Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December-2018 Volume 18 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2018 Volume 18 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Roles of fatty acid metabolism in tumourigenesis: Beyond providing nutrition (Review)

  • Authors:
    • Xiang‑Hua Yu
    • Xiao‑Hua Ren
    • Xin‑Hua Liang
    • Ya‑Ling Tang
  • View Affiliations / Copyright

    Affiliations: Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China, Department of Stomatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China, Department of Oral Pathology, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
  • Pages: 5307-5316
    |
    Published online on: October 23, 2018
       https://doi.org/10.3892/mmr.2018.9577
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Fatty acid (FA) metabolism, including the uptake, de novo synthesis and oxidation of FAs, is critical for the survival, proliferation, differentiation and metastasis of cancer cells. Several bodies of evidence have confirmed the metabolic reprogramming of FAs that occurs during cancer development. The present review aimed to evaluate FAs in terms of how the hallmarks of cancer are gradually established in tumourigenesis and tumour progression, and consider the auxo‑action and exact mechanisms of FA metabolism in these processes. In addition, this interaction in the tumour microenvironment was also discussed. Based on the role of FA metabolism in tumour development, targeting FA metabolism may effectively target cancer, affecting a number of important characteristics of cancer progression and survival.
View Figures

Figure 1

Figure 2

View References

1 

Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI

2 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Konerding MA, Fait E and Gaumann A: 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. Br J Cancer. 84:1354–1362. 2001. View Article : Google Scholar : PubMed/NCBI

4 

Mcintyre A and Harris AL: Metabolic and hypoxic adaptation to anti-angiogenic therapy: A target for induced essentiality. EMBO Mol Med. 7:368–379. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Zaytseva YY, Elliott VA, Rychahou P, Mustain WC, Kim JT, Valentino J, Gao T, O'Connor KL, Neltner JM, Lee EY, et al: Cancer cell-associated fatty acid synthase activates endothelial cells and promotes angiogenesis in colorectal cancer. Carcinogenesis. 35:1341–1351. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Li J, Dong L, Wei D, Wang X, Zhang S and Hua L: Fatty acid synthase mediates the epithelial-mesenchymal transition of breast cancer cells. Int J Biol Sci. 10:171–180. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Browne CD, Hindmarsh EJ and Smith JW: Inhibition of endothelial cell proliferation and angiogenesis by orlistat, a fatty acid synthase inhibitor. FASEB J. 20:2027–2035. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Zhou Y, Jin G, Mi R, Zhang J, Zhang J, Xu H, Cheng S, Zhang Y, Song W and Liu F: Inhibition of fatty acid synthase suppresses neovascularization via regulating the expression of VEGF-A in glioma. J Cancer Res Clin Oncol. 142:2447–2459. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Seguin F, Carvalho MA, Bastos DC, Agostini M, Zecchin KG, Alvarez-Flores MP, Chudzinski-Tavassi AM, Coletta RD and Graner E: The fatty acid synthase inhibitor orlistat reduces experimental metastases and angiogenesis in B16-F10 melanomas. Br J Cancer. 107:977–987. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Folkman J: Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 29 6 Suppl 16:S15–S18. 2002. View Article : Google Scholar

11 

Cantelmo AR, Brajic A and Carmeliet P: Endothelial metabolism driving angiogenesis: Emerging concepts and principles. Cancer J. 21:244–249. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Schoors S, Bruning U, Missiaen R, Queiroz KC, Borgers G, Elia I, Zecchin A, Cantelmo AR, Christen S, Goveia J, et al: Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature. 520:192–197. 2015. View Article : Google Scholar : PubMed/NCBI

13 

DeBerardinis RJ, Lum JJ, Hatzivassiliou G and Thompson CB: The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7:11–20. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Elmasri H, Ghelfi E, Yu C, Traphagen S, Cernadas M, Cao H, Shi GP, Plutzky J, Sahin M, Hotamisligil G and Cataltepe S: Endothelial cell-fatty acid binding protein 4 promotes angiogenesis: Role of stem cell factor/c-kit pathway. Angiogenesis. 15:457–468. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Ku CY, Liu YH, Lin HY, Lu SC and Lin JY: Liver fatty acid-binding protein (L-FABP) promotes cellular angiogenesis and migration in hepatocellular carcinoma. Oncotarget. 7:18229–18246. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Kazlauskas A: Lysophosphatidic acid contributes to angiogenic homeostasis. Exp Cell Res. 333:166–170. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Talmadge JE and Fidler IJ: AACR centennial series: The biology of cancer metastasis: Historical perspective. Cancer Res. 70:5649–5669. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Li L and Li W: Epithelial-mesenchymal transition in human cancer: Comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol Ther. 150:33–46. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, Attolini CS, Berenguer A, Prats N, Toll A, Hueto JA, et al: Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 541:412017. View Article : Google Scholar : PubMed/NCBI

20 

Nath A, Li I, Roberts LR and Chan C: Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 5:147522015. View Article : Google Scholar : PubMed/NCBI

21 

Röhrig F and Schulze A: The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 16:732–749. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Zhao W, Prijic S, Urban BC, Tisza MJ, Zuo Y, Li L, Tan Z, Chen X, Mani SA and Chang JT: Candidate anti-metastasis drugs suppress the metastatic capacity of breast cancer cells by reducing membrane fluidity. Cancer Res. 76:2037–2049. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Polyak K and Weinberg RA: Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nat Rev Cancer. 9:265–273. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Jiang L, Wang H, Li J, Fang X, Pan H, Yuan X and Zhang P: Up-regulated FASN expression promotes transcoelomic metastasis of ovarian cancer cell through epithelial-mesenchymal transition. Int J Mol Sci. 15:11539–11554. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Jiang L, Xiao L, Sugiura H, Huang X, Ali A, Kuro-o M, Deberardinis RJ and Boothman DA: Metabolic reprogramming during TGFβ1-induced epithelial-to-mesenchymal transition. Oncogene. 34:3908–3916. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Zaytseva YY, Rychahou PG, Gulhati P, Elliott VA, Mustain WC, O'Connor K, Morris AJ, Sunkara M, Weiss HL, Lee EY and Evers BM: Inhibition of fatty acid synthase attenuates CD44-associated signaling and reduces metastasis in colorectal cancer. Cancer Res. 72:1504–1517. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Hung CM, Kuo DH, Chou CH, Su YC, Ho CT and Way TD: Osthole suppresses hepatocyte growth factor (HGF)-induced epithelial-mesenchymal transition via repression of the c-Met/Akt/mTOR pathway in human breast cancer cells. J Agric Food Chem. 59:9683–9690. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Gonzalezguerrico AM, Espinoza I, Schroeder B, Park CH, Kvp CM, Khurana A, Corominas-Faja B, Cuyàs E, Alarcón T, Kleer C, et al: Suppression of endogenous lipogenesis induces reversion of the malignant phenotype and normalized differentiation in breast cancer. Oncotarget. 7:71151–71168. 2016.PubMed/NCBI

29 

Ruan HY, Yang C, Tao XM, He J, Wang T, Wang H, Wang C, Jin GZ, Jin HJ and Qin WX: Downregulation of ACSM3 promotes metastasis and predicts poor prognosis in hepatocellular carcinoma. Am J Cancer Res. 7:543–553. 2017.PubMed/NCBI

30 

Sun L, Kong Y, Cao M, Zhou H, Li H, Cui Y, Fang F, Zhang W, Li J, Zhu X, et al: Decreased expression of acetyl-CoA synthase 2 promotes metastasis and predicts poor prognosis in hepatocellular carcinoma. Cancer Sci. 108:1338–1346. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Hanai JI, Doro N, Seth P and Sukhatme VP: ATP citrate lyase knockdown impacts cancer stem cells in vitro. Cell Death Dis. 4:e6962013. View Article : Google Scholar : PubMed/NCBI

32 

Hanai J, Doro N, Sasaki AT, Kobayashi S, Cantley LC, Seth P and Sukhatme VP: Inhibition of lung cancer growth: ATP citrate lyase knockdown and statin treatment leads to dual blockade of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)/AKT pathways. J Cell Physiol. 227:1709–1720. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Xu Y, Huang J, Xin W, Chen L, Zhao X, Lv Z, Liu Y and Wan Q: Lipid accumulation is ahead of epithelial-to-mesenchymal transition and therapeutic intervention by acetyl-CoA carboxylase 2 silence in diabetic nephropathy. Metabolism. 63:716–726. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Chen SW, Chou CT, Chang CC, Li YJ, Chen ST, Lin IC, Kok SH, Cheng SJ, Lee JJ, Wu TS, et al: HMGCS2 enhances invasion and metastasis via direct interaction with PPARα to activate Src signaling in colorectal cancer and oral cancer. Oncotarget. 8:22460–22476. 2017.PubMed/NCBI

35 

Koichiro K, Shogo S, Chiaki K, Yuki K, Ke Y and Hiroshi F: High expression of fatty acid-binding protein 5 promotes cell growth and metastatic potential of colorectal cancer cells. FEBS Open Bio. 6:190–199. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, Carver NJ, Pillai RV, Sullivan PM, Sondhi V, et al: 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science. 342:1094–1098. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, et al: Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 17:1498–1503. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Muehlberg FL, Song YH, Krohn A, Pinilla SP, Droll LH, Leng X, Seidensticker M, Ricke J, Altman AM, Devarajan E, et al: Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis. 30:589–597. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Puisieux A, Brabletz T and Caramel J: Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol. 16:488–494. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Sciacovelli M and Frezza C: Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J. 284:3132–3144. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Kerr JF, Wyllie AH and Currie AR: Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 26:239–257. 1972. View Article : Google Scholar : PubMed/NCBI

42 

Adams JM and Cory S: Bcl-2-regulated apoptosis: Mechanism and therapeutic potential. Curr Opin Immunol. 19:488–496. 2007. View Article : Google Scholar : PubMed/NCBI

43 

Nishi K, Suzuki K, Sawamoto J, Tokizawa Y, Iwase Y, Yumita N and Ikeda T: Inhibition of fatty acid synthesis induces apoptosis of human pancreatic cancer cells. Anticancer Res. 36:4655–4660. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Ventura R, Mordec K, Waszczuk J, Wang Z, Lai J, Fridlib M, Buckley D, Kemble G and Heuer TS: Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine. 2:806–822. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Bandyopadhyay S, Zhan R, Wang Y, Pai SK, Hirota S, Hosobe S, Takano Y, Saito K, Furuta E, Iiizumi M, et al: Mechanism of apoptosis induced by the inhibition of fatty acid synthase in breast cancer cells. Cancer Res. 66:5934–5940. 2006. View Article : Google Scholar : PubMed/NCBI

46 

Cui Y, Xing P, Wang Y, Liu M, Qiu L, Ying G and Li B: NADPH accumulation is responsible for apoptosis in breast cancer cells induced by fatty acid synthase inhibition. Oncotarget. 8:32576–32585. 2017.PubMed/NCBI

47 

Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B, Kaluarachchi K, Bornmann W, Duvvuri S, Taegtmeyer H and Andreeff M: Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest. 120:142–156. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Boren J and Brindle KM: Apoptosis-induced mitochondrial dysfunction causes cytoplasmic lipid droplet formation. Cell Death Differ. 19:1561–1570. 2012. View Article : Google Scholar : PubMed/NCBI

49 

White E: Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer. 12:401–410. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Jia SN, Lin C, Chen DF, Li AQ, Dai L, Zhang L, Zhao LL, Yang JS, Yang F and Yang WJ: The transcription factor p8 regulates autophagy in response to palmitic acid stress via a mammalian target of rapamycin (mTOR)-independent signaling pathway. J Biol Chem. 291:4462–4472. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Wen YA, Xing X, Harris JW, Zaytseva YY, Mitov MI, Napier DL, Weiss HL, Mark Evers B and Gao T: Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer. Cell Death Dis. 8:e25932017. View Article : Google Scholar : PubMed/NCBI

52 

Niso-Santano M, Malik SA, Pietrocola F, Pedro Bravo-San JM, Mariño G, Cianfanelli V, Ben-Younès A, Troncoso R, Markaki M, Sica V, et al: Unsaturated fatty acids induce non-canonical autophagy. EMBO J. 34:1025–1041. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Schreiber RD, Old LJ and Smyth MJ: Cancer immunoediting: Integrating immunity's roles in cancer suppression and promotion. Science. 331:1565–1570. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Lochner M, Berod L and Sparwasser T: Fatty acid metabolism in the regulation of T cell function. Trends Immunol. 36:81–91. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Kleinfeld AM and Okada C: Free fatty acid release from human breast cancer tissue inhibits cytotoxic T-lymphocyte-mediated killing. J Lipid Res. 46:1983–1990. 2005. View Article : Google Scholar : PubMed/NCBI

56 

Ma C, Kesarwala AH, Eggert T, Medina-Echeverz J, Kleiner DE, Jin P, Stroncek DF, Terabe M, Kapoor V, ElGindi M, et al: NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature. 531:253–257. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Hossain F, Al-Khami AA, Wyczechowska D, Hernandez C, Zheng L, Reiss K, Valle LD, Trillo-Tinoco J, Maj T, Zou W, et al: Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol Res. 3:1236–1247. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Cao W and Gabrilovich D: Abstract 3649: Contribution of fatty acid accumulation to myeloid-derived suppressor cell function in cancer. Cancer Res. 71:36492011. View Article : Google Scholar : PubMed/NCBI

59 

Harris DT: Changes in plasma membrane phospholipids inhibit antibody-mediated lysis. Biochem Biophys Res Commun. 417:231–236. 2011. View Article : Google Scholar : PubMed/NCBI

60 

Shaikh SR and Edidin M: Immunosuppressive effects of polyunsaturated fatty acids on antigen presentation by human leukocyte antigen class I molecules. J Lipid Res. 48:127–138. 2007. View Article : Google Scholar : PubMed/NCBI

61 

Harris DT: Alterations in target cell membrane phospholipids alter T cell but not NK cell killing. Immunobiology. 218:21–27. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Yoo TJ, Kuo CY, Spector AA, Denning GM, Floyd R, Whiteaker S, Kim H, Kim J, Abbas M and Budd TW: Effect of fatty acid modification of cultured hepatoma cells on susceptibility to natural killer cells. Cancer Res. 42:3596–3600. 1982.PubMed/NCBI

63 

Nomura M, Liu J, Rovira II, Gonzalez-Hurtado E, Lee J, Wolfgang MJ and Finkel T: Fatty acid oxidation in macrophage polarization. Nat Immunol. 17:216–217. 2016. View Article : Google Scholar : PubMed/NCBI

64 

Luan B, Yoon YS, Le LJ, Kaestner KH, Hedrick S and Montminy M: CREB pathway links PGE2 signaling with macrophage polarization. Proc Natl Acad Sci USA. 112:15642–15647. 2015.PubMed/NCBI

65 

Kalinski P: Regulation of immune responses by prostaglandin E2. J Immunol. 188:21–28. 2012. View Article : Google Scholar : PubMed/NCBI

66 

Ford JH: Saturated fatty acid metabolism is key link between cell division, cancer, and senescence in cellular and whole organism aging. Age (Dordr). 32:231–237. 2010. View Article : Google Scholar : PubMed/NCBI

67 

Maeda M, Scaglia N and Igal RA: Regulation of fatty acid synthesis and Delta9-desaturation in senescence of human fibroblasts. Life Sci. 84:119–124. 2009. View Article : Google Scholar : PubMed/NCBI

68 

Chen Y, Wang Y, Huang Y, Zeng H, Hu B, Guan L, Zhang H, Yu AM, Johnson CH, Gonzalez FJ, et al: PPARα regulates tumor cell proliferation and senescence via a novel target gene carnitine palmitoyltransferase 1C. Carcinogenesis. 38:474–483. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Ponnusamy S, Alderson NL, Hama H, Bielawski J, Jiang JC, Bhandari R, Snyder SH, Jazwinski SM and Ogretmen B: Regulation of telomere length by fatty acid elongase 3 in yeast. Involvement of inositol phosphate metabolism and Ku70/80 function. J Biol Chem. 283:27514–27524. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Eitsuka T, Nakagawa K, Suzuki T and Miyazawa T: Polyunsaturated fatty acids inhibit telomerase activity in DLD-1 human colorectal adenocarcinoma cells: A dual mechanism approach. Biochim Biophys Acta. 1737:1–10. 2005. View Article : Google Scholar : PubMed/NCBI

71 

Eitsuka T, Nakagawa K and Miyazawa T: Dual mechanisms for telomerase inhibition in DLD-1 human colorectal adenocarcinoma cells by polyunsaturated fatty acids. Biofactors. 21:19–21. 2004. View Article : Google Scholar : PubMed/NCBI

72 

Mizushina Y, Takeuchi T, Sugawara F and Yoshida H: Anti-cancer targeting telomerase inhibitors: β-rubromycin and oleic acid. Mini Rev Med Chem. 12:1135–1143. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Scaglia N, Tyekucheva S, Zadra G, Photopoulos C and Loda M: De novo fatty acid synthesis at the mitotic exit is required to complete cellular division. Cell Cycle. 13:859–868. 2014. View Article : Google Scholar : PubMed/NCBI

74 

Cai L and Tu BP: Acetyl-CoA drives the transcriptional growth program in yeast. Cell Cycle. 10:3045–3046. 2011. View Article : Google Scholar : PubMed/NCBI

75 

Mauvoisin D, Charfi C, Lounis AM, Rassart E and Mounier C: Decreasing stearoyl-CoA desaturase-1 expression inhibits β-catenin signaling in breast cancer cells. Cancer Sci. 104:36–42. 2013. View Article : Google Scholar : PubMed/NCBI

76 

Lee D, Wada K, Taniguchi Y, Al-Shareef H, Masuda T, Usami Y, Aikawa T, Okura M, Kamisaki Y and Kogo M: Expression of fatty acid binding protein 4 is involved in the cell growth of oral squamous cell carcinoma. Oncol Rep. 31:1116–1120. 2014. View Article : Google Scholar : PubMed/NCBI

77 

Gao Y, Lin LP, Zhu CH, Chen Y, Hou YT and Ding J: Growth arrest induced by C75, A fatty acid synthase inhibitor, was partially modulated by p38 MAPK but not by p53 in human hepatocellular carcinoma. Cancer Biol Ther. 5:978–985. 2006. View Article : Google Scholar : PubMed/NCBI

78 

Pan J, Zhou S, Xiang R, Zhao Z, Liu S, Ding N, Gong S, Lin Y, Li X, Bai X, et al: An Ω-3 fatty acid desaturase-expressing gene attenuates prostate cancer proliferation by cell cycle regulation. Oncol Lett. 13:3717–3721. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Hollstein M, Sidransky D, Vogelstein B and Harris CC: p53 mutations in human cancers. Science. 253:49–53. 1991. View Article : Google Scholar : PubMed/NCBI

80 

Saadi H, Seillier M and Carrier A: The stress protein TP53INP1 plays a tumor suppressive role by regulating metabolic homeostasis. Biochimie. 118:44–50. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Parrales A and Iwakuma T: p53 as a regulator of lipid metabolism in cancer. Int J Mol Sci. 17:E20742016. View Article : Google Scholar : PubMed/NCBI

82 

Furuta E, Pai SK, Zhan R, Bandyopadhyay S, Watabe M, Mo YY, Hirota S, Hosobe S, Tsukada T, Miura K, et al: Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res. 68:1003–1011. 2008. View Article : Google Scholar : PubMed/NCBI

83 

Huang D, Li T, Li X, Zhang L, Sun L, He X, Zhong X, Jia D, Song L, Semenza GL, et al: HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression. Cell Rep. 8:1930–1942. 2014. View Article : Google Scholar : PubMed/NCBI

84 

Zhang Y, Wang H, Zhang J, Lv J and Huang Y: Positive feedback loop and synergistic effects between hypoxia-inducible factor-2α and stearoyl-CoA desaturase-1 promote tumorigenesis in clear cell renal cell carcinoma. Cancer Sci. 104:416–422. 2013. View Article : Google Scholar : PubMed/NCBI

85 

Mantovani A, Allavena P, Sica A and Balkwill F: Cancer-related inflammation. Nature. 454:436–444. 2008. View Article : Google Scholar : PubMed/NCBI

86 

Patterson WL III and Georgel PT: Breaking the cycle: The role of omega-3 polyunsaturated fatty acids in inflammation-driven cancers. Biochem Cell Biol. 92:321–328. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Calder PC: n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr. 83 Suppl 6:S1505–S1519. 2006. View Article : Google Scholar

88 

Fazio C, Piazzi G, Vitaglione P, Fogliano V, Munarini A, Prossomariti A, Milazzo M, D'Angelo L, Napolitano M, Chieco P, et al: Inflammation increases NOTCH1 activity via MMP9 and is counteracted by Eicosapentaenoic acid-free fatty acid in colon cancer cells. Sci Rep. 6:206702016. View Article : Google Scholar : PubMed/NCBI

89 

Williams-Bey Y, Boularan C, Vural A, Huang NN, Hwang IY, Shan-Shi C and Kehrl JH: Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy. PLoS One. 9:e979572014. View Article : Google Scholar : PubMed/NCBI

90 

Hansen KJ and Houten BV: Investigating the metabolic relationship between ovarian cancer cells and adipocytes: The role of fatty acid beta-oxidation. Gynecol Oncol. 137 Suppl 1:S1102015. View Article : Google Scholar

91 

Lazar I, Clement E, Dauvillier S, Milhas D, Ducoux-Petit M, LeGonidec S, Moro C, Soldan V, Dalle S, Balor S, et al: Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: A novel mechanism linking obesity and cancer. Cancer Res. 76:4051–4057. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Tennant DA, Durán RV and Gottlieb E: Targeting metabolic transformation for cancer therapy. Nat Rev Cancer. 10:267–277. 2010. View Article : Google Scholar : PubMed/NCBI

93 

Loftus TM, Jaworsky DE, Frehywot GL, Townsend CA, Ronnett GV, Lane MD and Kuhajda FP: Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science. 288:2379–2381. 2000. View Article : Google Scholar : PubMed/NCBI

94 

Kridel SJ, Axelrod F, Rozenkrantz N and Smith JW: Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res. 64:2070–2075. 2004. View Article : Google Scholar : PubMed/NCBI

95 

Hoover HS, Blankman JL, Niessen S and Cravatt BF: Selectivity of inhibitors of endocannabinoid biosynthesis evaluated by activity-based protein profiling. Bioorg Med Chem Lett. 18:5838–5841. 2008. View Article : Google Scholar : PubMed/NCBI

96 

Puig T, Benhamu B, Turrado C, Relat J, Ortega-Gutierrez S, Casals G, Marrero PF, Haro D, Brunet J, Lopez-Rodriguez ML and Colomer R: Novel poliphenolic inhibitors of fatty acid synthase (FASN) have potential as anticancer agents. Cancer Res. 68:2008.

97 

Infante J, Patel M, Hoff DV, Brenner A, Rubino C, McCulloch W, Zhukova-Harrill V and Parsey M: 3LBA Initial report of a first-in-human study of the first-in-class fatty acid synthase (FASN) inhibitor, TVB-2640. Eur J Cancer. 50 Suppl 6:S195–S196. 2014. View Article : Google Scholar

98 

Vázquez MJ, Leavens W, Liu R, Rodríguez B, Read M, Richards S, Winegar D and Domínguez JM: Discovery of GSK837149A, an inhibitor of human fatty acid synthase targeting the beta-ketoacyl reductase reaction. FEBS J. 275:1556–1567. 2008. View Article : Google Scholar : PubMed/NCBI

99 

Linehan WM, Srinivasan R and Schmidt LS: The genetic basis of kidney cancer: A metabolic disease. Nat Rev Urol. 7:277–285. 2010. View Article : Google Scholar : PubMed/NCBI

100 

Wishart DS: Is cancer a genetic disease or a metabolic disease? EBioMedicine. 2:478–479. 2015. View Article : Google Scholar : PubMed/NCBI

101 

Currie E, Schulze A, Zechner R, Walther TC and Farese RV Jr: Cellular fatty acid metabolism and cancer. Cell Metab. 18:153–161. 2013. View Article : Google Scholar : PubMed/NCBI

102 

Chen T and Li H: Fatty acid metabolism and prospects for targeted therapy of cancer. Eur J Lipid Sci Tec. 119:2017.

103 

Mariette G, Anne T, Pierre A, Clavel-Chapelon F and Nicole C: Dietary fat, fatty acid composition and risk of cancer. Eur J Lipid Sci Tec. 107:540–559. 2010.

104 

Balaban S, Lee LS, Schreuder M and Hoy AJ: Obesity and cancer progression: Is there a role of fatty acid metabolism? Biomed Res Int. 2015:2745852015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yu XH, Ren XH, Liang XH and Tang YL: Roles of fatty acid metabolism in tumourigenesis: Beyond providing nutrition (Review). Mol Med Rep 18: 5307-5316, 2018.
APA
Yu, X., Ren, X., Liang, X., & Tang, Y. (2018). Roles of fatty acid metabolism in tumourigenesis: Beyond providing nutrition (Review). Molecular Medicine Reports, 18, 5307-5316. https://doi.org/10.3892/mmr.2018.9577
MLA
Yu, X., Ren, X., Liang, X., Tang, Y."Roles of fatty acid metabolism in tumourigenesis: Beyond providing nutrition (Review)". Molecular Medicine Reports 18.6 (2018): 5307-5316.
Chicago
Yu, X., Ren, X., Liang, X., Tang, Y."Roles of fatty acid metabolism in tumourigenesis: Beyond providing nutrition (Review)". Molecular Medicine Reports 18, no. 6 (2018): 5307-5316. https://doi.org/10.3892/mmr.2018.9577
Copy and paste a formatted citation
x
Spandidos Publications style
Yu XH, Ren XH, Liang XH and Tang YL: Roles of fatty acid metabolism in tumourigenesis: Beyond providing nutrition (Review). Mol Med Rep 18: 5307-5316, 2018.
APA
Yu, X., Ren, X., Liang, X., & Tang, Y. (2018). Roles of fatty acid metabolism in tumourigenesis: Beyond providing nutrition (Review). Molecular Medicine Reports, 18, 5307-5316. https://doi.org/10.3892/mmr.2018.9577
MLA
Yu, X., Ren, X., Liang, X., Tang, Y."Roles of fatty acid metabolism in tumourigenesis: Beyond providing nutrition (Review)". Molecular Medicine Reports 18.6 (2018): 5307-5316.
Chicago
Yu, X., Ren, X., Liang, X., Tang, Y."Roles of fatty acid metabolism in tumourigenesis: Beyond providing nutrition (Review)". Molecular Medicine Reports 18, no. 6 (2018): 5307-5316. https://doi.org/10.3892/mmr.2018.9577
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team