Open Access

Pirfenidone suppresses TGF‑β1‑induced human intestinal fibroblasts activities by regulating proliferation and apoptosis via the inhibition of the Smad and PI3K/AKT signaling pathway

  • Authors:
    • Yanwu Sun
    • Yiyi Zhang
    • Pan Chi
  • View Affiliations

  • Published online on: August 22, 2018     https://doi.org/10.3892/mmr.2018.9423
  • Pages: 3907-3913
  • Copyright: © Sun et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Intestinal fibroblasts, the main effector cells of intestinal fibrosis, are considered to be a good target for anti‑fibrotic therapy. The aim of the present study was to examine the effects of pirfenidone (PFD) on human intestinal fibroblasts (HIFs) stimulated by transforming growth factor (TGF)‑β1 and to explore the potential mechanism. Prior to stimulation with TGF‑β1 (10 ng/ml), HIFs were treated with or without PFD (1 mg/ml). Cell proliferation was determined by Cell Counting Kit (CCK)‑8 and colony formation assays, and cell apoptosis was assessed using flow cytometry and a TUNEL assay. Reverse transcription‑quantitative polymerase chain reaction and western blotting were performed to evaluate the mRNA and protein expressions of α‑smooth muscle actin (α‑SMA), collagen I and fibronectin. The protein expression of TGF‑β1/mothers against decapentaplegic homolog (Smad) and phosphoinositide 3‑kinase (PI3K)/protein kinase B (AKT) signaling pathways was evaluated by western blotting. CCK‑8 and colony formation assays demonstrated that PFD significantly inhibited cell proliferation in HIFs stimulated with TGF‑β1. Flow cytometry and TUNEL assays revealed that PFD treatment significantly enhanced apoptosis in TGF‑β1‑stimulated HIFs. In addition, PFD markedly reduced TGF‑β1‑induced HIF activities, such as myofibroblast differentiation (α‑SMA), and collagen production (collagen I and fibronectin). These effects of PFD were mediated by the inhibition of the TGF‑β1/Smad and PI3K/AKT signaling pathways. Therefore, the present study demonstrated that PFD reduced TGF‑β1‑induced fibrogenic activities of HIFs, suggesting that PFD may be a potential therapeutic agent for intestinal fibrosis.
View Figures
View References

Related Articles

Journal Cover

October-2018
Volume 18 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Sun Y, Zhang Y and Chi P: Pirfenidone suppresses TGF‑β1‑induced human intestinal fibroblasts activities by regulating proliferation and apoptosis via the inhibition of the Smad and PI3K/AKT signaling pathway. Mol Med Rep 18: 3907-3913, 2018
APA
Sun, Y., Zhang, Y., & Chi, P. (2018). Pirfenidone suppresses TGF‑β1‑induced human intestinal fibroblasts activities by regulating proliferation and apoptosis via the inhibition of the Smad and PI3K/AKT signaling pathway. Molecular Medicine Reports, 18, 3907-3913. https://doi.org/10.3892/mmr.2018.9423
MLA
Sun, Y., Zhang, Y., Chi, P."Pirfenidone suppresses TGF‑β1‑induced human intestinal fibroblasts activities by regulating proliferation and apoptosis via the inhibition of the Smad and PI3K/AKT signaling pathway". Molecular Medicine Reports 18.4 (2018): 3907-3913.
Chicago
Sun, Y., Zhang, Y., Chi, P."Pirfenidone suppresses TGF‑β1‑induced human intestinal fibroblasts activities by regulating proliferation and apoptosis via the inhibition of the Smad and PI3K/AKT signaling pathway". Molecular Medicine Reports 18, no. 4 (2018): 3907-3913. https://doi.org/10.3892/mmr.2018.9423