|
1
|
Cristofalo VJ, Lorenzini A, Allen RG,
Torres C and Tresini M: Replicative senescence: A critical review.
Mech Ageing Dev. 125:827–848. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Zeiser R: Trametinib. Recent Results
Cancer Res. 201:241–248. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Salama R, Sadaie M, Hoare M and Narita M:
Cellular senescence and its effector programs. Genes Dev.
28:99–114. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tominaga K: The emerging role of senescent
cells in tissue homeostasis and pathophysiology. Pathobiol Aging
Age Relat Dis. 5:277432015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Gewirtz DA: Autophagy and senescence in
cancer therapy. J Cell Physiol. 229:6–9. 2014.PubMed/NCBI
|
|
6
|
Ohtani N, Mann DJ and Hara E: Cellular
senescence: Its role in tumor suppression and aging. Cancer Sci.
100:792–797. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wu CH, van Riggelen J, Yetil A, Fan AC,
Bachireddy P and Felsher DW: Cellular senescence is an important
mechanism of tumor regression upon c-Myc inactivation. Proc Natl
Acad Sci USA. 104:13028–13033. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Roberts PJ and Der CJ: Targeting the
Raf-MEK-ERK mitogen-activated protein kinase cascade for the
treatment of cancer. Oncogene. 26:3291–3310. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Plotnikov A, Zehorai E, Procaccia S and
Seger R: The MAPK cascades: Signaling components, nuclear roles and
mechanisms of nuclear translocation. Biochim Biophys Acta.
1813:1619–1633. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Tan X, Wang YL, Yang XL and Zhang DD:
Ethyl acetate extract of Artemisia anomala S. Moore displays
potent anti-inflammatory effect. Evid Based Complement Alternat
Med. 2014:6813522014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Montero-Conde C, Ruiz-Llorente S,
Dominguez JM, Knauf JA, Viale A, Sherman EJ, Ryder M, Ghossein RA,
Rosen N and Fagin JA: Relief of feedback inhibition of HER3
transcription by RAF and MEK inhibitors attenuates their antitumor
effects in BRAF-mutant thyroid carcinomas. Cancer Discov.
3:520–533. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bell RM, Kunuthur SP, Hendry C,
Bruce-Hickman D, Davidson S and Yellon DM: Matrix metalloproteinase
inhibition protects CyPD knockout mice independently of RISK/mPTP
signalling: A parallel pathway to protection. Basic Res Cardiol.
108:3312013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wu J, Xu J, Eksioglu EA, Chen X, Zhou J,
Fortenbery N, Wei S and Dong J: Icariside II induces apoptosis of
melanoma cells through the downregulation of survival pathways.
Nutr Cancer. 65:110–117. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Desar IM, Gilles R, van Herpen CM,
Timmer-Bonte AJ, Cantarini MV, van der Graaf WT and Oyen WJ:
(18)F-FLT-PET for response evaluation of MEK inhibitor selumetinib
(AZD6244, ARRY-142886) in patients with solid tumors. World J Nucl
Med. 11:65–69. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Barlin JN, Jelinic P, Olvera N, Bogomolniy
F, Bisogna M, Dao F, Barakat RR, Chi DS and Levine DA: Validated
gene targets associated with curatively treated advanced serous
ovarian carcinoma. Gynecol Oncol. 128:512–517. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Rybakova Y, Akkuratov E, Kulebyakin K,
Brodskaya O, Dizhevskaya A and Boldyrev A: Receptor-mediated
oxidative stress in murine cerebellar neurons is accompanied by
phosphorylation of MAP (ERK 1/2) kinase. Curr Aging Sci. 5:225–230.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhuang D, Mannava S, Grachtchouk V, Tang
WH, Patil S, Wawrzyniak JA, Berman AE, Giordano TJ, Prochownik EV,
Soengas MS and Nikiforov MA: C-MYC overexpression is required for
continuous suppression of oncogene-induced senescence in melanoma
cells. Oncogene. 27:6623–6634. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wang D, Boerner SA, Winkler JD and LoRusso
PM: Clinical experience of MEK inhibitors in cancer therapy.
Biochim Biophys Acta. 1773:1248–1255. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wang W, Chen JX, Liao R, Deng Q, Zhou JJ,
Huang S and Sun P: Sequential activation of the MEK-extracellular
signal-regulated kinase and MKK3/6-p38 mitogen-activated protein
kinase pathways mediates oncogenic ras-induced premature
senescence. Mol Cell Biol. 22:3389–3403. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lin AW, Barradas M, Stone JC, van Aelst L,
Serrano M and Lowe SW: Premature senescence involving p53 and p16
is activated in response to constitutive MEK/MAPK mitogenic
signaling. Genes Dev. 12:3008–3019. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Roskoski R Jr: ERK1/2 MAP kinases:
Structure, function, and regulation. Pharmacol Res. 66:105–143.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Gureasko J, Galush WJ, Boykevisch S,
Sondermann H, Bar-Sagi D, Groves JT and Kuriyan J:
Membrane-dependent signal integration by the Ras activator Son of
sevenless. Nat Struct Mol Biol. 15:452–461. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Chuderland D, Konson A and Seger R:
Identification and characterization of a general nuclear
translocation signal in signaling proteins. Mol Cell. 31:850–861.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Matsubayashi Y, Fukuda M and Nishida E:
Evidence for existence of a nuclear pore complex-mediated,
cytosol-independent pathway of nuclear translocation of ERK MAP
kinase in permeabilized cells. J Biol Chem. 276:41755–41760. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Meister M, Tomasovic A, Banning A and
Tikkanen R: Mitogen-activated protein (MAP) kinase scaffolding
proteins: A recount. Int J Mol Sci. 14:4854–4884. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Good MC, Zalatan JG and Lim WA: Scaffold
proteins: Hubs for controlling the flow of cellular information.
Science. 332:680–686. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Schaeffer HJ, Catling AD, Eblen ST,
Collier LS, Krauss A and Weber MJ: MP1: A MEK binding partner that
enhances enzymatic activation of the MAP kinase cascade. Science.
281:1668–1671. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hayflick L and Moorhead PS: The serial
cultivation of human diploid cell strains. Exp Cell Res.
25:585–621. 1961. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yang NC and Hu ML: The limitations and
validities of senescence associated-beta-galactosidase activity as
an aging marker for human foreskin fibroblast Hs68 cells. Exp
Gerontol. 40:813–819. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Chen KY: Transcription factors and the
down-regulation of G1/S boundary genes in human diploid fibroblasts
during senescence. Front Biosci. 2:d417–d426. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Hernandez-Segura A, Nehme J and Demaria M:
Hallmarks of cellular senescence. Trends Cell Biol. 28:436–453.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Passos JF and von Zglinicki T:
Mitochondria, telomeres and cell senescence. Exp Gerontol.
40:466–472. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Liu L, Trimarchi JR, Smith PJ and Keefe
DL: Mitochondrial dysfunction leads to telomere attrition and
genomic instability. Aging cell. 1:40–46. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Campisi J: Cellular senescence as a
tumor-suppressor mechanism. Trends Cell Biol. 11:S27–S31. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sun Y, Liu WZ, Liu T, Feng X, Yang N and
Zhou HF: Signaling pathway of MAPK/ERK in cell proliferation,
differentiation, migration, senescence and apoptosis. J Recept
Signal Transduct Res. 35:600–604. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Boucher MJ, Jean D, Vézina A and Rivard N:
Dual role of MEK/ERK signaling in senescence and transformation of
intestinal epithelial cells. Am J Physiol Gastrointest Liver
Physiol. 286:G736–G746. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ravasi S, Citro S, Viviani B, Capra V and
Rovati GE: CysLT1 receptor-induced human airway smooth muscle cells
proliferation requires ROS generation, EGF receptor transactivation
and ERK1/2 phosphorylation. Respir Res. 7:422006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Gong X, He X, Qi L, Zuo H and Xie Z:
Stromal cell derived factor-1 acutely promotes neural progenitor
cell proliferation in vitro by a mechanism involving the ERK1/2 and
PI-3K signal pathways. Cell Biol Int. 30:466–471. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Iyengar L, Patkunanathan B, Lynch OT,
McAvoy JW, Rasko JE and Lovicu FJ: Aqueous humour- and growth
factor-induced lens cell proliferation is dependent on MAPK/ERK1/2
and Akt/PI3-K signalling. Exp Eye Res. 83:667–678. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wang L, Liu T, Nishioka M, Aguirre RL, Win
SS and Okada N: Activation of ERK1/2 and cyclin D1 expression in
oral tongue squamous cell carcinomas: Relationship between
clinicopathological appearances and cell proliferation. Oral Oncol.
42:625–631. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
De Rosa V, Procaccini C, Cali G, Pirozzi
G, Fontana S, Zappacosta S, La Cava A and Matarese G: A key role of
leptin in the control of regulatory T cell proliferation. Immunity.
26:241–255. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li M, Feurino LW, Li F, Wang H, Zhai Q,
Fisher WE, Chen C and Yao Q: Thymosinalpha1 stimulates cell
proliferation by activating ERK1/2, JNK, and increasing cytokine
secretion in human pancreatic cancer cells. Cancer Lett. 248:58–67.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Li H, Cai X, Fan X, Moquin B, Stoicov C
and Houghton J: Fas Ag-FasL coupling leads to ERK1/2-mediated
proliferation of gastric mucosal cells. Am J Physiol Gastrointest
Liver Physiol. 294:G263–G275. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
He Z, Jiang J, Kokkinaki M, Golestaneh N,
Hofmann MC and Dym M: Gdnf upregulates c-Fos transcription via the
Ras/Erk1/2 pathway to promote mouse spermatogonial stem cell
proliferation. Stem Cells. 26:266–278. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Mancinelli R, Onori P, Gaudio E, DeMorrow
S, Franchitto A, Francis H, Glaser S, Carpino G, Venter J, Alvaro
D, et al: Follicle-stimulating hormone increases cholangiocyte
proliferation by an autocrine mechanism via cAMP-dependent
phosphorylation of ERK1/2 and Elk-1. Am J Physiol Gastrointest
Liver Physiol. 297:G11–G26. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sirianni R, Chimento A, De Luca A,
Casaburi I, Rizza P, Onofrio A, Iacopetta D, Puoci F, Andò S,
Maggiolini M and Pezzi V: Oleuropein and hydroxytyrosol inhibit
MCF-7 breast cancer cell proliferation interfering with ERK1/2
activation. Mol Nutr. 54:833–840. 2010. View Article : Google Scholar
|
|
47
|
Yang Y and Han C: GDNF stimulates the
proliferation of cultured mouse immature Sertoli cells via its
receptor subunit NCAM and ERK1/2 signaling pathway. BMC Cell≠≠≠
Bio≠≠.
|
|
48
|
Lee JG and Kay EP: PI 3-kinase/Rac1 and
ERK1/2 regulate FGF-2-mediated cell proliferation through
phosphorylation of p27 at Ser10 by KIS and at Thr187 by
Cdc25A/Cdk2. Invest Ophthalmol Vis Sci. 52:417–426. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Gao M, Zhan YQ, Yu M, Ge CH, Li CY, Zhang
JH, Wang XH, Ge ZQ and Yang XM: Hepassocin activates the EGFR/ERK
cascade and induces proliferation of L02 cells through the
Src-dependent pathway. Cell Signal. 26:2161–2166. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Tocharus C, Puriboriboon Y, Junmanee T,
Tocharus J, Ekthuwapranee K and Govitrapong P: Melatonin enhances
adult rat hippocampal progenitor cell proliferation via ERK
signaling pathway through melatonin receptor. Neuroscience.
275:314–321. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wu Z, Uchi H, Morino-Koga S, Shi W and
Furue M: Resveratrol inhibition of human keratinocyte proliferation
via SIRT1/ARNT/ERK dependent downregulation of aquaporin 3. J
Dermatol Sci. 75:16–23. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Liu H, Wu Y, Zhu S, Liang W, Wang Z, Wang
Y, Lv T, Yao Y, Yuan D and Song Y: PTP1B promotes cell
proliferation and metastasis through activating src and ERK1/2 in
non-small cell lung cancer. Cancer Lett. 359:218–225. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wang J, He C, Zhou T, Huang Z, Zhou L and
Liu X: NGF increases VEGF expression and promotes cell
proliferation via ERK1/2 and AKT signaling in Müller cells. Mol
Vis. 22:254–263. 2016.PubMed/NCBI
|
|
54
|
Kim SH, Pei QM, Jiang P, Yang M, Qian XJ
and Liu JB: Effect of active vitamin D3 on VEGF-induced ADAM33
expression and proliferation in human airway smooth muscle cells:
Implications for asthma treatment. Respir Res. 18:72017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Graves LM, Guy HI, Kozlowski P, Huang M,
Lazarowski E, Pope RM, Collins MA, Dahlstrand EN, Earp HS III and
Evans DR: Regulation of carbamoyl phosphate synthetase by MAP
kinase. Nature. 403:328–332. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Stefanovsky V, Langlois F, Gagnon-Kugler
T, Rothblum LI and Moss T: Growth factor signaling regulates
elongation of RNA polymerase I transcription in mammals via UBF
phosphorylation and r-chromatin remodeling. Mol Cell. 21:629–639.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Mendoza MC, Er EE and Blenis J: The
Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Trends
Biochem Sci. 36:320–328. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wang Y, Zhu L, Kuokkanen S and Pollard JW:
Activation of protein synthesis in mouse uterine epithelial cells
by estradiol-17β is mediated by a PKC-ERK1/2-mTOR signaling
pathway. Proc Natl Acad Sci USA. 112:E1382–E1391. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hoang B, Benavides A, Shi Y, Yang Y, Frost
P, Gera J and Lichtenstein A: The PP242 mammalian target of
rapamycin (mTOR) inhibitor activates extracellular signal-regulated
kinase (ERK) in multiple myeloma cells via a target of rapamycin
complex 1 (TORC1)/eukaryotic translation initiation factor 4E
(eIF-4E)/RAF pathway and activation is a mechanism of resistance. J
Biol Chem. 287:21796–21805. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ma L, Chen Z, Erdjument-Bromage H, Tempst
P and Pandolfi PP: Phosphorylation and functional inactivation of
TSC2 by Erk implications for tuberous sclerosis and cancer
pathogenesis. Cell. 121:179–193. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Chambard JC, Lefloch R, Pouysségur J and
Lenormand P: ERK implication in cell cycle regulation. Biochim
Biophys Acta. 1773:1299–1310. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lavoie JN, L'Allemain G, Brunet A, Muller
R and Pouysségur J: Cyclin D1 expression is regulated positively by
the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol
Chem. 271:20608–20616. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Seth A, Alvarez E, Gupta S and Davis RJ: A
phosphorylation site located in the NH2-terminal domain of c-Myc
increases transactivation of gene expression. J Biol Chem.
266:23521–23524. 1991.PubMed/NCBI
|
|
64
|
Daksis JI, Lu RY, Facchini LM, Marhin WW
and Penn LJ: Myc induces cyclin D1 expression in the absence of de
novo protein synthesis and links mitogen-stimulated signal
transduction to the cell cycle. Oncogene. 9:3635–3645.
1994.PubMed/NCBI
|
|
65
|
Walsh S, Margolis SS and Kornbluth S:
Phosphorylation of the cyclin B1 cytoplasmic retention sequence by
mitogen-activated protein kinase and Plx. Mol Cancer Res.
1:280–289. 2003.PubMed/NCBI
|
|
66
|
Palmer A, Gavin AC and Nebreda AR: A link
between MAP kinase and p34(cdc2)/cyclin B during oocyte maturation:
p90(rsk) phosphorylates and inactivates the p34(cdc2) inhibitory
kinase Myt1. EMBO J. 17:5037–5047. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Shaw PH: The role of p53 in cell cycle
regulation. Pathol Res Pract. 192:669–675. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wesierska-Gadek J, Wojciechowski J,
Ranftler C and Schmid G: Role of p53 tumor suppressor in ageing:
Regulation of transient cell cycle arrest and terminal senescence.
J Physiol Pharmacol. 56:15–28. 2005.PubMed/NCBI
|
|
69
|
Lee SY, Choi HC, Choe YJ, Shin SJ, Lee SH
and Kim HS: Nutlin-3 induces BCL2A1 expression by activating ELK1
through the mitochondrial p53-ROS-ERK1/2 pathway. Int J Oncol.
45:675–682. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Murase S, Kim E, Lin L, Hoffman DA and
McKay RD: Loss of signal transducer and activator of transcription
3 (STAT3) signaling during elevated activity causes vulnerability
in hippocampal neurons. J Neurosci. 32:15511–15520. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Carlos AR, Escandell JM, Kotsantis P,
Suwaki N, Bouwman P, Badie S, Folio C, Benitez J, Gomez-Lopez G,
Pisano DG, et al: ARF triggers senescence in Brca2-deficient cells
by altering the spectrum of p53 transcriptional targets. Nat
Commun. 4:26972013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Tang D, Wu D, Hirao A, Lahti JM, Liu L,
Mazza B, Kidd VJ, Mak TW and Ingram AJ: ERK activation mediates
cell cycle arrest and apoptosis after DNA damage independently of
p53. J Biol Chem. 277:12710–12717. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ashcroft M and Vousden KH: Regulation of
p53 stability. Oncogene. 18:7637–7643. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ling Q, Meng C, Chen Q and Xing D:
Activated ERK/FOXM1 pathway by low-power laser irradiation inhibits
UVB-induced senescence through down-regulating p21 expression. J
Cell Physiol. 229:108–116. 2014.PubMed/NCBI
|
|
75
|
Rasola A, Sciacovelli M, Pantic B and
Bernardi P: Signal transduction to the permeability transition
pore. FEBS Lett. 584:1989–1996. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kashatus JA, Nascimento A, Myers LJ, Sher
A, Byrne FL, Hoehn KL, Counter CM and Kashatus DF: Erk2
phosphorylation of Drp1 promotes mitochondrial fission and
MAPK-driven tumor growth. Mol Cell. 57:537–551. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhu J, Woods D, McMahon M and Bishop JM:
Senescence of human fibroblasts induced by oncogenic Raf. Genes
Dev. 12:2997–3007. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Cammarano MS, Nekrasova T, Noel B and
Minden A: Pak4 induces premature senescence via a pathway requiring
p16INK4/p19ARF and mitogen-activated protein kinase signaling. Mol
Cell Biol. 25:9532–9542. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Kim-Kaneyama, Nose K and Shibanuma M:
Significance of nuclear relocalization of ERK1/2 in reactivation of
c-fos transcription and DNA synthesis in senescent fibroblasts. J
Biol Chem. 275:20685–20692. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Lim IK, Won Hong K, Kwak IH, Yoon G and
Park SC: Cytoplasmic retention of p-Erk1/2 and nuclear accumulation
of actin proteins during cellular senescence in human diploid
fibroblasts. Mech Ageing Dev. 119:113–130. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Chaturvedi V, Cesnjaj M, Bacon P, Panella
J, Choubey D, Diaz MO and Nickoloff BJ: Role of INK4a/Arf
locus-encoded senescent checkpoints activated in normal and
psoriatic keratinocytes. Am J Pathol. 162:161–170. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kim HS, Song MC, Kwak IH, Park TJ and Lim
IK: Constitutive induction of p-Erk1/2 accompanied by reduced
activities of protein phosphatases 1 and 2A and MKP3 due to
reactive oxygen species during cellular senescence. J Biol Chem.
278:37497–37510. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Todd DE, Densham RM, Molton SA, Balmanno
K, Newson C, Weston CR, Garner AP, Scott L and Cook SJ: ERK1/2 and
p38 cooperate to induce a p21CIP1-dependent G1 cell cycle arrest.
Oncogene. 23:3284–3295. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Klein LE, Freeze BS, Smith AB III and
Horwitz SB: The microtubule stabilizing agent discodermolide is a
potent inducer of accelerated cell senescence. Cell Cycle.
4:501–507. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Albrecht DS, Clubbs EA, Ferruzzi M and
Bomser JA: Epigallocatechin-3-gallate (EGCG) inhibits PC-3 prostate
cancer cell proliferation via MEK-independent ERK1/2 activation.
Chem Biol Interact. 171:89–95. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Deschênes-Simard X, Gaumont-Leclerc MF,
Bourdeau V, Lessard F, Moiseeva O, Forest V, Igelmann S, Mallette
FA, Saba-El-Leil MK, Meloche S, et al: Tumor suppressor activity of
the ERK/MAPK pathway by promoting selective protein degradation.
Genes Dev. 27:900–915. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhu B, Ferry CH, Blazanin N, Bility MT,
Khozoie C, Kang BH, Glick AB, Gonzalez FJ and Peters JM: PPARβ/δ
promotes HRAS-induced senescence and tumor suppression by
potentiating p-ERK and repressing p-AKT signaling. Oncogene.
33:5348–5359. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wang Z, Liu Y, Takahashi M, Van Hook K,
Kampa-Schittenhelm KM, Sheppard BC, Sears RC, Stork PJ and Lopez
CD: N terminus of ASPP2 binds to Ras and enhances Ras/Raf/MEK/ERK
activation to promote oncogene-induced senescence. Proc Natl Acad
Sci USA. 110:312–317. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
El Bezawy R, De Cesare M, Pennati M,
Deraco M, Gandellini P, Zuco V and Zaffaroni N: Antitumor activity
of miR-34a in peritoneal mesothelioma relies on c-MET and AXL
inhibition: Persistent activation of ERK and AKT signaling as a
possible cytoprotective mechanism. J Hematol Oncol. 10:192017.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
del Nogal M, Troyano N, Calleros L, Griera
M, Rodriguez-Puyol M, Rodriguez-Puyol D and Ruiz-Torres MP:
Hyperosmolarity induced by high glucose promotes senescence in
human glomerular mesangial cells. Int J Biochem Cell Biol.
54:98–110. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Lake D, Correa SA and Müller J: Negative
feedback regulation of the ERK1/2 MAPK pathway. Cell Mol Life Sci.
73:4397–4413. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Northwood IC, Gonzalez FA, Wartmann M,
Raden DL and Davis RJ: Isolation and characterization of two growth
factor-stimulated protein kinases that phosphorylate the epidermal
growth factor receptor at threonine 669. J Biol Chem.
266:15266–15276. 1991.PubMed/NCBI
|
|
93
|
Sato K, Shin MS, Sakimura A, Zhou Y,
Tanaka T, Kawanishi M, Kawasaki Y, Yokoyama S, Koizumi K, Saiki I
and Sakurai H: Inverse correlation between Thr-669 and constitutive
tyrosine phosphorylation in the asymmetric epidermal growth factor
receptor dimer conformation. Cancer Sci. 104:1315–1322. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Prahallad A, Sun C, Huang S, Di
Nicolantonio F, Salazar R, Zecchin D, Beijersbergen RL, Bardelli A
and Bernards R: Unresponsiveness of colon cancer to BRAF(V600E)
inhibition through feedback activation of EGFR. Nature.
483:100–103. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zakrzewska M, Haugsten EM,
Nadratowska-Wesolowska B, Oppelt A, Hausott B, Jin Y, Otlewski J,
Wesche J and Wiedlocha A: ERK-mediated phosphorylation of
fibroblast growth factor receptor 1 on Ser777 inhibits signaling.
Sci Signal. 6:ra112013. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Kamioka Y, Yasuda S, Fujita Y, Aoki K and
Matsuda M: Multiple decisive phosphorylation sites for the negative
feedback regulation of SOS1 via ERK. J Biol Chem. 285:33540–33548.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Lax I, Wong A, Lamothe B, Lee A, Frost A,
Hawes J and Schlessinger J: The docking protein FRS2alpha controls
a MAP kinase-mediated negative feedback mechanism for signaling by
FGF receptors. Mol Cell. 10:709–719. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wu YJ, Chen ZJ and Ullrich A: EGFR and
FGFR signaling through FRS2 is subject to negative feedback control
by ERK1/2. Biol Chem. 384:1215–1226. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Wartmann M, Hofer P, Turowski P, Saltiel
AR and Hynes NE: Negative modulation of membrane localization of
the Raf-1 protein kinase by hyperphosphorylation. J Biol Chem.
272:3915–3923. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Weiss RH, Maga EA and Ramirez A: MEK
inhibition augments Raf activity, but has variable effects on
mitogenesis, in vascular smooth muscle cells. Am J Physiol.
274:C1521–C1529. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Dougherty MK, Müller J, Ritt DA, Zhou M,
Zhou XZ, Copeland TD, Conrads TP, Veenstra TD, Lu KP and Morrison
DK: Regulation of Raf-1 by direct feedback phosphorylation. Mol
Cell. 17:215–224. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Hekman M, Fischer A, Wennogle LP, Wang YK,
Campbell SL and Rapp UR: Novel C-Raf phosphorylation sites: Serine
296 and 301 participate in Raf regulation. FEBS Lett. 579:464–468.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Balan V, Leicht DT, Zhu J, Balan K, Kaplun
A, Singh-Gupta V, Qin J, Ruan H, Comb MJ and Tzivion G:
Identification of novel in vivo Raf-1 phosphorylation sites
mediating positive feedback Raf-1 regulation by extracellular
signal-regulated kinase. Mol Biol Cell. 17:1141–1153. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Brummer T, Naegele H, Reth M and Misawa Y:
Identification of novel ERK-mediated feedback phosphorylation sites
at the C-terminus of B-Raf. Oncogene. 22:8823–8834. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Ritt DA, Monson DM, Specht SI and Morrison
DK: Impact of feedback phosphorylation and Raf heterodimerization
on normal and mutant B-Raf signaling. Mol Cell Biol. 30:806–819.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Eblen ST, Slack-Davis JK, Tarcsafalvi A,
Parsons JT, Weber MJ and Catling AD: Mitogen-activated protein
kinase feedback phosphorylation regulates MEK1 complex formation
and activation during cellular adhesion. Mol Cell Biol.
24:2308–2317. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Rossomando AJ, Dent P, Sturgill TW and
Marshak DR: Mitogen-activated protein kinase kinase 1 (MKK1) is
negatively regulated by threonine phosphorylation. Mol Cell Biol.
14:1594–1602. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Canal F, Palygin O, Pankratov Y, Corrêa SA
and Müller J: Compartmentalization of the MAPK scaffold protein
KSR1 modulates synaptic plasticity in hippocampal neurons. FASEB J.
25:2362–2372. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
McKay MM, Ritt DA and Morrison DK:
Signaling dynamics of the KSR1 scaffold complex. Proc Natl Acad Sci
USA. 106:11022–11027. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Fey D, Croucher DR, Kolch W and Kholodenko
BN: Crosstalk and signaling switches in mitogen-activated protein
kinase cascades. Front Physiol. 3:3552012. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Caunt CJ, Finch AR, Sedgley KR and McArdle
CA: Seven-transmembrane receptor signalling and ERK
compartmentalization. Trends Endocrinol Metab. 17:276–283. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Owens DM and Keyse SM: Differential
regulation of MAP kinase signalling by dual-specificity protein
phosphatases. Oncogene. 26:3203–3213. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Huang CY and Tan TH: DUSPs, to MAP kinases
and beyond. Cell Biosci. 2:242012. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Peti W and Page R: Molecular basis of MAP
kinase regulation. Protein Sci. 22:1698–1710. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Tanzola MB and Kersh GJ: The dual
specificity phosphatase transcriptome of the murine thymus. Mol
Immunol. 43:754–762. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Hanafusa H, Torii S, Yasunaga T and
Nishida E: Sprouty1 and Sprouty2 provide a control mechanism for
the Ras/MAPK signalling pathway. Nat Cell Biol. 4:850–858. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Lito P, Pratilas CA, Joseph EW, Tadi M,
Halilovic E, Zubrowski M, Huang A, Wong WL, Callahan MK, Merghoub
T, et al: Relief of profound feedback inhibition of mitogenic
signaling by RAF inhibitors attenuates their activity in BRAFV600E
melanomas. Cancer Cell. 22:668–682. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Lito P, Rosen N and Solit DB: Tumor
adaptation and resistance to RAF inhibitors. Nat Med. 19:1401–1409.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Yusoff P, Lao DH, Ong SH, Wong ES, Lim J,
Lo TL, Leong HF, Fong CW and Guy GR: Sprouty2 inhibits the Ras/MAP
kinase pathway by inhibiting the activation of Raf. J Biol Chem.
277:3195–3201. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Dent P: Crosstalk between ERK, AKT, and
cell survival. Cancer Biol Ther. 15:245–246. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Mace PD, Wallez Y, Egger MF, Dobaczewska
MK, Robinson H, Pasquale EB and Riedl SJ: Structure of ERK2 bound
to PEA-15 reveals a mechanism for rapid release of activated MAPK.
Nat Commun. 4:16812013. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Sinha D, Bannergee S, Schwartz JH,
Lieberthal W and Levine JS: Inhibition of ligand-independent ERK1/2
activity in kidney proximal tubular cells deprived of soluble
survival factors up-regulates Akt and prevents apoptosis. J Biol
Chem. 279:10962–10972. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Trencia A, Perfetti A, Cassese A,
Vigliotta G, Miele C, Oriente F, Santopietro S, Giacco F,
Condorelli G, Formisano P and Beguinot F: Protein kinase B/Akt
binds and phosphorylates PED/PEA-15, stabilizing its antiapoptotic
action. Mol Cell Biol. 23:4511–4521. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Aksamitiene E, Kiyatkin A and Kholodenko
BN: Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt
pathways: A fine balance. Biochem Soc Trans. 40:139–146. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Ussar S and Voss T: MEK1 and MEK2,
different regulators of the G1/S transition. J Biol Chem.
279:43861–43869. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Lee SJ, Lee SH, Yoon MH and Park BJ: A new
p53 target gene, RKIP, is essential for DNA damage-induced cellular
senescence and suppression of ERK activation. Neoplasia.
15:727–737. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Li M, Zhou JY, Ge Y, Matherly LH and Wu
GS: The phosphatase MKP1 is a transcriptional target of p53
involved in cell cycle regulation. J Biol Chem. 278:41059–41068.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Shen WH, Wang J, Wu J, Zhurkin VB and Yin
Y: Mitogen-activated protein kinase phosphatase 2: A novel
transcription target of p53 in apoptosis. Cancer Res. 66:6033–6039.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Ueda K, Arakawa H and Nakamura Y:
Dual-specificity phosphatase 5 (DUSP5) as a direct transcriptional
target of tumor suppressor p53. Oncogene. 22:5586–5591. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
El Hasasna H, Athamneh K, Al Samri H,
Karuvantevida N, Al Dhaheri Y, Hisaindee S, Ramadan G, Al Tamimi N,
AbuQamar S, Eid A and Iratni R: Rhus coriaria induces
senescence and autophagic cell death in breast cancer cells through
a mechanism involving p38 and ERK1/2 activation. Sci Rep.
5:130132015. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Wajapeyee N, Serra RW, Zhu X, Mahalingam M
and Green MR: Oncogenic BRAF induces senescence and apoptosis
through pathways mediated by the secreted protein IGFBP7. Cell.
132:363–374. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Ichimura A, Ruike Y, Terasawa K, Shimizu K
and Tsujimoto G: MicroRNA-34a inhibits cell proliferation by
repressing mitogen-activated protein kinase kinase 1 during
megakaryocytic differentiation of K562 cells. Mol Pharmacol.
77:1016–1024. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Sayed D, Rane S, Lypowy J, He M, Chen IY,
Vashistha H, Yan L, Malhotra A, Vatner D and Abdellatif M:
MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol
Biol Cell. 19:3272–3282. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Deschênes-Simard X, Kottakis F, Lessard F,
Saint-Germain E, Bourdeau VBardeesy N and Ferbeyre G: Tumor
suppressor activity of the ERK/MAPK signaling: Inhibition of cell
reprogramming by degradation of specific proteins. Cancer Res.
74:38952014. View Article : Google Scholar
|
|
135
|
Plotnikov A, Flores K, Maik-Rachline G,
Zehorai E, Kapri-Pardes E, Berti DA, Hanoch T, Besser MJ and Seger
R: The nuclear translocation of ERK1/2 as an anticancer target. Nat
Commun. 6:66852015. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Schevzov G, Kee AJ, Wang B, Sequeira VB,
Hook J, Coombes JD, Lucas CA, Stehn JR, Musgrove EA, Cretu A, et
al: Regulation of cell proliferation by ERK and signal-dependent
nuclear translocation of ERK is dependent on Tm5NM1-containing
actin filaments. Mol Biol Cell. 26:2475–2490. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Wainstein E and Seger R: The dynamic
subcellular localization of ERK: Mechanisms of translocation and
role in various organelles. Curr Opin Cell Biol. 39:15–20. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Callejas-Valera JL, Guinea-Viniegra J,
Ramirez-Castillejo C, Recio JA, Galan-Moya E, Martinez N, Rojas JM,
Ramón y Cajal S and Sánchez-Prieto R: E1a gene expression blocks
the ERK1/2 signaling pathway by promoting nuclear localization and
MKP up-regulation: Implication in v-H-Ras-induced senescence. J
Biol Chem. 283:13450–13458. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Gaumont-Leclerc MF, Mukhopadhyay UK,
Goumard S and Ferbeyre G: PEA-15 is inhibited by adenovirus E1A and
plays a role in ERK nuclear export and Ras-induced senescence. J
Biol Chem. 279:46802–46809. 2004. View Article : Google Scholar : PubMed/NCBI
|