Open Access

The identification of CRNDE, H19, UCA1 and HOTAIR as the key lncRNAs involved in oxaliplatin or irinotecan resistance in the chemotherapy of colorectal cancer based on integrative bioinformatics analysis

  • Authors:
    • Fangfang Sun
    • Weiwei Liang
    • Jing Qian
  • View Affiliations

  • Published online on: August 14, 2019     https://doi.org/10.3892/mmr.2019.10588
  • Pages: 3583-3596
  • Copyright: © Sun et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

With the increasing rate of chemoresistance in colorectal cancer (CRC) patients with advanced tumor stages, it is a matter of urgent importance to delineate the factors involved in the drug resistance process. In this study, gene expression profiles were downloaded from the Gene Expression Omnibus database and an integrated analysis with the aim of detecting hub long non‑coding RNAs (lncRNAs) and their regulated, differentially expressed genes (DEGs) during treatment with oxaliplatin (OxPt) or irinotecan was conducted. A total of seven differentially expressed lncRNAs were correlated with OxPt resistance and 21 were correlated with resistance to SN‑38, the active metabolite of irinotecan. Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis confirmed that drug resistance was strongly associated with an imbalance between cell proliferation and apoptosis, cell energetic metabolism under hypoxic conditions, and angiogenesis. Moreover, a large number of lncRNA‑targeted DEGs were located in extracellular exosomes. Further analyses identified four hub lncRNAs involved in the process of drug resistance, including CRNDE, H19, UCA1 and HOTAIR, which are predictive factors for treatment sensitivity. Among them, HOTAIR stands out as a strong factor, the elevated expression of which is also associated with advanced tumor node and metastasis stage and poor CRC disease prognosis.
View Figures
View References

Related Articles

Journal Cover

October-2019
Volume 20 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Sun F, Liang W and Qian J: The identification of CRNDE, H19, UCA1 and HOTAIR as the key lncRNAs involved in oxaliplatin or irinotecan resistance in the chemotherapy of colorectal cancer based on integrative bioinformatics analysis. Mol Med Rep 20: 3583-3596, 2019
APA
Sun, F., Liang, W., & Qian, J. (2019). The identification of CRNDE, H19, UCA1 and HOTAIR as the key lncRNAs involved in oxaliplatin or irinotecan resistance in the chemotherapy of colorectal cancer based on integrative bioinformatics analysis. Molecular Medicine Reports, 20, 3583-3596. https://doi.org/10.3892/mmr.2019.10588
MLA
Sun, F., Liang, W., Qian, J."The identification of CRNDE, H19, UCA1 and HOTAIR as the key lncRNAs involved in oxaliplatin or irinotecan resistance in the chemotherapy of colorectal cancer based on integrative bioinformatics analysis". Molecular Medicine Reports 20.4 (2019): 3583-3596.
Chicago
Sun, F., Liang, W., Qian, J."The identification of CRNDE, H19, UCA1 and HOTAIR as the key lncRNAs involved in oxaliplatin or irinotecan resistance in the chemotherapy of colorectal cancer based on integrative bioinformatics analysis". Molecular Medicine Reports 20, no. 4 (2019): 3583-3596. https://doi.org/10.3892/mmr.2019.10588