|
1
|
Hattersley AT, Greeley SAW, Polak M,
Rubio-Cabezas O, Njølstad PR, Mlynarski W, Castano L, Carlsson A,
Raile K, Chi DV, et al: ISPAD clinical practice consensus
guidelines 2018: The diagnosis and management of monogenic diabetes
in children and adolescents. Pediatr Diabetes. 19 (Suppl
27):S47–S63. 2018. View Article : Google Scholar
|
|
2
|
Barbetti F and D'Annunzio G: Genetic
causes and treatment of neonatal diabetes and early childhood
diabetes. Best Pract Res Clin Endocrinol Metab. 32:575–591. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lemelman MB, Letourneau L and Greeley SAW:
Neonatal diabetes mellitus: An update on diagnosis and management.
Clin Perinatol. 45:41–59. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Greeley SA, Naylor RN, Philipson LH and
Bell GI: Neonatal diabetes: An expanding list of genes allows for
improved diagnosis and treatment. Curr Diab Rep. 11:519–532. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kleinberger JW and Pollin TI: Undiagnosed
MODY: Time for Action. Curr Diab Rep. 15:1102015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
American Diabetes Association: 2.
Classification and diagnosis of diabetes: Standards of medical care
in diabetes-2018. Diabetes Care. 41 (Suppl 1):S13–S27. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
DePristo MA, Banks E, Poplin R, Garimella
KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA,
Hanna M, et al: A framework for variation discovery and genotyping
using next-generation DNA sequencing data. Nat Genet. 43:491–498.
2011. View
Article : Google Scholar : PubMed/NCBI
|
|
8
|
Van der Auwera GA, Carneiro MO, Hartl C,
Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen
D, Thibault J, et al: From FastQ data to high-confidence variant
calls: The genome analysis toolkit best practices pipeline. Curr
Protoc Bioinform. 43:11.10.1–33. 2013.
|
|
9
|
1000 Genomes Project Consortium, ; Auton
A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini
JL, McCarthy S, McVean GA and Abecasis GR: A global reference for
human genetic variation. Nature. 526:68–74. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lek M, Karczewski KJ, Minikel EV, Samocha
KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, Hill AJ,
Cummings BB, et al: Analysis of protein-coding genetic variation in
60,706 humans. Nature. 536:285–291. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Fu W, O'Connor TD, Jun G, Kang HM,
Abecasis G, Leal SM, Gabriel S, Rieder MJ, Altshuler D, Shendure J,
et al: Analysis of 6,515 exomes reveals the recent origin of most
human protein-coding variants. Nature. 493:216–220. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Adzhubei IA, Schmidt S, Peshkin L,
Ramensky VE, Gerasimova A, Bork P, Kondrashov AS and Sunyaev SR: A
method and server for predicting damaging missense mutations. Nat
Methods. 7:248–249. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ng PC and Henikoff S: Predicting
deleterious amino acid substitutions. Genome Res. 11:863–874. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Choi Y and Chan AP: PROVEAN web server: A
tool to predict the functional effect of amino acid substitutions
and indels. Bioinformatics. 31:2745–2747. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Liu X, Jian X and Boerwinkle E: dbNSFP
v2.0: A database of human non-synonymous SNVs and their functional
predictions and annotations. Hum Mutat. 34:E2393–E2402. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Desmet FO, Hamroun D, Lalande M,
Collod-Béroud G, Claustres M and Béroud C: Human splicing finder:
An online bioinformatics tool to predict splicing signals. Nucleic
Acids Res. 37:e672009. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhao H, Yang Y, Lin H, Zhang X, Mort M,
Cooper DN, Liu Y and Zhou Y: DDIG-in: Discriminating between
disease-associated and neutral non-frameshifting micro-indels.
Genome Biol. 14:R232013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Capriotti E, Fariselli P and Casadio R:
I-Mutant2.0: Predicting stability changes upon mutation from the
protein sequence or structure. Nucleic Acids Res. 33:W306–W310.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Barbitoff YA, Bezdvornykh IV, Polev DE,
Serebryakova EA, Glotov AS, Glotov OS and Predeus AV: Catching
hidden variation: Systematic correction of reference minor allele
annotation in clinical variant calling. Genet Med. 20:360–364.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Gasperíková D, Tribble ND, Staník J,
Hucková M, Misovicová N, van de Bunt M, Valentínová L, Barrow BA,
Barák L, Dobránsky R, et al: Identification of a novel beta-cell
glucokinase (GCK) promoter mutation (−71G>C) that modulates GCK
gene expression through loss of allele-specific Sp1 binding causing
mild fasting hyperglycemia in humans. Diabetes. 58:1929–1935. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Mantovani V, Salardi S, Cerreta V, Bastia
D, Cenci M, Ragni L, Zucchini S, Parente R and Cicognani A:
Identification of eight novel glucokinase mutations in Italian
children with maturity-onset diabetes of the young. Hum Mutat.
22:3382003. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Bacon S, Kyithar MP, Schmid J, Rizvi SR,
Bonner C, Graf R, Prehn JH and Byrne MM: Serum levels of pancreatic
stone protein (PSP)/reg1A as an indicator of beta-cell apoptosis
suggest an increased apoptosis rate in hepatocyte nuclear factor 1
alpha (HNF1A-MODY) carriers from the third decade of life onward.
BMC Endocr Disord. 12:132012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Gragnoli C, Cockburn BN, Chiaramonte F,
Gorini A, Marietti G, Marozzi G and Signorini AM: Early-onset Type
II diabetes mellitus in Italian families due to mutations in the
genes encoding hepatic nuclear factor 1 alpha and glucokinase.
Diabetologia. 44:1326–1329. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ziemssen F, Bellanné-Chantelot C,
Osterhoff M, Schatz H and Pfeiffer AF: To: Lindner T, cockburn BN,
Bell GI (1999) Molecular genetics of MODY in Germany. Diabetologia.
42:121–123, Diabetologia 45: 286–288. 2002.
|
|
25
|
Estalella I, Rica I, Perez de Nanclares G,
Bilbao JR, Vazquez JA, San Pedro JI, Busturia MA and Castaño L;
Spanish MODY Group, : Mutations in GCK and HNF-1alpha explain the
majority of cases with clinical diagnosis of MODY in Spain. Clin
Endocrinol (Oxf). 67:538–546. 2007.PubMed/NCBI
|
|
26
|
Stoffel M, Froguel P, Takeda J, Zouali H,
Vionnet N, Nishi S, Weber IT, Harrison RW, Pilkis SJ, Lesage S, et
al: Human glucokinase gene: Isolation, characterization, and
identification of two missense mutations linked to early-onset
non-insulin-dependent (type 2) diabetes mellitus. Proc Natl Acad
Sci USA. 89:7698–7702. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hattersley AT, Beards F, Ballantyne E,
Appleton M, Harvey R and Ellard S: Mutations in the glucokinase
gene of the fetus result in reduced birth weight. Nat Genet.
19:268–270. 1998. View
Article : Google Scholar : PubMed/NCBI
|
|
28
|
Froguel P, Zouali H, Vionnet N, Velho G,
Vaxillaire M, Sun F, Lesage S, Stoffel M, Takeda J, Passa P, et al:
Familial hyperglycemia due to mutations in glucokinase. Definition
of a subtype of diabetes mellitus. N Engl J Med. 328:697–702. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Borowiec M, Fendler W, Antosik K,
Baranowska A, Gnys P, Zmyslowska A, Malecki M and Mlynarski W:
Doubling the referral rate of monogenic diabetes through a
nationwide information campaign-update on glucokinase gene
mutations in a Polish cohort. Clin Genet. 82:587–590. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Pruhova S, Ek J, Lebl J, Sumnik Z, Saudek
F, Andel M, Pedersen O and Hansen T: Genetic epidemiology of MODY
in the Czech republic: New mutations in the MODY genes HNF-4alpha,
GCK and HNF-1alpha. Diabetologia. 46:291–295. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Gidh-Jain M, Takeda J, Xu LZ, Lange AJ,
Vionnet N, Stoffel M, Froguel P, Velho G, Sun F, Cohen D, et al:
Glucokinase mutations associated with non-insulin-dependent (type
2) diabetes mellitus have decreased enzymatic activity:
Implications for structure/function relationships. Proc Natl Acad
Sci USA. 90:1932–1936. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Colclough K, Bellanne-Chantelot C,
Saint-Martin C, Flanagan SE and Ellard S: Mutations in the genes
encoding the transcription factors hepatocyte nuclear factor 1
alpha and 4 alpha in maturity-onset diabetes of the young and
hyperinsulinemic hypoglycemia. Hum Mutat. 34:669–685. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Plengvidhya N, Kooptiwut S, Songtawee N,
Doi A, Furuta H, Nishi M, Nanjo K, Tantibhedhyangkul W,
Boonyasrisawat W, Yenchitsomanus PT, et al: PAX4 mutations in Thais
with maturity onset diabetes of the young. J Clin Endocrinol Metab.
92:2821–2826. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Flanagan SE, Patch AM, Mackay DJ, Edghill
EL, Gloyn AL, Robinson D, Shield JP, Temple K, Ellard S and
Hattersley AT: Mutations in ATP-sensitive K+ channel
genes cause transient neonatal diabetes and permanent diabetes in
childhood or adulthood. Diabetes. 56:1930–1937. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Mohnike K, Wieland I, Barthlen W,
Vogelgesang S, Empting S, Mohnike W, Meissner T and Zenker M:
Clinical and genetic evaluation of patients with KATP channel
mutations from the German registry for congenital hyperinsulinism.
Horm Res Paediatr. 81:156–168. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Suzuki S, Nakao A, Sarhat AR, Furuya A,
Matsuo K, Tanahashi Y, Kajino H and Azuma H: A case of pancreatic
agenesis and congenital heart defects with a novel GATA6 nonsense
mutation: Evidence of haploinsufficiency due to nonsense-mediated
mRNA decay. Am J Med Genet A. 164A:476–479. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Gomez-Zaera M, Strom T, Meitinger T and
Nunes V: Wolframin mutations in Spanish families with Wolfram
syndrome. Meeting abstract. Am J Hum Genet. 65:16731999.
|
|
38
|
Smith CJ, Crock PA, King BR, Meldrum CJ
and Scott RJ: Phenotype-genotype correlations in a series of
wolfram syndrome families. Diabetes Care. 27:2003–2009. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Chèvre JC, Hani EH, Boutin P, Vaxillaire
M, Blanché H, Vionnet N, Pardini VC, Timsit J, Larger E,
Charpentier G, et al: Mutation screening in 18 Caucasian families
suggest the existence of other MODY genes. Diabetologia.
41:1017–1023. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Awata T, Inoue K, Kurihara S, Ohkubo T,
Inoue I, Abe T, Takino H, Kanazawa Y and Katayama S: Missense
variations of the gene responsible for Wolfram syndrome
(WFS1/wolframin) in Japanese: Possible contribution of the
Arg456His mutation to type 1 diabetes as a nonautoimmune genetic
basis. Biochem Biophys Res Commun. 268:612–616. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Richards S, Aziz N, Bale S, Bick D, Das S,
Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al:
Standards and guidelines for the interpretation of sequence
variants: A joint consensus recommendation of the American College
of Medical Genetics and Genomics and the Association for Molecular
Pathology. Genet Med. 17:405–424. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Shaw-Smith C, Flanagan SE, Patch AM,
Grulich-Henn J, Habeb AM, Hussain K, Pomahacova R, Matyka K,
Abdullah M, Hattersley AT and Ellard S: Recessive SLC19A2 mutations
are a cause of neonatal diabetes mellitus in thiamine-responsive
megaloblastic anaemia. Pediatr Diabetes. 13:314–321. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Fraser FC and Gunn T: Diabetes mellitus,
diabetes insipidus, and optic atrophy. An autosomal recessive
syndrome? J Med Genet. 14:190–193. 1977. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Bennett K, James C, Mutair A, Al-Shaikh H,
Sinani A and Hussain K: Four novel cases of permanent neonatal
diabetes mellitus caused by homozygous mutations in the glucokinase
gene. Pediatr Diabetes. 12:P192–P196. 2011. View Article : Google Scholar
|
|
45
|
Raimondo A, Chakera AJ, Thomsen SK,
Colclough K, Barrett A, De Franco E, Chatelas A, Demirbilek H,
Akcay T, Alawneh H, et al: Phenotypic severity of homozygous GCK
mutations causing neonatal or childhood-onset diabetes is primarily
mediated through effects on protein stability. Hum Mol Genet.
23:6432–6440. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Rubio-Cabezas O, Patch AM, Minton JA,
Flanagan SE, Edghill EL, Hussain K, Balafrej A, Deeb A, Buchanan
CR, Jefferson IG, et al: Wolcott-Rallison syndrome is the most
common genetic cause of permanent neonatal diabetes in
consanguineous families. J Clin Endocrinol Metab. 94:4162–4170.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Labay V, Raz T, Baron D, Mandel H,
Williams H, Barrett T, Szargel R, McDonald L, Shalata A, Nosaka K,
et al: Mutations in SLC19A2 cause thiamine-responsive megaloblastic
anaemia associated with diabetes mellitus and deafness. Nat Genet.
22:300–304. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
48
|
Tattersall RB: Mild familial diabetes with
dominant inheritance. Q J Med. 43:339–357. 1974.PubMed/NCBI
|
|
49
|
Tattersall RB and Fajans SS: A difference
between the inheritance of classical juvenile-onset and
maturity-onset type diabetes of young people. Diabetes. 24:44–53.
1975. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yamagata K, Furuta H, Oda N, Kaisaki PJ,
Menzel S, Cox NJ, Fajans SS, Signorini S, Stoffel M and Bell GI:
Mutations in the hepatocyte nuclear factor-4alpha gene in
maturity-onset diabetes of the young (MODY1). Nature. 384:458–460.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Yamagata K, Oda N, Kaisaki PJ, Menzel S,
Furuta H, Vaxillaire M, Southam L, Cox RD, Lathrop GM, Boriraj VV,
et al: Mutations in the hepatocyte nuclear factor-1alpha gene in
maturity-onset diabetes of the young (MODY3). Nature. 384:455–458.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Horikawa Y, Iwasaki N, Hara M, Furuta H,
Hinokio Y, Cockburn BN, Lindner T, Yamagata K, Ogata M, Tomonaga O,
et al: Mutation in hepatocyte nuclear factor-1 beta gene (TCF2)
associated with MODY. Nat Genet. 17:384–385. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Stoffers DA, Ferrer J, Clarke WL and
Habener JF: Early-onset type-II diabetes mellitus (MODY4) linked to
IPF1. Nat Genet. 17:138–139. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Froguel P, Vaxillaire M, Sun F, Velho G,
Zouali H, Butel MO, Lesage S, Vionnet N, Clément K, Fougerousse F,
et al: Close linkage of glucokinase locus on chromosome 7p to
early-onset non-insulin-dependent diabetes mellitus. Nature.
356:162–164. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Hattersley AT, Turner RC, Permutt MA,
Patel P, Tanizawa Y, Chiu KC, O'Rahilly S, Watkins PJ and Wainscoat
JS: Linkage of type 2 diabetes to the glucokinase gene. Lancet.
339:1307–1310. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Timsit J, Saint-Martin C, Dubois-Laforgue
D and Bellanné-Chantelot C: Searching for Maturity-Onset diabetes
of the Young (MODY): When and What for? Can J Diabetes. 40:455–461.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ellard S, Lango Allen H, De Franco E,
Flanagan SE, Hysenaj G, Colclough K, Houghton JA, Shepherd M,
Hattersley AT, Weedon MN and Caswell R: Improved genetic testing
for monogenic diabetes using targeted next-generation sequencing.
Diabetologia. 56:1958–1963. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Shields BM, Hicks S, Shepherd MH,
Colclough K, Hattersley AT and Ellard S: Maturity-onset diabetes of
the young (MODY): How many cases are we missing? Diabetologia.
53:2504–2508. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zubkova N, Burumkulova F, Plechanova M,
Petrukhin V, Petrov V, Vasilyev E, Panov A, Sorkina E, Ulyatovskaya
V, Makretskaya N and Tiulpakov A: High frequency of pathogenic and
rare sequence variants in diabetes-related genes among Russian
patients with diabetes in pregnancy. Acta Diabetol. 56:413–420.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Lorini R, Klersy C, d'Annunzio G, Massa O,
Minuto N, Iafusco D, Bellannè-Chantelot C, Frongia AP, Toni S,
Meschi F, et al: Maturity-onset diabetes of the young in children
with incidental hyperglycemia: A multicenter Italian study of 172
families. Diabetes Care. 32:1864–1866. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Schober E, Rami B, Grabert M, Thon A,
Kapellen T, Reinehr T and Holl RW: Phenotypical aspects of
maturity-onset diabetes of the young (MODY diabetes) in comparison
with Type 2 diabetes mellitus (T2DM) in children and adolescents:
Experience from a large multicentre database. Diabet Med.
26:466–473. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ağladıoğlu SY, Aycan Z, Çetinkaya S, Baş
VN, Önder A, Peltek Kendirci HN, Doğan H and Ceylaner S: Maturity
onset diabetes of youth (MODY) in Turkish children: Sequence
analysis of 11 causative genes by next generation sequencing. J
Pediatr Endocrinol Metab. 29:487–496. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Globa E, Zelinska N, Elblova L, Dusatkova
P, Cinek O, Lebl J, Colclough K, Ellard S and Pruhova S: MODY in
Ukraine: Genes, clinical phenotypes and treatment. J Pediatr
Endocrinol Metab. 30:1095–1103. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Johansson BB, Irgens HU, Molnes J,
Sztromwasser P, Aukrust I, Juliusson PB, Søvik O, Levy S,
Skrivarhaug T, Joner G, et al: Targeted next-generation sequencing
reveals MODY in up to 6.5% of antibody-negative diabetes cases
listed in the Norwegian Childhood Diabetes Registry. Diabetologia.
60:625–635. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Barbitoff YA, Skitchenko RK, Poleshchuk
OI, Shikov AE, Serebryakova EA, Nasykhova YA, Polev DE, Shuvalova
AR, Shcherbakova IV, Fedyakov MA, et al: Whole-exome sequencing
provides insights into monogenic disease prevalence in Northwest
Russia. Mol Genet Genomic Med. Sep 3;e9642019.doi: 10.1002/mgg3.964
(Epub ahead of print). PubMed/NCBI
|
|
66
|
Chakera AJ, Steele AM, Gloyn AL, Shepherd
MH, Shields B, Ellard S and Hattersley AT: Recognition and
management of individuals with hyperglycemia because of a
heterozygous glucokinase mutation. Diabetes Care. 38:1383–1392.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Murphy R, Ellard S and Hattersley AT:
Clinical implications of a molecular genetic classification of
monogenic beta-cell diabetes. Nat Clin Pract Endocrinol Metab.
4:200–213. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
López-Garrido MP, Herranz-Antolín S,
Alija-Merillas MJ, Giralt P and Escribano J: Co-inheritance of
HNF1a and GCK mutations in a family with maturity-onset diabetes of
the young (MODY): Implications for genetic testing. Clin Endocrinol
(Oxf). 79:342–347. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Thanabalasingham G, Pal A, Selwood MP,
Dudley C, Fisher K, Bingley PJ, Ellard S, Farmer AJ, McCarthy MI
and Owen KR: Systematic assessment of etiology in adults with a
clinical diagnosis of young-onset type 2 diabetes is a successful
strategy for identifying maturity-onset diabetes of the young.
Diabetes Care. 35:1206–1212. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Borowiec M, Liew CW, Thompson R,
Boonyasrisawat W, Hu J, Mlynarski WM, El Khattabi I, Kim SH,
Marselli L, Rich SS, et al: Mutations at the BLK locus linked to
maturity onset diabetes of the young and beta-cell dysfunction.
Proc Natl Acad Sci USA. 106:14460–14465. 2009. View Article : Google Scholar : PubMed/NCBI
|