Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2019 Volume 20 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2019 Volume 20 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Adenovirus vector‑mediated in vivo gene transfer of nuclear factor erythroid‑2p45‑related factor 2 promotes functional recovery following spinal cord contusion

  • Authors:
    • Feng‑Chen Zhu
    • Dian‑Ming Jiang
    • Ming‑Hua Zhang
    • Bo Zhao
    • Chao He
    • Jian Yang
  • View Affiliations / Copyright

    Affiliations: Department of Orthopaedics, Yongchuan Affiliated Hospital, Chongqing Medical University, Chongqing 402160, P.R. China, Department of Orthopaedics, The Third Affiliated Hospital, Chongqing Medical University, Chongqing 401120, P.R. China
  • Pages: 4285-4292
    |
    Published online on: September 16, 2019
       https://doi.org/10.3892/mmr.2019.10687
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The aim of the present study was to investigate whether nuclear factor erythroid 2p45‑related factor 2 (Nrf2) overexpression by gene transfer may protect neurons/glial cells and the association between neurons/glial cells and axons in spinal cord injury (SCI). In the present study, Nrf2 recombinant adenovirus (Ad) vectors were constructed. The protein levels of Nrf2 in the nucleus and of the Nrf2‑regulated gene products heme oxygenase‑1 (HO‑1) and NAD (P)H‑quinone oxidoreductase‑1 (NQO1), were detected using western blot analysis in PC12 cells following 48 h of transfection. Furthermore, the expression of Nrf2 was localized using an immunofluorescence experiment, and the expression of Nrf2, HO‑1 and NQO1 were detected using an immunohistochemical experiment in the grey matter of spinal cord in rats. Post‑injury motor behavior was assessed via the Basso, Beattie and Bresnahan (BBB) locomotor scale method. In PC12 cells, subsequent to Ad‑Nrf2 transfection, nuclear Nrf2, HO‑1 and NQO1 levels were significantly increased compared with the control (P<0.01). There was statistically significant changes in the PC12‑Ad‑Nrf2 group [Nrf2 (1.146±0.095), HO‑1 (1.816±0.095) and NQO1 (1.421±0.138)] compared with the PC12‑control group [Nrf2 (0.717±0.055), HO‑1 (1.264±0.081) and NQO1 (0.921±0.088)] and PC12‑Ad‑green fluorescent protein group [Nrf2 (0.714±0.111), HO‑1 (1.238±0.053) and NQO1 (0.987±0.045); P<0.01]. The BBB scores of the rats indicated that they had improved functional recovery following the local injection of Ad‑Nrf2. On the third day following the operation, BBB scores in the adenovirus groups (0.167±0.408) were significantly decreased compared with the SCI group (1±0.894; P<0.05). In the injured section of the spinal cord in the rats, the number of positive cells expressing Nrf2, HO‑1 and NQO1 were raised compared with the control and SCI groups, indicating that the adenovirus vector‑mediated gene transfer of Nrf2 promotes functional recovery following spinal cord contusion in rats.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Oyinbo CA: Secondary injury mechanisms in traumatic spinal cord injury: A nugget of this multiply cascade. Acta Neurobiol Exp (Wars). 71:281–299. 2011.PubMed/NCBI

2 

Gwak YS, Hulsebosch CE and Leem JW: Neuronal-glial interactions maintain chronic neuropathic pain after spinal cord injury. Neural Plast. 2017:24806892017. View Article : Google Scholar : PubMed/NCBI

3 

Alizadeh A, Dyck SM and Karimi-Abdolrezaee S: Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mechanisms. Front Neurol. 10:2822019. View Article : Google Scholar : PubMed/NCBI

4 

Bylicky MA, Mueller GP and Day RM: Mechanisms of endogenous neuroprotective effects of astrocytes in brain injury. Oxid Med Cell Longev. 2018:65010312018. View Article : Google Scholar : PubMed/NCBI

5 

Kwon BK, Tetzlaff W, Grauer JN, Beiner J and Vaccaro AR: Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J. 4:451–464. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Kwon BK, Oxland TR and Tetzlaff W: Animal models used in spinal cord regeneration research. Spine (Phila Pa 1976). 27:1504–1510. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Lukácová N, Halát G, Chavko M and Marsala J: Ischemia-reperfusion injury in the spinal cord of rabbits strongly enhances lipid peroxidation and modifies phospholipid profiles. Neurochem Res. 21:869–873. 1996. View Article : Google Scholar : PubMed/NCBI

8 

Emery E, Aldana P, Bunge MB, Puckett W, Srinivasan A, Keane RW, Bethea J and Levi AD: Apoptosis after traumatic human spinal cord injury. J Neurosurg. 89:911–920. 1998. View Article : Google Scholar : PubMed/NCBI

9 

Andrews NC, Erdjument-Bromage H, Davidson MB, Tempst P and Orkin SH: Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature. 362:722–728. 1993. View Article : Google Scholar : PubMed/NCBI

10 

Motohashi H, Katsuoka F, Engel JD and Yamamoto M: Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Proc Natl Acad Sci USA. 101:6379–6384. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Jain AK, Bloom DA and Jaiswal AK: Nuclear import and export signals in control of Nrf2. J Biol Chem. 280:29158–29168. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, et al: An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 236:313–322. 1997. View Article : Google Scholar : PubMed/NCBI

13 

Jazwa A and Cuadrado A: Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Curr Drug Targets. 11:1517–1531. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Niture SK, Kaspar JW, Shen J and Jaiswal AK: Nrf2 signaling and cell survival. Toxicol Appl Pharmacol. 244:37–42. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Tanito M, Agbaga MP and Anderson RE: Upregulation of thioredoxin system via Nrf2-antioxidant responsive element pathway in adaptive-retinal neuroprotection in vivo and in vitro. Free Radic Biol Med. 42:1838–1850. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Du H, Ma L, Chen G and Li S: The effects of oxyresveratrol abrogates inflammation and oxidative stress in rat model of spinal cord injury. Mol Med Rep. 17:4067–4073. 2018.PubMed/NCBI

17 

Kaelan C, Jacobsen P, Morling P and Kakulas BA: A quantitative study of motoneurons and cortico-spinal fibers related to function in human spinal cord injury (SCI). Paraplegia. 27:1531989.

18 

Kakulas BA: The applied neuropathology of human spinal cord injury. Spinal Cord. 37:79–88. 1999. View Article : Google Scholar : PubMed/NCBI

19 

Blight AR: Cellular morphology of chronic spinal cord injury in the cat: Analysis of myelinated axons by line-sampling. Neuroscience. 10:521–543. 1983. View Article : Google Scholar : PubMed/NCBI

20 

Eidelberg E, Straehley D, Erspamer R and Watkins CJ: Relationship between residual hindlimb-assisted locomotion and surviving axons after incomplete spinal cord injuries. Exp Neurol. 56:312–322. 1977. View Article : Google Scholar : PubMed/NCBI

21 

Fehlings MG and Tator CH: The relationships among the severity of spinal cord injury, residual neurological function, axon counts, and counts of retrogradely labeled neurons after experimental spinal cord injury. Exp Neurol. 132:220–228. 1995. View Article : Google Scholar : PubMed/NCBI

22 

Delamarter RB and Coyle J: Acute management of spinal cord injury. J Am Acad Orthop Surg. 7:166–175. 1999. View Article : Google Scholar : PubMed/NCBI

23 

Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, Johnson JA and Murphy TH: Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci. 23:3394–3406. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Xu W, Chi L, Xu R, Ke Y, Luo C, Cai J, Qiu M, Gozal D and Liu R: Increased production of reactive oxygen species contributes to motor neuron death in a compression mouse model of spinal cord injury. Spinal Cord. 43:204–213. 2005. View Article : Google Scholar : PubMed/NCBI

25 

Adibhatla RM and Hatcher JF: Lipid oxidation and peroxidation in CNS health and disease: From molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 12:125–169. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Hong Y, Yan W, Chen S, Sun CR and Zhang JM: The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice. Acta Pharmacol Sin. 31:1421–1430. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Jin W, Wang H, Yan W, Zhu L, Hu Z, Ding Y and Tang K: Role of Nrf2 in protection against traumatic brain injury in mice. J Neurotrauma. 26:131–139. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Jin W, Wang H, Yan W, Xu L, Wang X, Zhao X, Yang X, Chen G and Ji Y: Disruption of Nrf2 enhances upregulation of nuclear factor-kappaB activity, proinflammatory cytokines, and intercellular adhesion molecule-1 in the brain after traumatic brain injury. Mediators Inflamm. 2008:7251742008. View Article : Google Scholar : PubMed/NCBI

29 

Mao L, Wang H, Qiao L and Wang X: Disruption of Nrf2 enhances the upregulation of nuclear factor-kappaB activity, tumor necrosis factor-α, and matrix metalloproteinase-9 after spinal cord injury in mice. Mediators Inflamm. 2010:2383212010. View Article : Google Scholar : PubMed/NCBI

30 

Kay MA: State-of-the-art gene-based therapies: The road ahead. Nat Rev Genet. 12:316–328. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Tasdemiroglu E and Tibbs PA: Long-term follow-up results of thoracolumbar fractures after posterior instrumentation. Spine (Phila Pa 1976). 20:1704–1708. 1995. View Article : Google Scholar : PubMed/NCBI

32 

Basso DM, Beattie MS and Bresnahan JC: A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 12:1–21. 1995. View Article : Google Scholar : PubMed/NCBI

33 

Tonelli C, Chio IIC and Tuveson DA: Transcriptional regulation by Nrf2. Antioxid Redox Signal. 29:1727–1745. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Moi P, Chan K, Asunis I, Cao A and Kan YW: Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci USA. 91:9926–9930. 1994. View Article : Google Scholar : PubMed/NCBI

35 

Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M, Buchfelder M and Savaskan N: Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis. 6:e3712017. View Article : Google Scholar : PubMed/NCBI

36 

Lee JM, Calkins MJ, Chan K, Kan YW and Johnson JA: Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem. 278:12029–12038. 2003. View Article : Google Scholar : PubMed/NCBI

37 

Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M and Biswal S: Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res. 62:5196–5203. 2002.PubMed/NCBI

38 

Chan K, Han XD and Kan YW: An important function of Nrf2 in combating oxidative stress: Detoxification of acetaminophen. Proc Natl Acad Sci USA. 98:4611–4616. 2001. View Article : Google Scholar : PubMed/NCBI

39 

Chan K and Kan YW: Nrf2 is essential for protection against acute pulmonary injury in mice. Proc Natl Acad Sci USA. 96:12731–12736. 1999. View Article : Google Scholar : PubMed/NCBI

40 

Cho HY, Jedlicka AE, Reddy SP, Kensler TW, Yamamoto M, Zhang LY and Kleeberger SR: Role of NRF2 in protection against hyperoxic lung injury in mice. Am J Respir Cell Mol Biol. 26:175–182. 2002. View Article : Google Scholar : PubMed/NCBI

41 

Greene LA and Tischler AS: Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA. 73:2424–2428. 1976. View Article : Google Scholar : PubMed/NCBI

42 

Uceda G, Artalejo AR, López MG, Abad F, Neher E and García AG: Ca(2+)-activated K+ channels modulate muscarinic secretion in cat chromaffin cells. J Physiol. 454:213–230. 1992. View Article : Google Scholar : PubMed/NCBI

43 

Zhou Z and Neher E: Calcium permeability of nicotinic acetylcholine receptor channels in bovine adrenal chromaffin cells. Pflugers Arch. 425:511–517. 1993. View Article : Google Scholar : PubMed/NCBI

44 

Nooney JM, Peters JA and Lambert JJ: A patch clamp study of the nicotinic acetylcholine receptor of bovine adrenomedullary chromaffin cells in culture. J Physiol. 455:503–527. 1992. View Article : Google Scholar : PubMed/NCBI

45 

Horrigan FT and Bookman RJ: Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells. Neuron. 13:1119–1129. 1994. View Article : Google Scholar : PubMed/NCBI

46 

Westerink RH and Ewing AG: The PC12 cell as model for neurosecretion. Acta Physiol (Oxf). 192:273–285. 2008. View Article : Google Scholar : PubMed/NCBI

47 

Hu R, Cao Q, Sun Z, Chen J, Zheng Q and Xiao F: A novel method of neural differentiation of PC12 cells by using Opti-MEM as a basic induction medium. Int J Mol Med. 41:195–201. 2018.PubMed/NCBI

48 

Taylor SC, Green KN, Smith IF and Peers C: Prion protein fragment 106–126 potentiates catecholamine secretion from PC-12 cells. Am J Physiol Cell Physiol. 281:C1850–C1857. 2001. View Article : Google Scholar : PubMed/NCBI

49 

Shao J, Cao J, Wang J, Ren X, Su S, Li M, Li Z, Zhao Q and Zang W: MicroRNA-30b regulates expression of the sodium channel Nav1.7 in nerve injury-induced neuropathic pain in the rat. Mol Pain. 12:2016. View Article : Google Scholar : PubMed/NCBI

50 

Zheng W, Chong CM, Wang H, Zhou X, Zhang L, Wang R, Meng Q, Lazarovici P and Fang J: Artemisinin conferred ERK mediated neuroprotection to PC12 cells and cortical neurons exposed to sodium nitroprusside-induced oxidative insult. Free Radic Biol Med. 97:158–167. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Liu L, Sun T, Xin F, Cui W, Guo J and Hu J: Nerve growth factor protects against alcohol-induced neurotoxicity in PC12 cells via I3K/Akt/mTOR pathway. Alcohol Alcohol. 52:12–18. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Gilgun-Sherki Y, Melamed E and Offen D: Oxidative stress induced-neurodegenerative diseases: The need for antioxidants that penetrate the blood brain barrier. Neuropharmacology. 40:959–975. 2001. View Article : Google Scholar : PubMed/NCBI

53 

van Muiswinkel FL and Kuiperij HB: The Nrf2-ARE signalling pathway: Promising drug target to combat oxidative stress in neurodegenerative disorders. Curr Drug Targets CNS Neurol Disord. 4:267–281. 2005. View Article : Google Scholar : PubMed/NCBI

54 

Yan W, Wang HD, Hu ZG, Wang QF and Yin HX: Activation of Nrf2-ARE pathway in brain after traumatic brain injury. Neurosci Lett. 431:150–154. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Reisman SA, Buckley DB, Tanaka Y and Klaassen CD: CDDO-Im protects from acetaminophen hepatotoxicity through induction of Nrf2-dependent genes. Toxicol Appl Pharmacol. 236:109–114. 2009. View Article : Google Scholar : PubMed/NCBI

56 

Zhang Y, Guan L, Wang X, Wen T, Xing J and Zhao J: Protection of chlorophyllin against oxidative damage by inducing HO-1 and NQO1 expression mediated by PI3K/Akt and Nrf2. Free Radic Res. 42:362–371. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Jansen T and Daiber A: Direct antioxidant properties of bilirubin and biliverdin. Is there a role for biliverdin reductase? Front Pharmacol. 3:302012.

58 

Gaikwad A, Long DJ II, Stringer JL and Jaiswal AK: In vivo role of NAD(P)H: Quinone oxidoreductase 1 (NQO1) in the regulation of intracellular redox state and accumulation of abdominal adipose tissue. J Biol Chem. 276:22559–22564. 2001. View Article : Google Scholar : PubMed/NCBI

59 

Chen X, Guo C and Kong J: Oxidative stress in neurodegenerative diseases. Neural Regen Res. 7:376–385. 2012.PubMed/NCBI

60 

Santos-Nogueira E, López-Serrano C, Hernández J, Lago N, Astudillo AM, Balsinde J, Estivill-Torrús G, de Fonseca FR, Chun J and López-Vales R: Activation of lysophosphatidic acid receptor type 1 contributes to pathophysiology of spinal cord injury. J Neurosci. 35:10224–10235. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Liu XY, Li CY, Bu H, Li Z, Li B, Sun MM, Guo YS, Zhang L, Ren WB, Fan ZL, et al: The neuroprotective potential of phase II enzyme inducer on motor neuron survival in traumatic spinal cord injury in vitro. Cell Mol Neurobiol. 28:769–779. 2008. View Article : Google Scholar : PubMed/NCBI

62 

Sun MM, Bu H, Li B, Yu JX, Guo YS and Li CY: Neuroprotective potential of phase II enzyme inducer diallyl trisulfide. Neurol Res. 31:23–27. 2009. View Article : Google Scholar : PubMed/NCBI

63 

Vargas MR, Pehar M, Cassina P, Martínez-Palma L, Thompson JA, Beckman JS and Barbeito L: Fibroblast growth factor-1 induces heme oxygenase-1 via nuclear factor erythroid 2-related factor 2 (Nrf2) in spinal cord astrocytes: Consequences for motor neuron survival. J Biol Chem. 280:25571–25579. 2005. View Article : Google Scholar : PubMed/NCBI

64 

Kanno H, Ozawa H, Dohi Y, Sekiguchi A, Igarashi K and Itoi E: Genetic ablation of transcription repressor Bach1 reduces neural tissue damage and improves locomotor function after spinal cord injury in mice. J Neurotrauma. 26:31–39. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhu FC, Jiang DM, Zhang MH, Zhao B, He C and Yang J: Adenovirus vector‑mediated in vivo gene transfer of nuclear factor erythroid‑2p45‑related factor 2 promotes functional recovery following spinal cord contusion. Mol Med Rep 20: 4285-4292, 2019.
APA
Zhu, F., Jiang, D., Zhang, M., Zhao, B., He, C., & Yang, J. (2019). Adenovirus vector‑mediated in vivo gene transfer of nuclear factor erythroid‑2p45‑related factor 2 promotes functional recovery following spinal cord contusion. Molecular Medicine Reports, 20, 4285-4292. https://doi.org/10.3892/mmr.2019.10687
MLA
Zhu, F., Jiang, D., Zhang, M., Zhao, B., He, C., Yang, J."Adenovirus vector‑mediated in vivo gene transfer of nuclear factor erythroid‑2p45‑related factor 2 promotes functional recovery following spinal cord contusion". Molecular Medicine Reports 20.5 (2019): 4285-4292.
Chicago
Zhu, F., Jiang, D., Zhang, M., Zhao, B., He, C., Yang, J."Adenovirus vector‑mediated in vivo gene transfer of nuclear factor erythroid‑2p45‑related factor 2 promotes functional recovery following spinal cord contusion". Molecular Medicine Reports 20, no. 5 (2019): 4285-4292. https://doi.org/10.3892/mmr.2019.10687
Copy and paste a formatted citation
x
Spandidos Publications style
Zhu FC, Jiang DM, Zhang MH, Zhao B, He C and Yang J: Adenovirus vector‑mediated in vivo gene transfer of nuclear factor erythroid‑2p45‑related factor 2 promotes functional recovery following spinal cord contusion. Mol Med Rep 20: 4285-4292, 2019.
APA
Zhu, F., Jiang, D., Zhang, M., Zhao, B., He, C., & Yang, J. (2019). Adenovirus vector‑mediated in vivo gene transfer of nuclear factor erythroid‑2p45‑related factor 2 promotes functional recovery following spinal cord contusion. Molecular Medicine Reports, 20, 4285-4292. https://doi.org/10.3892/mmr.2019.10687
MLA
Zhu, F., Jiang, D., Zhang, M., Zhao, B., He, C., Yang, J."Adenovirus vector‑mediated in vivo gene transfer of nuclear factor erythroid‑2p45‑related factor 2 promotes functional recovery following spinal cord contusion". Molecular Medicine Reports 20.5 (2019): 4285-4292.
Chicago
Zhu, F., Jiang, D., Zhang, M., Zhao, B., He, C., Yang, J."Adenovirus vector‑mediated in vivo gene transfer of nuclear factor erythroid‑2p45‑related factor 2 promotes functional recovery following spinal cord contusion". Molecular Medicine Reports 20, no. 5 (2019): 4285-4292. https://doi.org/10.3892/mmr.2019.10687
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team