeng, J."TGF‑β signaling: A complex role in tumorigenesis (Review)". Molecular Medicine Reports 17.1 (2018): 699-704.
Chicago
Liu, S., Chen, S., Zeng, J."TGF‑β signaling: A complex role in tumorigenesis (Review)". Molecular Medicine Reports 17, no. 1 (2018): 699-704. https://doi.org/10.3892/mmr.2017.7970
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team