Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
February-2019 Volume 19 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2019 Volume 19 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review)

  • Authors:
    • Youbang Xie
    • Xuefeng Shi
    • Kuo Sheng
    • Guoxiong Han
    • Wenqian Li
    • Qiangqiang Zhao
    • Baili Jiang
    • Jianming Feng
    • Jianping Li
    • Yuhai Gu
  • View Affiliations / Copyright

    Affiliations: Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China, Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
    Copyright: © Xie et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 783-791
    |
    Published online on: December 3, 2018
       https://doi.org/10.3892/mmr.2018.9713
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The purpose of this review is to summarize the research progress of PI3K/Akt signaling pathway in erythropoiesis and glycolysis. Phosphatidylinositol‑4,5‑bisphosphate 3‑kinase (PI3K) is activated by numerous genes and leads to protein kinase B (Akt) binding to the cell membrane, with the help of phosphoinositide‑dependent kinase, in the PI3K/Akt signal transduction pathway. Threonine and serine phosphorylation contribute to Akt translocation from the cytoplasm to the nucleus and further mediates enzymatic biological effects, including those involved in cell proliferation, apoptosis inhibition, cell migration, vesicle transport and cell cancerous transformation. As a key downstream protein of the PI3K/Akt signaling pathway, hypoxia‑inducible factor (HIF)‑1 is closely associated with the concentration of oxygen in the environment. Maintaining stable levels of HIF‑1 protein is critical under normoxic conditions; however, HIF‑1 levels quickly increase under hypoxic conditions. HIF‑1α is involved in the acute hypoxic response associated with erythropoietin, whereas HIF‑2α is associated with the response to chronic hypoxia. Furthermore, PI3K/Akt can reduce the synthesis of glycogen and increase glycolysis. Inhibition of glycogen synthase kinase 3β activity by phosphorylation of its N‑terminal serine increases accumulation of cyclin D1, which promotes the cell cycle and improves cell proliferation through the PI3K/Akt signaling pathway. The PI3K/Akt signaling pathway is closely associated with a variety of enzymatic biological effects and glucose metabolism.
View Figures

Figure 1

Figure 2

View References

1 

King D, Yeomanson D and Bryant HE: PI3King the lock: Targeting the PI3K/Akt/mTOR pathway as a novel therapeutic strategy in neuroblastoma. J Pediatr Hematol Oncol. 37:245–251. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Peltier J, O'Neill A and Schaffer DV: PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol. 67:1348–1361. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Rafalski VA and Brunet A: Energy metabolism in adult neural stem cell fate. Prog Neurobiol. 93:182–203. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Man HY, Wang Q, Lu WY, Ju W, Ahmadian G, Liu L, D'Souza S, Wong TP, Taghibiglou C, Lu J, et al: Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron. 38:611–624. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Ojeda L, Gao J, Hooten KG, Wang E, Thonhoff JR, Dunn TJ, Gao T and Wu P: Critical role of PI3K/Akt/GSK3β in motoneuron specification from human neural stem cells in response to FGF2 and EGF. PLoS One. 6:e234142011. View Article : Google Scholar : PubMed/NCBI

6 

Wyatt LA, Filbin MT and Keirstead HS: PTEN inhibition enhances neurite outgrowth in human embryonic stem cell-derived neuronal progenitor cells. J Comp Neurol. 522:2741–2755. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Cantley LC: The phosphoinositide 3-kinase pathway. Science. 296:1655–1657. 2002. View Article : Google Scholar : PubMed/NCBI

8 

Fruman DA, Meyers RE and Cantley LC: Phosphoinositide kinases. Annu Rev Biochem. 67:481–507. 1998. View Article : Google Scholar : PubMed/NCBI

9 

Courtney KD, Corcoran RB and Engelman JA: The PI3K pathway as drug target in human cancer. J Clin Oncol. 28:1075–1083. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Breitkopf SB, Yang X, Begley MJ, Kulkarni M, Chiu YH, Turke AB, Lauriol J, Yuan M, Qi J, Engelman JA, et al: A cross-species study of PI3K protein-protein interactions reveals the direct interaction of P85 and SHP2. Sci Rep. 6:204712016. View Article : Google Scholar : PubMed/NCBI

11 

Yuan TL and Cantley LC: PI3K pathway alterations in cancer: Variations on a theme. Oncogene. 27:5497–5510. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Engelman JA, Luo J and Cantley LC: The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 7:606–619. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Katso R, Okkenhaug K, Ahmadi K, White S, Timms J and Waterfield MD: Cellular function of phosphoinositide 3-kinases: Implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 17:615–675. 2001. View Article : Google Scholar : PubMed/NCBI

14 

Amzel LM, Huang CH, Mandelker D, Lengauer C, Gabelli SB and Vogelstein B: Structural comparisons of class I phosphoinositide 3-kinases. Nat Rev Cancer. 8:665–669. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Schauder C, Ma LC, Krug RM, Montelione GT and Guan R: Structure of the iSH2 domain of human phosphatidylinositol 3-kinase p85β subunit reveals conformational plasticity in the interhelical turn region. Acta Crystallogr Sect F Struct Biol Cryst Commun. 66:1567–1571. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Falasca M and Maffucci T: Role of class II phosphoinositide 3-kinase in cell signalling. Biochem Soc Trans. 35:211–214. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Backer JM: The regulation and function of Class III PI3Ks: Novel roles for Vps34. Biochem J. 410:1–17. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Bohdanowicz M, Cosío G, Backer JM and Grinstein S: Class I and class III phosphoinositide 3-kinases are required for actin polymerization that propels phagosomes. J Cell Biol. 191:999–1012. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Staal SP and Hartley JW: Thymic lymphoma induction by the AKT8 murine retrovirus. J Exp Med. 167:1259–1264. 1988. View Article : Google Scholar : PubMed/NCBI

20 

Coffer PJ, Jin J and Woodgett JR: Protein kinase B (c-Akt): A multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J. 335:1–13. 1998. View Article : Google Scholar : PubMed/NCBI

21 

Woodgett JR: Recent advances in the protein kinase B signaling pathway. Curr Opin Cell Biol. 17:150–157. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Andrade MA and Bork P: HEAT repeats in the Huntington's disease protein. Nat Genet. 11:115–116. 1995. View Article : Google Scholar : PubMed/NCBI

23 

Jacinto E and Hall MN: Tor signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol. 4:117–126. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Peterson RT, Beal PA, Comb MJ and Schreiber SL: FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem. 275:7416–7423. 2000. View Article : Google Scholar : PubMed/NCBI

25 

Du K and Tsichlis PN: Regulation of the Akt kinase by interacting proteins. Oncogene. 24:7401–7409. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Carnero A, Blanco-Aparicio C, Renner O, Link W and Leal JF: The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets. 8:187–198. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Tokunaga E, Oki E, Egashira A, Sadanaga N, Morita M, Kakeji Y and Maehara Y: Deregulation of the Akt pathway in human cancer. Curr Cancer Drug Targets. 8:27–36. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Manning BD and Toker A: AKT/PKB Signaling: Navigating the network. Cell. 169:381–405. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Yip CK, Murata K, Walz T, Sabatini DM and Kang SA: Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol Cell. 38:768–774. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Wullschleger S, Loewith R and Hall MN: TOR signaling in growth and metabolism. Cell. 124:471–484. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Ward SG and Finan P: Isoform-specific phosphoinositide 3-kinase inhibitors as therapeutic agents. Curr Opin Pharmacol. 3:426–434. 2003. View Article : Google Scholar : PubMed/NCBI

32 

Yokota J, Chosa N, Sawada S, Okubo N, Takahashi N, Hasegawa T, Kondo H and Ishisaki A: PDGF-induced PI3K-mediated signaling enhances the TGF-β-induced osteogenic differentiation of human mesenchymal stem cells in a TGF-β-activated MEK-dependent manner. Int J Mol Med. 33:534–542. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Ma X and Bai Y: IGF-1 activates the P13K/AKT signaling pathway via upregulation of secretory clusterin. Mol Med Rep. 6:1433–1437. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Dudu V, Able RA Jr, Rotari V, Kong Q and Vazquez M: Role of epidermal growth factor-triggered PI3K/Akt signaling in the migration of medulloblastoma-derived cells. Cell Mol Bioeng. 5:413–502. 2012. View Article : Google Scholar

35 

Osaki M, Oshimura M and Ito H: PI3K-Akt pathway: Its functions and alterations in human cancer. Apoptosis. 9:667–676. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Geltz NR and Augustine JA: The p85 and p110 subunits of phosphatidylinositol 3-kinase-alpha are substrates, in vitro, for a constitutively associated protein tyrosine kinase in platelets. Blood. 91:930–939. 1998.PubMed/NCBI

37 

Kang BH, Shim YJ, Tae YK, Song JA, Choi BK, Park IS and Min BH: Clusterin stimulates the chemotactic migration of macrophages through a pertussis toxin sensitive G-protein-coupled receptor and Gβγ-dependent pathways. Biochem Biophys Res Commun. 445:645–650. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C and González-Barón M: PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 30:193–204. 2004. View Article : Google Scholar : PubMed/NCBI

39 

Hresko RC and Mueckler M: mTOR RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem. 280:40406–40416. 2005. View Article : Google Scholar : PubMed/NCBI

40 

Sarbassov DD, Guertin DA, Ali SM and Sabatini DM: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 307:1098–1101. 2005. View Article : Google Scholar : PubMed/NCBI

41 

Tang JM, He QY, Guo RX and Chang XJ: Phosphorylated Akt overexpression and loss of PTEN expression in non-small cell lung cancer confers poor prognosis. Lung Cancer. 51:181–191. 2006. View Article : Google Scholar : PubMed/NCBI

42 

Wishart MJ and Dixon JE: PTEN and myotubularin phosphatases: From 3-phosphoinositide dephosphorylation to disease. Trends Cell Biol. 12:579–585. 2002. View Article : Google Scholar : PubMed/NCBI

43 

Stiles BL, Kuralwalla-Martinez C, Guo W, Gregorian C, Wang Y, Tian J, Magnuson MA and Wu H: Selective deletion of Pten in pancreatic beta cells leads to increased islet mass and resistance to STZ-induced diabetes. Mol Cell Biol. 26:2772–2781. 2006. View Article : Google Scholar : PubMed/NCBI

44 

Nguyen KT, Tajmir P, Lin CH, Liadis N, Zhu XD, Eweida M, Tolasa-Karaman G, Cai F, Wang R, Kitamura T, et al: Essential role of Pten in body size determination and pancreatic beta-cell homeostasis in vivo. Mol Cell Biol. 26:4511–4518. 2006. View Article : Google Scholar : PubMed/NCBI

45 

Zhao S, Fu J, Liu F, Rastogi R, Zhang J and Zhao Y: Small interfering RNA directed against CTMP reduces acute traumatic brain injury in a mouse model by activating Akt. Neurol Res. 36:483–490. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Wang GL and Semenza GL: Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 270:1230–1237. 1995. View Article : Google Scholar : PubMed/NCBI

47 

Wang GL, Jiang BH, Rue EA and Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 92:5510–5514. 1995. View Article : Google Scholar : PubMed/NCBI

48 

Semenza GL: Hypoxia-inducible factor 1 and cancer pathogenesis. IUBMB Life. 60:591–597. 2008. View Article : Google Scholar : PubMed/NCBI

49 

Loor G and Schumacker PT: Role of hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion. Cell Death Differ. 15:686–690. 2008. View Article : Google Scholar : PubMed/NCBI

50 

Jiang BH, Zheng JZ, Leung SW, Roe R and Semenza GL: Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem. 272:19253–19260. 1997. View Article : Google Scholar : PubMed/NCBI

51 

Adams JM, Difazio LT, Rolandelli RH, Luján JJ, Haskó G, Csóka B, Selmeczy Z and Németh ZH: HIF-1: A key mediator in hypoxia. Acta Physiol Hung. 96:19–28. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Lendahl U, Lee KL, Yang H and Poellinger L: Generating specificity and diversity in the transcriptional response to hypoxia. Nat Rev Genet. 10:821–832. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Kaelin WG Jr and Ratcliffe PJ: Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Mol Cell. 30:393–402. 2008. View Article : Google Scholar : PubMed/NCBI

54 

Peet DJ, Lando D, Whelan DA, Whitelaw ML and Gorman JJ: Oxygen-dependent asparagine hydroxylation. Methods Enzymol. 381:467–487. 2004. View Article : Google Scholar : PubMed/NCBI

55 

Kaelin WG: Proline hydroxylation and gene expression. Annu Rev Biochem. 74:115–128. 2005. View Article : Google Scholar : PubMed/NCBI

56 

Kondo K and Kaelin WG Jr: The von Hippel-Lindau tumor suppressor gene. Exp Cell Res. 264:117–125. 2001. View Article : Google Scholar : PubMed/NCBI

57 

Arjumand W and Sultana S: Role of VHL gene mutation in human renal cell carcinoma. Tumour Biol. 33:9–16. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Niu G, Briggs J, Deng J, Ma Y, Lee H, Kortylewski M, Kujawski M, Kay H, Cress WD, Jove R and Yu H: Signal transducer and activator of transcription 3 is required for hypoxia-inducible factor-1alpha RNA expression in both tumor cells and tumor-associated myeloid cells. Mol Cancer Res. 6:1099–1105. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Fisher TS, Etages SD, Hayes L, Crimin K and Li B: Analysis of ARD1 function in hypoxia response using retroviral RNA interference. J Biol Chem. 280:17749–17757. 2005. View Article : Google Scholar : PubMed/NCBI

60 

Ke Q and Costa M: Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 70:1469–1480. 2006. View Article : Google Scholar : PubMed/NCBI

61 

Sandau KB, Fandrey J and Brüne B: Accumulation of HIF-1alpha under the influence of nitric oxide. Blood. 97:1009–1015. 2001. View Article : Google Scholar : PubMed/NCBI

62 

Kasuno K, Takabuchi S, Fukuda K, Kizaka-Kondoh S, Yodoi J, Adachi T, Semenza GL and Hirota K: Nitric oxide induces hypoxia-inducible factor 1 activation that is dependent on MAPK and phosphatidylinositol 3-kinase signaling. J Biol Chem. 279:2550–2558. 2004. View Article : Google Scholar : PubMed/NCBI

63 

Park YK, Ahn DR, Oh M, Lee T, Yang EG, Son M and Park H: Nitric oxide donor, (+/-)-S-nitroso-N-acetylpenicillamine, stabilizes transactive hypoxia-inducible factor-1alpha by inhibiting von Hippel-Lindau recruitment and asparagine hydroxylation. Mol Pharmacol. 74:236–245. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Sogawa K, Numayama-Tsuruta K, Ema M, Abe M, Abe H and Fujii-Kuriyama Y: Inhibition of hypoxia-inducible factor 1 activity by nitric oxide donors in hypoxia. Proc Natl Acad Sci USA. 95:7368–7373. 1998. View Article : Google Scholar : PubMed/NCBI

65 

Brix B, Mesters JR, Pellerin L and Jöhren O: Endothelial cell-derived nitric oxide enhances aerobic glycolysis in astrocytes via HIF-1α-mediated target gene activation. J Neurosci. 32:9727–9735. 2012. View Article : Google Scholar : PubMed/NCBI

66 

Jung YJ, Isaacs JS, Lee S, Trepel J and Neckers L: IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J. 17:2115–2117. 2003. View Article : Google Scholar : PubMed/NCBI

67 

Bárdos JI, Chau NM and Ashcroft M: Growth factor-mediated induction of HDM2 positively regulates hypoxia-inducible factor 1alpha expression. Mol Cell Biol. 24:2905–2914. 2004. View Article : Google Scholar : PubMed/NCBI

68 

Laughner E, Taghavi P, Chiles K, Mahon PC and Semenza GL: HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: Novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol. 21:3995–4004. 2001. View Article : Google Scholar : PubMed/NCBI

69 

Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, Simons JW and Semenza GL: Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 60:1541–1545. 2000.PubMed/NCBI

70 

Pagé EL, Robitaille GA, Pouysségur J and Richard DE: Induction of hypoxia-inducible factor-1alpha by transcriptional and translational mechanisms. J Biol Chem. 277:48403–48409. 2002. View Article : Google Scholar : PubMed/NCBI

71 

Isakoff SJ, Cardozo T, Andreev J, Li Z, Ferguson KM, Abagyan R, Lemmon MA, Aronheim A and Skolnik EY: Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. EMBO J. 17:5374–5387. 1998. View Article : Google Scholar : PubMed/NCBI

72 

Karar J and Maity A: Modulating the tumor microenvironment to increase radiation responsiveness. Cancer Biol Ther. 8:1994–2001. 2009. View Article : Google Scholar : PubMed/NCBI

73 

Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson AB, et al: Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 14:391–396. 2000.PubMed/NCBI

74 

Jiang BH, Zheng JZ, Aoki M and Vogt PK: Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci USA. 97:1749–1753. 2000. View Article : Google Scholar : PubMed/NCBI

75 

Jiang BH, Jiang G, Zheng JZ, Lu Z, Hunter T and Vogt PK: Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ. 12:363–369. 2001.PubMed/NCBI

76 

Mazure NM, Chen EY, Laderoute KR and Giaccia AJ: Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood. 90:3322–3331. 1997.PubMed/NCBI

77 

Blancher C, Moore JW, Robertson N and Harris AL: Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3′-kinase/Akt signaling pathway. Cancer Res. 61:7349–7355. 2001.PubMed/NCBI

78 

Chen EY, Mazure NM, Cooper JA and Giaccia AJ: Hypoxia activates a platelet-derived growth factor receptor/phosphatidylinositol 3-kinase/Akt pathway that results in glycogen synthase kinase-3 inactivation. Cancer Res. 61:2429–2433. 2001.PubMed/NCBI

79 

Kietzmann T, Samoylenko A, Roth U and Jungermann K: Hypoxia-inducible factor-1 and hypoxia response elements mediate the induction of plasminogen activator inhibitor-1 gene expression by insulin in primary rat hepatocytes. Blood. 101:907–914. 2003. View Article : Google Scholar : PubMed/NCBI

80 

Tang TT and Lasky LA: The forkhead transcription factor FOXO4 induces the down-regulation of hypoxia-inducible factor 1 alpha by a von Hippel-Lindau protein-independent mechanism. J Biol Chem. 278:30125–30135. 2003. View Article : Google Scholar : PubMed/NCBI

81 

Arsham AM, Plas DR, Thompson CB and Simon MC: Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxic stabilization of HIF-1 alpha nor sufficient for HIF-1-dependent target gene transcription. J Biol Chem. 277:15162–15170. 2002. View Article : Google Scholar : PubMed/NCBI

82 

Alvarez-Tejado M, Alfranca A, Aragonés J, Vara A, Landázuri MO and del Peso L: Lack of evidence for the involvement of the phosphoinositide 3-kinase/Akt pathway in the activation of hypoxia-inducible factors by low oxygen tension. J Biol Chem. 277:13508–13517. 2002. View Article : Google Scholar : PubMed/NCBI

83 

Heath DS, Axelrad AA, McLeod DL and Shreeve MM: Separation of the erythropoietin-responsive progenitors BFU-E and CFU-E in mouse bone marrow by unit gravity sedimentation. Blood. 47:777–792. 1976.PubMed/NCBI

84 

Fader CM and Colombo MI: Multivesicular bodies and autophagy in erythrocyte maturation. Autophagy. 2:122–125. 2006. View Article : Google Scholar : PubMed/NCBI

85 

Swiers G, Patient R and Loose M: Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Dev Biol. 294:525–540. 2006. View Article : Google Scholar : PubMed/NCBI

86 

Wickrema A and Crispino JD: Erythroid and megakaryocytic transformation. Oncogene. 26:6803–6815. 2007. View Article : Google Scholar : PubMed/NCBI

87 

Brahimi-Horn C and Pouysségur J: The role of the hypoxia-inducible factor in tumor metabolism growth and invasion. Bull Cancer. 93:E73–E80. 2006.PubMed/NCBI

88 

Lee JW, Bae SH, Jeong JW, Kim SH and Kim KW: Hypoxia-inducible factor (HIF-1)alpha: Its protein stability and biological functions. Exp Mol Med. 36:1–12. 2004. View Article : Google Scholar : PubMed/NCBI

89 

Holmquist-Mengelbier L, Fredlund E, Löfstedt T, Noguera R, Navarro S, Nilsson H, Pietras A, Vallon-Christersson J, Borg A, Gradin K, et al: Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell. 10:413–423. 2006. View Article : Google Scholar : PubMed/NCBI

90 

Lee FS: Genetic causes of erythrocytosis and the oxygen-sensing pathway. Blood Rev. 22:321–332. 2008. View Article : Google Scholar : PubMed/NCBI

91 

León-Velarde F, Monge CC, Vidal A, Carcagno M, Criscuolo M and Bozzini CE: Serum immunoreactive erythropoietin in high altitude natives with and without excessive erythrocytosis. Exp Hematol. 19:257–260. 1991.PubMed/NCBI

92 

Oshima K, Ikeda Y, Horinouchi Y, Watanabe H, Hamano H, Kihira Y, Kishi S, Izawa-Ishizawa Y, Miyamoto L, Hirayama T, et al: Iron suppresses erythropoietin expression via oxidative stress-dependent hypoxia-inducible factor-2 alpha inactivation. Lab Invest. 97:555–566. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Gupta N and Wish JB: Hypoxia-inducible factor prolyl hydroxylase inhibitors: A potential new treatment for anemia in patients with CKD. Am J Kidney Dis. 69:815–826. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Lee FS and Percy MJ: The HIF pathway and erythrocytosis. Annu Rev Pathol. 6:165–192. 2011. View Article : Google Scholar : PubMed/NCBI

95 

Prchal JT and Sokol L: ‘Benign erythrocytosis’ and other familial and congenital polycythemias. Eur J Haematol. 57:263–268. 1996. View Article : Google Scholar : PubMed/NCBI

96 

Patnaik MM and Tefferi A: The complete evaluation of erythrocytosis: Congenital and acquired. Leukemia. 23:834–844. 2009. View Article : Google Scholar : PubMed/NCBI

97 

Myllymäki MN, Määttä J, Dimova EY, Izzi V, Väisänen T, Myllyharju J, Koivunen P and Serpi R: Notch downregulation and extramedullary erythrocytosis in hypoxia-inducible factor prolyl 4-hydroxylase 2-deficient mice. Mol Cell Biol. 37(pii): e00529–16. 2017.PubMed/NCBI

98 

Tashi T, Scott Reading N, Wuren T, Zhang X, Moore LG, Hu H, Tang F, Shestakova A, Lorenzo F, Burjanivova T, et al: Gain-of-function EGLN1 prolyl hydroxylase (PHD2 D4E:C127S) in combination with EPAS1 (HIF-2α) polymorphism lowers hemoglobin concentration in Tibetan highlanders. J Mol Med (Berl). 95:665–670. 2017. View Article : Google Scholar : PubMed/NCBI

99 

Inkster B, Zai G, Lewis G and Miskowiak KW: GSK3β: A plausible mechanism of cognitive and hippocampal changes induced by erythropoietin treatment in mood disorders. Transl Psychiatry. 8:2162018. View Article : Google Scholar : PubMed/NCBI

100 

van der Vaart A, Meng X, Bowers MS, Batman AM, Aliev F, Farris SP, Hill JS, Green TA, Dick D; COGA Consortium, ; et al: Glycogen synthase kinase 3 beta regulates ethanol consumption and is a risk factor for alcohol dependence. Neuropsychopharmacology. 2018.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

101 

Sopjani M, Millaku L, Nebija D, Emini M, Dermaku-Sopjani M and Rifati-Nixha A: The glycogen synthase kinase-3 in the regulation of ion channels and cellular carriers. Curr Med Chem. Oct 9–2018.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

102 

Frame S and Cohen P: GSK3 takes centre stage more than 20 years after its discovery. Biochem J. 359:1–16. 2001. View Article : Google Scholar : PubMed/NCBI

103 

Dokken BB, Sloniger JA and Henriksen EJ: Acute selective glycogen synthase kinase-3 inhibition enhances insulin signaling in prediabetic insulin-resistant rat skeletal muscle. Am J Physiol Endocrinol Metab. 288:E1188–E1194. 2005. View Article : Google Scholar : PubMed/NCBI

104 

Secades P, de Santa-María IS, Merlo A, Suarez C and Chiara MD: In vitro study of normoxic epidermal growth factor receptor-induced hypoxia-inducible factor-1-alpha, vascular endothelial growth factor, and BNIP3 expression in head and neck squamous cell carcinoma cell lines: Implications for anti-epidermal growth factor receptor therapy. Head Neck. 37:1150–1162. 2015. View Article : Google Scholar : PubMed/NCBI

105 

Park ST, Kim BR, Park SH, Lee JH, Lee EJ, Lee SH and Rho SB: Suppression of VEGF expression through interruption of the HIF-1α and Akt signaling cascade modulates the anti-angiogenic activity of DAPK in ovarian carcinoma cells. Oncol Rep. 31:1021–1029. 2014. View Article : Google Scholar : PubMed/NCBI

106 

Kitamura K, Kangawa K, Matsuo H and Uyeda K: Phosphorylation of myocardial fructose-6-phosphate,2-kinase: fructose-2,6-bisphosphatase by cAMP-dependent protein kinase and protein kinase C. Activation by phosphorylation and amino acid sequences of the phosphorylation sites. J Biol Chem. 263:16796–16801. 1988.PubMed/NCBI

107 

Deprez J, Vertommen D, Alessi DR, Hue L and Rider MH: Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem. 272:17269–17275. 1997. View Article : Google Scholar : PubMed/NCBI

108 

Bertrand L, Alessi DR, Deprez J, Deak M, Viaene E, Rider MH and Hue L: Heart 6-phosphofructo-2-kinase activation by insulin results from Ser-466 and Ser-483 phosphorylation and requires 3-phosphoinositide-dependent kinase-1, but not protein kinase B. J Biol Chem. 274:30927–30933. 1999. View Article : Google Scholar : PubMed/NCBI

109 

Depre C, Rider MH, Veitch K and Hue L: Role of fructose 2,6-bisphosphate in the control of heart glycolysis. J Biol Chem. 268:13274–13279. 1993.PubMed/NCBI

110 

Moon JS, Jin WJ, Kwak JH, Kim HJ, Yun MJ, Kim JW, Park SW and Kim KS: Androgen stimulates glycolysis for de novo lipid synthesis by increasing the activities of hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 in prostate cancer cells. Biochem J. 433:225–233. 2011. View Article : Google Scholar : PubMed/NCBI

111 

Agani F and Jiang BH: Oxygen-independent regulation of HIF-1: Novel involvement of PI3K/AKT/mTOR pathway in cancer. Curr Cancer Drug Targets. 13:245–251. 2013. View Article : Google Scholar : PubMed/NCBI

112 

Moench R, Grimmig T, Kannen V, Tripathi S, Faber M, Moll EM, Chandraker A, Lissner R, Germer CT, Waaga-Gasser AM and Gasser M: Exclusive inhibition of PI3K/Akt/mTOR signaling is not sufficient to prevent PDGF-mediated effects on glycolysis and proliferation in colorectal cancer. Oncotarget. 7:68749–68767. 2016. View Article : Google Scholar : PubMed/NCBI

113 

Su J, Gao T, Jiang M, Wu L, Zeng W, Zhao S, Peng C and Chen X: CD147 silencing inhibits tumor growth by suppressing glucose transport in melanoma. Oncotarget. 7:64778–64784. 2016. View Article : Google Scholar : PubMed/NCBI

114 

Zeng L, Zhou HY, Tang NN, Zhang WF, He GJ, Hao B, Feng YD and Zhu H: Wortmannin influences hypoxia-inducible factor-1 alpha expression and glycolysis in esophageal carcinoma cells. World J Gastroenterol. 22:4868–4880. 2016. View Article : Google Scholar : PubMed/NCBI

115 

Mediani L, Gibellini F, Bertacchini J, Frasson C, Bosco R, Accordi B, Basso G, Bonora M, Calabrò ML, Mattiolo A, et al: Reversal of the glycolytic phenotype of primary effusion lymphoma cells by combined targeting of cellular metabolism and PI3K/Akt/ mTOR signaling. Oncotarget. 7:5521–5537. 2016. View Article : Google Scholar : PubMed/NCBI

116 

Mulquiney PJ, Bubb WA and Kuchel PW: Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: In vivo kinetic characterization of 2,3-bisphosphoglycerate synthase/phosphatase using 13C and 31P NMR. Biochem J 342 Pt. 3:567–580. 1999. View Article : Google Scholar

117 

Benesch R, Benesch RE and Yu CI: Reciprocal binding of oxygen and diphosphoglycerate by human hemoglobin. Proc Natl Acad Sci USA. 59:526–532. 1968. View Article : Google Scholar : PubMed/NCBI

118 

Narita H, Yanagawa S, Sasaki R and Chiba H: Synthesis of 2,3-bisphosphoglycerate synthase in erythroid cells. J Biol Chem. 256:7059–7063. 1981.PubMed/NCBI

119 

Lemarchandel V, Joulin V, Valentin C, Rosa R, Galactéros F, Rosa J and Cohen-Solal M: Compound heterozygosity in a complete erythrocyte bisphosphoglycerate mutase deficiency. Blood. 80:2643–2649. 1992.PubMed/NCBI

120 

Spangle JM, Roberts TM and Zhao JJ: The emerging role of PI3K/AKT-mediated epigenetic regulation in cancer. Biochim Biophys Acta Rev Cancer. 1868:123–131. 2017. View Article : Google Scholar : PubMed/NCBI

121 

Okkenhaug K, Graupera M and Vanhaesebroeck B: Targeting PI3K in cancer: Impact on tumor cells, their protective stroma, angiogenesis, and immunotherapy. Cancer Discov. 6:1090–1105. 2016. View Article : Google Scholar : PubMed/NCBI

122 

Villafuerte FC and Corante N: Chronic mountain sickness: Clinical aspects, etiology, management, and treatment. High Alt Med Biol. 17:61–69. 2016. View Article : Google Scholar : PubMed/NCBI

123 

Hermida MA, Dinesh Kumar J and Leslie NR: GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Adv Biol Regul. 65:5–15. 2017. View Article : Google Scholar : PubMed/NCBI

124 

Li N, Zhou H and Tang Q: miR-133: A suppressor of cardiac remodeling? Front Pharmacol. 9:9032018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Xie Y, Shi X, Sheng K, Han G, Li W, Zhao Q, Jiang B, Feng J, Li J, Gu Y, Gu Y, et al: PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep 19: 783-791, 2019.
APA
Xie, Y., Shi, X., Sheng, K., Han, G., Li, W., Zhao, Q. ... Gu, Y. (2019). PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Molecular Medicine Reports, 19, 783-791. https://doi.org/10.3892/mmr.2018.9713
MLA
Xie, Y., Shi, X., Sheng, K., Han, G., Li, W., Zhao, Q., Jiang, B., Feng, J., Li, J., Gu, Y."PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review)". Molecular Medicine Reports 19.2 (2019): 783-791.
Chicago
Xie, Y., Shi, X., Sheng, K., Han, G., Li, W., Zhao, Q., Jiang, B., Feng, J., Li, J., Gu, Y."PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review)". Molecular Medicine Reports 19, no. 2 (2019): 783-791. https://doi.org/10.3892/mmr.2018.9713
Copy and paste a formatted citation
x
Spandidos Publications style
Xie Y, Shi X, Sheng K, Han G, Li W, Zhao Q, Jiang B, Feng J, Li J, Gu Y, Gu Y, et al: PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep 19: 783-791, 2019.
APA
Xie, Y., Shi, X., Sheng, K., Han, G., Li, W., Zhao, Q. ... Gu, Y. (2019). PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Molecular Medicine Reports, 19, 783-791. https://doi.org/10.3892/mmr.2018.9713
MLA
Xie, Y., Shi, X., Sheng, K., Han, G., Li, W., Zhao, Q., Jiang, B., Feng, J., Li, J., Gu, Y."PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review)". Molecular Medicine Reports 19.2 (2019): 783-791.
Chicago
Xie, Y., Shi, X., Sheng, K., Han, G., Li, W., Zhao, Q., Jiang, B., Feng, J., Li, J., Gu, Y."PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review)". Molecular Medicine Reports 19, no. 2 (2019): 783-791. https://doi.org/10.3892/mmr.2018.9713
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team