|
1
|
King D, Yeomanson D and Bryant HE: PI3King
the lock: Targeting the PI3K/Akt/mTOR pathway as a novel
therapeutic strategy in neuroblastoma. J Pediatr Hematol Oncol.
37:245–251. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Peltier J, O'Neill A and Schaffer DV:
PI3K/Akt and CREB regulate adult neural hippocampal progenitor
proliferation and differentiation. Dev Neurobiol. 67:1348–1361.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Rafalski VA and Brunet A: Energy
metabolism in adult neural stem cell fate. Prog Neurobiol.
93:182–203. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Man HY, Wang Q, Lu WY, Ju W, Ahmadian G,
Liu L, D'Souza S, Wong TP, Taghibiglou C, Lu J, et al: Activation
of PI3-kinase is required for AMPA receptor insertion during LTP of
mEPSCs in cultured hippocampal neurons. Neuron. 38:611–624. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ojeda L, Gao J, Hooten KG, Wang E,
Thonhoff JR, Dunn TJ, Gao T and Wu P: Critical role of
PI3K/Akt/GSK3β in motoneuron specification from human neural stem
cells in response to FGF2 and EGF. PLoS One. 6:e234142011.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wyatt LA, Filbin MT and Keirstead HS: PTEN
inhibition enhances neurite outgrowth in human embryonic stem
cell-derived neuronal progenitor cells. J Comp Neurol.
522:2741–2755. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Cantley LC: The phosphoinositide 3-kinase
pathway. Science. 296:1655–1657. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Fruman DA, Meyers RE and Cantley LC:
Phosphoinositide kinases. Annu Rev Biochem. 67:481–507. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Courtney KD, Corcoran RB and Engelman JA:
The PI3K pathway as drug target in human cancer. J Clin Oncol.
28:1075–1083. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Breitkopf SB, Yang X, Begley MJ, Kulkarni
M, Chiu YH, Turke AB, Lauriol J, Yuan M, Qi J, Engelman JA, et al:
A cross-species study of PI3K protein-protein interactions reveals
the direct interaction of P85 and SHP2. Sci Rep. 6:204712016.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Yuan TL and Cantley LC: PI3K pathway
alterations in cancer: Variations on a theme. Oncogene.
27:5497–5510. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Engelman JA, Luo J and Cantley LC: The
evolution of phosphatidylinositol 3-kinases as regulators of growth
and metabolism. Nat Rev Genet. 7:606–619. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Katso R, Okkenhaug K, Ahmadi K, White S,
Timms J and Waterfield MD: Cellular function of phosphoinositide
3-kinases: Implications for development, homeostasis, and cancer.
Annu Rev Cell Dev Biol. 17:615–675. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Amzel LM, Huang CH, Mandelker D, Lengauer
C, Gabelli SB and Vogelstein B: Structural comparisons of class I
phosphoinositide 3-kinases. Nat Rev Cancer. 8:665–669. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Schauder C, Ma LC, Krug RM, Montelione GT
and Guan R: Structure of the iSH2 domain of human
phosphatidylinositol 3-kinase p85β subunit reveals conformational
plasticity in the interhelical turn region. Acta Crystallogr Sect F
Struct Biol Cryst Commun. 66:1567–1571. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Falasca M and Maffucci T: Role of class II
phosphoinositide 3-kinase in cell signalling. Biochem Soc Trans.
35:211–214. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Backer JM: The regulation and function of
Class III PI3Ks: Novel roles for Vps34. Biochem J. 410:1–17. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Bohdanowicz M, Cosío G, Backer JM and
Grinstein S: Class I and class III phosphoinositide 3-kinases are
required for actin polymerization that propels phagosomes. J Cell
Biol. 191:999–1012. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Staal SP and Hartley JW: Thymic lymphoma
induction by the AKT8 murine retrovirus. J Exp Med. 167:1259–1264.
1988. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Coffer PJ, Jin J and Woodgett JR: Protein
kinase B (c-Akt): A multifunctional mediator of
phosphatidylinositol 3-kinase activation. Biochem J. 335:1–13.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Woodgett JR: Recent advances in the
protein kinase B signaling pathway. Curr Opin Cell Biol.
17:150–157. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Andrade MA and Bork P: HEAT repeats in the
Huntington's disease protein. Nat Genet. 11:115–116. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Jacinto E and Hall MN: Tor signalling in
bugs, brain and brawn. Nat Rev Mol Cell Biol. 4:117–126. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Peterson RT, Beal PA, Comb MJ and
Schreiber SL: FKBP12-rapamycin-associated protein (FRAP)
autophosphorylates at serine 2481 under translationally repressive
conditions. J Biol Chem. 275:7416–7423. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Du K and Tsichlis PN: Regulation of the
Akt kinase by interacting proteins. Oncogene. 24:7401–7409. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Carnero A, Blanco-Aparicio C, Renner O,
Link W and Leal JF: The PTEN/PI3K/AKT signalling pathway in cancer,
therapeutic implications. Curr Cancer Drug Targets. 8:187–198.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Tokunaga E, Oki E, Egashira A, Sadanaga N,
Morita M, Kakeji Y and Maehara Y: Deregulation of the Akt pathway
in human cancer. Curr Cancer Drug Targets. 8:27–36. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Manning BD and Toker A: AKT/PKB Signaling:
Navigating the network. Cell. 169:381–405. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yip CK, Murata K, Walz T, Sabatini DM and
Kang SA: Structure of the human mTOR complex I and its implications
for rapamycin inhibition. Mol Cell. 38:768–774. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wullschleger S, Loewith R and Hall MN: TOR
signaling in growth and metabolism. Cell. 124:471–484. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ward SG and Finan P: Isoform-specific
phosphoinositide 3-kinase inhibitors as therapeutic agents. Curr
Opin Pharmacol. 3:426–434. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Yokota J, Chosa N, Sawada S, Okubo N,
Takahashi N, Hasegawa T, Kondo H and Ishisaki A: PDGF-induced
PI3K-mediated signaling enhances the TGF-β-induced osteogenic
differentiation of human mesenchymal stem cells in a
TGF-β-activated MEK-dependent manner. Int J Mol Med. 33:534–542.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ma X and Bai Y: IGF-1 activates the
P13K/AKT signaling pathway via upregulation of secretory clusterin.
Mol Med Rep. 6:1433–1437. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Dudu V, Able RA Jr, Rotari V, Kong Q and
Vazquez M: Role of epidermal growth factor-triggered PI3K/Akt
signaling in the migration of medulloblastoma-derived cells. Cell
Mol Bioeng. 5:413–502. 2012. View Article : Google Scholar
|
|
35
|
Osaki M, Oshimura M and Ito H: PI3K-Akt
pathway: Its functions and alterations in human cancer. Apoptosis.
9:667–676. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Geltz NR and Augustine JA: The p85 and
p110 subunits of phosphatidylinositol 3-kinase-alpha are
substrates, in vitro, for a constitutively associated protein
tyrosine kinase in platelets. Blood. 91:930–939. 1998.PubMed/NCBI
|
|
37
|
Kang BH, Shim YJ, Tae YK, Song JA, Choi
BK, Park IS and Min BH: Clusterin stimulates the chemotactic
migration of macrophages through a pertussis toxin sensitive
G-protein-coupled receptor and Gβγ-dependent pathways. Biochem
Biophys Res Commun. 445:645–650. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Fresno Vara JA, Casado E, de Castro J,
Cejas P, Belda-Iniesta C and González-Barón M: PI3K/Akt signalling
pathway and cancer. Cancer Treat Rev. 30:193–204. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Hresko RC and Mueckler M: mTOR RICTOR is
the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J
Biol Chem. 280:40406–40416. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Sarbassov DD, Guertin DA, Ali SM and
Sabatini DM: Phosphorylation and regulation of Akt/PKB by the
rictor-mTOR complex. Science. 307:1098–1101. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Tang JM, He QY, Guo RX and Chang XJ:
Phosphorylated Akt overexpression and loss of PTEN expression in
non-small cell lung cancer confers poor prognosis. Lung Cancer.
51:181–191. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wishart MJ and Dixon JE: PTEN and
myotubularin phosphatases: From 3-phosphoinositide
dephosphorylation to disease. Trends Cell Biol. 12:579–585. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Stiles BL, Kuralwalla-Martinez C, Guo W,
Gregorian C, Wang Y, Tian J, Magnuson MA and Wu H: Selective
deletion of Pten in pancreatic beta cells leads to increased islet
mass and resistance to STZ-induced diabetes. Mol Cell Biol.
26:2772–2781. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Nguyen KT, Tajmir P, Lin CH, Liadis N, Zhu
XD, Eweida M, Tolasa-Karaman G, Cai F, Wang R, Kitamura T, et al:
Essential role of Pten in body size determination and pancreatic
beta-cell homeostasis in vivo. Mol Cell Biol. 26:4511–4518. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhao S, Fu J, Liu F, Rastogi R, Zhang J
and Zhao Y: Small interfering RNA directed against CTMP reduces
acute traumatic brain injury in a mouse model by activating Akt.
Neurol Res. 36:483–490. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang GL and Semenza GL: Purification and
characterization of hypoxia-inducible factor 1. J Biol Chem.
270:1230–1237. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wang GL, Jiang BH, Rue EA and Semenza GL:
Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS
heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci
USA. 92:5510–5514. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Semenza GL: Hypoxia-inducible factor 1 and
cancer pathogenesis. IUBMB Life. 60:591–597. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Loor G and Schumacker PT: Role of
hypoxia-inducible factor in cell survival during myocardial
ischemia-reperfusion. Cell Death Differ. 15:686–690. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Jiang BH, Zheng JZ, Leung SW, Roe R and
Semenza GL: Transactivation and inhibitory domains of
hypoxia-inducible factor 1alpha. Modulation of transcriptional
activity by oxygen tension. J Biol Chem. 272:19253–19260. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Adams JM, Difazio LT, Rolandelli RH, Luján
JJ, Haskó G, Csóka B, Selmeczy Z and Németh ZH: HIF-1: A key
mediator in hypoxia. Acta Physiol Hung. 96:19–28. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lendahl U, Lee KL, Yang H and Poellinger
L: Generating specificity and diversity in the transcriptional
response to hypoxia. Nat Rev Genet. 10:821–832. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kaelin WG Jr and Ratcliffe PJ: Oxygen
sensing by metazoans: The central role of the HIF hydroxylase
pathway. Mol Cell. 30:393–402. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Peet DJ, Lando D, Whelan DA, Whitelaw ML
and Gorman JJ: Oxygen-dependent asparagine hydroxylation. Methods
Enzymol. 381:467–487. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kaelin WG: Proline hydroxylation and gene
expression. Annu Rev Biochem. 74:115–128. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kondo K and Kaelin WG Jr: The von
Hippel-Lindau tumor suppressor gene. Exp Cell Res. 264:117–125.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Arjumand W and Sultana S: Role of VHL gene
mutation in human renal cell carcinoma. Tumour Biol. 33:9–16. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Niu G, Briggs J, Deng J, Ma Y, Lee H,
Kortylewski M, Kujawski M, Kay H, Cress WD, Jove R and Yu H: Signal
transducer and activator of transcription 3 is required for
hypoxia-inducible factor-1alpha RNA expression in both tumor cells
and tumor-associated myeloid cells. Mol Cancer Res. 6:1099–1105.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Fisher TS, Etages SD, Hayes L, Crimin K
and Li B: Analysis of ARD1 function in hypoxia response using
retroviral RNA interference. J Biol Chem. 280:17749–17757. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ke Q and Costa M: Hypoxia-inducible
factor-1 (HIF-1). Mol Pharmacol. 70:1469–1480. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Sandau KB, Fandrey J and Brüne B:
Accumulation of HIF-1alpha under the influence of nitric oxide.
Blood. 97:1009–1015. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kasuno K, Takabuchi S, Fukuda K,
Kizaka-Kondoh S, Yodoi J, Adachi T, Semenza GL and Hirota K: Nitric
oxide induces hypoxia-inducible factor 1 activation that is
dependent on MAPK and phosphatidylinositol 3-kinase signaling. J
Biol Chem. 279:2550–2558. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Park YK, Ahn DR, Oh M, Lee T, Yang EG, Son
M and Park H: Nitric oxide donor,
(+/-)-S-nitroso-N-acetylpenicillamine, stabilizes transactive
hypoxia-inducible factor-1alpha by inhibiting von Hippel-Lindau
recruitment and asparagine hydroxylation. Mol Pharmacol.
74:236–245. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Sogawa K, Numayama-Tsuruta K, Ema M, Abe
M, Abe H and Fujii-Kuriyama Y: Inhibition of hypoxia-inducible
factor 1 activity by nitric oxide donors in hypoxia. Proc Natl Acad
Sci USA. 95:7368–7373. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Brix B, Mesters JR, Pellerin L and Jöhren
O: Endothelial cell-derived nitric oxide enhances aerobic
glycolysis in astrocytes via HIF-1α-mediated target gene
activation. J Neurosci. 32:9727–9735. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Jung YJ, Isaacs JS, Lee S, Trepel J and
Neckers L: IL-1beta-mediated up-regulation of HIF-1alpha via an
NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between
inflammation and oncogenesis. FASEB J. 17:2115–2117. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bárdos JI, Chau NM and Ashcroft M: Growth
factor-mediated induction of HDM2 positively regulates
hypoxia-inducible factor 1alpha expression. Mol Cell Biol.
24:2905–2914. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Laughner E, Taghavi P, Chiles K, Mahon PC
and Semenza GL: HER2 (neu) signaling increases the rate of
hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: Novel
mechanism for HIF-1-mediated vascular endothelial growth factor
expression. Mol Cell Biol. 21:3995–4004. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhong H, Chiles K, Feldser D, Laughner E,
Hanrahan C, Georgescu MM, Simons JW and Semenza GL: Modulation of
hypoxia-inducible factor 1alpha expression by the epidermal growth
factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human
prostate cancer cells: implications for tumor angiogenesis and
therapeutics. Cancer Res. 60:1541–1545. 2000.PubMed/NCBI
|
|
70
|
Pagé EL, Robitaille GA, Pouysségur J and
Richard DE: Induction of hypoxia-inducible factor-1alpha by
transcriptional and translational mechanisms. J Biol Chem.
277:48403–48409. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Isakoff SJ, Cardozo T, Andreev J, Li Z,
Ferguson KM, Abagyan R, Lemmon MA, Aronheim A and Skolnik EY:
Identification and analysis of PH domain-containing targets of
phosphatidylinositol 3-kinase using a novel in vivo assay in yeast.
EMBO J. 17:5374–5387. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Karar J and Maity A: Modulating the tumor
microenvironment to increase radiation responsiveness. Cancer Biol
Ther. 8:1994–2001. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zundel W, Schindler C, Haas-Kogan D, Koong
A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson
AB, et al: Loss of PTEN facilitates HIF-1-mediated gene expression.
Genes Dev. 14:391–396. 2000.PubMed/NCBI
|
|
74
|
Jiang BH, Zheng JZ, Aoki M and Vogt PK:
Phosphatidylinositol 3-kinase signaling mediates angiogenesis and
expression of vascular endothelial growth factor in endothelial
cells. Proc Natl Acad Sci USA. 97:1749–1753. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Jiang BH, Jiang G, Zheng JZ, Lu Z, Hunter
T and Vogt PK: Phosphatidylinositol 3-kinase signaling controls
levels of hypoxia-inducible factor 1. Cell Growth Differ.
12:363–369. 2001.PubMed/NCBI
|
|
76
|
Mazure NM, Chen EY, Laderoute KR and
Giaccia AJ: Induction of vascular endothelial growth factor by
hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt
signaling pathway in Ha-ras-transformed cells through a hypoxia
inducible factor-1 transcriptional element. Blood. 90:3322–3331.
1997.PubMed/NCBI
|
|
77
|
Blancher C, Moore JW, Robertson N and
Harris AL: Effects of ras and von Hippel-Lindau (VHL) gene
mutations on hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha, and
vascular endothelial growth factor expression and their regulation
by the phosphatidylinositol 3′-kinase/Akt signaling pathway. Cancer
Res. 61:7349–7355. 2001.PubMed/NCBI
|
|
78
|
Chen EY, Mazure NM, Cooper JA and Giaccia
AJ: Hypoxia activates a platelet-derived growth factor
receptor/phosphatidylinositol 3-kinase/Akt pathway that results in
glycogen synthase kinase-3 inactivation. Cancer Res. 61:2429–2433.
2001.PubMed/NCBI
|
|
79
|
Kietzmann T, Samoylenko A, Roth U and
Jungermann K: Hypoxia-inducible factor-1 and hypoxia response
elements mediate the induction of plasminogen activator inhibitor-1
gene expression by insulin in primary rat hepatocytes. Blood.
101:907–914. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Tang TT and Lasky LA: The forkhead
transcription factor FOXO4 induces the down-regulation of
hypoxia-inducible factor 1 alpha by a von Hippel-Lindau
protein-independent mechanism. J Biol Chem. 278:30125–30135. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Arsham AM, Plas DR, Thompson CB and Simon
MC: Phosphatidylinositol 3-kinase/Akt signaling is neither required
for hypoxic stabilization of HIF-1 alpha nor sufficient for
HIF-1-dependent target gene transcription. J Biol Chem.
277:15162–15170. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Alvarez-Tejado M, Alfranca A, Aragonés J,
Vara A, Landázuri MO and del Peso L: Lack of evidence for the
involvement of the phosphoinositide 3-kinase/Akt pathway in the
activation of hypoxia-inducible factors by low oxygen tension. J
Biol Chem. 277:13508–13517. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Heath DS, Axelrad AA, McLeod DL and
Shreeve MM: Separation of the erythropoietin-responsive progenitors
BFU-E and CFU-E in mouse bone marrow by unit gravity sedimentation.
Blood. 47:777–792. 1976.PubMed/NCBI
|
|
84
|
Fader CM and Colombo MI: Multivesicular
bodies and autophagy in erythrocyte maturation. Autophagy.
2:122–125. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Swiers G, Patient R and Loose M: Genetic
regulatory networks programming hematopoietic stem cells and
erythroid lineage specification. Dev Biol. 294:525–540. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wickrema A and Crispino JD: Erythroid and
megakaryocytic transformation. Oncogene. 26:6803–6815. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Brahimi-Horn C and Pouysségur J: The role
of the hypoxia-inducible factor in tumor metabolism growth and
invasion. Bull Cancer. 93:E73–E80. 2006.PubMed/NCBI
|
|
88
|
Lee JW, Bae SH, Jeong JW, Kim SH and Kim
KW: Hypoxia-inducible factor (HIF-1)alpha: Its protein stability
and biological functions. Exp Mol Med. 36:1–12. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Holmquist-Mengelbier L, Fredlund E,
Löfstedt T, Noguera R, Navarro S, Nilsson H, Pietras A,
Vallon-Christersson J, Borg A, Gradin K, et al: Recruitment of
HIF-1alpha and HIF-2alpha to common target genes is differentially
regulated in neuroblastoma: HIF-2alpha promotes an aggressive
phenotype. Cancer Cell. 10:413–423. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Lee FS: Genetic causes of erythrocytosis
and the oxygen-sensing pathway. Blood Rev. 22:321–332. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
León-Velarde F, Monge CC, Vidal A,
Carcagno M, Criscuolo M and Bozzini CE: Serum immunoreactive
erythropoietin in high altitude natives with and without excessive
erythrocytosis. Exp Hematol. 19:257–260. 1991.PubMed/NCBI
|
|
92
|
Oshima K, Ikeda Y, Horinouchi Y, Watanabe
H, Hamano H, Kihira Y, Kishi S, Izawa-Ishizawa Y, Miyamoto L,
Hirayama T, et al: Iron suppresses erythropoietin expression via
oxidative stress-dependent hypoxia-inducible factor-2 alpha
inactivation. Lab Invest. 97:555–566. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Gupta N and Wish JB: Hypoxia-inducible
factor prolyl hydroxylase inhibitors: A potential new treatment for
anemia in patients with CKD. Am J Kidney Dis. 69:815–826. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Lee FS and Percy MJ: The HIF pathway and
erythrocytosis. Annu Rev Pathol. 6:165–192. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Prchal JT and Sokol L: ‘Benign
erythrocytosis’ and other familial and congenital polycythemias.
Eur J Haematol. 57:263–268. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Patnaik MM and Tefferi A: The complete
evaluation of erythrocytosis: Congenital and acquired. Leukemia.
23:834–844. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Myllymäki MN, Määttä J, Dimova EY, Izzi V,
Väisänen T, Myllyharju J, Koivunen P and Serpi R: Notch
downregulation and extramedullary erythrocytosis in
hypoxia-inducible factor prolyl 4-hydroxylase 2-deficient mice. Mol
Cell Biol. 37(pii): e00529–16. 2017.PubMed/NCBI
|
|
98
|
Tashi T, Scott Reading N, Wuren T, Zhang
X, Moore LG, Hu H, Tang F, Shestakova A, Lorenzo F, Burjanivova T,
et al: Gain-of-function EGLN1 prolyl hydroxylase (PHD2 D4E:C127S)
in combination with EPAS1 (HIF-2α) polymorphism lowers hemoglobin
concentration in Tibetan highlanders. J Mol Med (Berl). 95:665–670.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Inkster B, Zai G, Lewis G and Miskowiak
KW: GSK3β: A plausible mechanism of cognitive and hippocampal
changes induced by erythropoietin treatment in mood disorders.
Transl Psychiatry. 8:2162018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
van der Vaart A, Meng X, Bowers MS, Batman
AM, Aliev F, Farris SP, Hill JS, Green TA, Dick D; COGA Consortium,
; et al: Glycogen synthase kinase 3 beta regulates ethanol
consumption and is a risk factor for alcohol dependence.
Neuropsychopharmacology. 2018.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Sopjani M, Millaku L, Nebija D, Emini M,
Dermaku-Sopjani M and Rifati-Nixha A: The glycogen synthase
kinase-3 in the regulation of ion channels and cellular carriers.
Curr Med Chem. Oct 9–2018.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Frame S and Cohen P: GSK3 takes centre
stage more than 20 years after its discovery. Biochem J. 359:1–16.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Dokken BB, Sloniger JA and Henriksen EJ:
Acute selective glycogen synthase kinase-3 inhibition enhances
insulin signaling in prediabetic insulin-resistant rat skeletal
muscle. Am J Physiol Endocrinol Metab. 288:E1188–E1194. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Secades P, de Santa-María IS, Merlo A,
Suarez C and Chiara MD: In vitro study of normoxic epidermal growth
factor receptor-induced hypoxia-inducible factor-1-alpha, vascular
endothelial growth factor, and BNIP3 expression in head and neck
squamous cell carcinoma cell lines: Implications for anti-epidermal
growth factor receptor therapy. Head Neck. 37:1150–1162. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Park ST, Kim BR, Park SH, Lee JH, Lee EJ,
Lee SH and Rho SB: Suppression of VEGF expression through
interruption of the HIF-1α and Akt signaling cascade modulates the
anti-angiogenic activity of DAPK in ovarian carcinoma cells. Oncol
Rep. 31:1021–1029. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Kitamura K, Kangawa K, Matsuo H and Uyeda
K: Phosphorylation of myocardial fructose-6-phosphate,2-kinase:
fructose-2,6-bisphosphatase by cAMP-dependent protein kinase and
protein kinase C. Activation by phosphorylation and amino acid
sequences of the phosphorylation sites. J Biol Chem.
263:16796–16801. 1988.PubMed/NCBI
|
|
107
|
Deprez J, Vertommen D, Alessi DR, Hue L
and Rider MH: Phosphorylation and activation of heart
6-phosphofructo-2-kinase by protein kinase B and other protein
kinases of the insulin signaling cascades. J Biol Chem.
272:17269–17275. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Bertrand L, Alessi DR, Deprez J, Deak M,
Viaene E, Rider MH and Hue L: Heart 6-phosphofructo-2-kinase
activation by insulin results from Ser-466 and Ser-483
phosphorylation and requires 3-phosphoinositide-dependent kinase-1,
but not protein kinase B. J Biol Chem. 274:30927–30933. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Depre C, Rider MH, Veitch K and Hue L:
Role of fructose 2,6-bisphosphate in the control of heart
glycolysis. J Biol Chem. 268:13274–13279. 1993.PubMed/NCBI
|
|
110
|
Moon JS, Jin WJ, Kwak JH, Kim HJ, Yun MJ,
Kim JW, Park SW and Kim KS: Androgen stimulates glycolysis for de
novo lipid synthesis by increasing the activities of hexokinase 2
and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 in
prostate cancer cells. Biochem J. 433:225–233. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Agani F and Jiang BH: Oxygen-independent
regulation of HIF-1: Novel involvement of PI3K/AKT/mTOR pathway in
cancer. Curr Cancer Drug Targets. 13:245–251. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Moench R, Grimmig T, Kannen V, Tripathi S,
Faber M, Moll EM, Chandraker A, Lissner R, Germer CT, Waaga-Gasser
AM and Gasser M: Exclusive inhibition of PI3K/Akt/mTOR signaling is
not sufficient to prevent PDGF-mediated effects on glycolysis and
proliferation in colorectal cancer. Oncotarget. 7:68749–68767.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Su J, Gao T, Jiang M, Wu L, Zeng W, Zhao
S, Peng C and Chen X: CD147 silencing inhibits tumor growth by
suppressing glucose transport in melanoma. Oncotarget.
7:64778–64784. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Zeng L, Zhou HY, Tang NN, Zhang WF, He GJ,
Hao B, Feng YD and Zhu H: Wortmannin influences hypoxia-inducible
factor-1 alpha expression and glycolysis in esophageal carcinoma
cells. World J Gastroenterol. 22:4868–4880. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Mediani L, Gibellini F, Bertacchini J,
Frasson C, Bosco R, Accordi B, Basso G, Bonora M, Calabrò ML,
Mattiolo A, et al: Reversal of the glycolytic phenotype of primary
effusion lymphoma cells by combined targeting of cellular
metabolism and PI3K/Akt/ mTOR signaling. Oncotarget. 7:5521–5537.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Mulquiney PJ, Bubb WA and Kuchel PW: Model
of 2,3-bisphosphoglycerate metabolism in the human erythrocyte
based on detailed enzyme kinetic equations: In vivo kinetic
characterization of 2,3-bisphosphoglycerate synthase/phosphatase
using 13C and 31P NMR. Biochem J 342 Pt. 3:567–580. 1999.
View Article : Google Scholar
|
|
117
|
Benesch R, Benesch RE and Yu CI:
Reciprocal binding of oxygen and diphosphoglycerate by human
hemoglobin. Proc Natl Acad Sci USA. 59:526–532. 1968. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Narita H, Yanagawa S, Sasaki R and Chiba
H: Synthesis of 2,3-bisphosphoglycerate synthase in erythroid
cells. J Biol Chem. 256:7059–7063. 1981.PubMed/NCBI
|
|
119
|
Lemarchandel V, Joulin V, Valentin C, Rosa
R, Galactéros F, Rosa J and Cohen-Solal M: Compound heterozygosity
in a complete erythrocyte bisphosphoglycerate mutase deficiency.
Blood. 80:2643–2649. 1992.PubMed/NCBI
|
|
120
|
Spangle JM, Roberts TM and Zhao JJ: The
emerging role of PI3K/AKT-mediated epigenetic regulation in cancer.
Biochim Biophys Acta Rev Cancer. 1868:123–131. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Okkenhaug K, Graupera M and Vanhaesebroeck
B: Targeting PI3K in cancer: Impact on tumor cells, their
protective stroma, angiogenesis, and immunotherapy. Cancer Discov.
6:1090–1105. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Villafuerte FC and Corante N: Chronic
mountain sickness: Clinical aspects, etiology, management, and
treatment. High Alt Med Biol. 17:61–69. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Hermida MA, Dinesh Kumar J and Leslie NR:
GSK3 and its interactions with the PI3K/AKT/mTOR signalling
network. Adv Biol Regul. 65:5–15. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Li N, Zhou H and Tang Q: miR-133: A
suppressor of cardiac remodeling? Front Pharmacol. 9:9032018.
View Article : Google Scholar : PubMed/NCBI
|