|
1
|
Iorio JA, Jakoi AM and Singla A:
Biomechanics of degenerative spinal disorders. Asian Spine J.
10:377–384. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Cheung KM, Karppinen J, Chan D, Ho DW,
Song YQ, Sham P, Cheah KS, Leong JC and Luk KD: Prevalence and
pattern of lumbar magnetic resonance imaging changes in a
population study of one thousand forty-three individuals. Spine
(Phila Pa 1976). 34:934–940. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Szpalski M and Gunzburg R: Lumbar spinal
stenosis in the elderly: An overview. Eur Spine J. 12 (Suppl
2):S170–S175. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Alini M, Eisenstein SM, Ito K, Little C,
Kettler AA, Masuda K, Melrose J, Ralphs J, Stokes I and Wilke HJ:
Are animal models useful for studying human disc
disorders/degeneration? Eur Spine J. 17:2–19. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Adams MA and Roughley PJ: What is
intervertebral disc degeneration, and what causes it? Spine (Phila
Pa 1976). 31:2151–2161. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Takatalo J, Karppinen J, Niinimäki J,
Taimela S, Näyhä S, Mutanen P, Sequeiros RB, Kyllönen E and
Tervonen O: Does lumbar disc degeneration on magnetic resonance
imaging associate with low back symptom severity in young Finnish
adults? Spine (Phila Pa 1976). 36:2180–2189. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Risbud MV and Shapiro IM: Role of
cytokines in intervertebral disc degeneration: Pain and disc
content. Nat Rev Rheumatol. 10:44–56. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhang C, Chen Z, Meng X, Li M, Zhang L and
Huang A: The involvement and possible mechanism of pro-inflammatory
tumor necrosis factor alpha (TNF-α) in thoracic ossification of the
ligamentum flavum. PLoS One. 12:e01789862017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Battié MC, Videman T, Levälahti E, Gill K
and Kaprio J: Genetic and environmental effects on disc
degeneration by phenotype and spinal level: A multivariate twin
study. Spine (Phila Pa 1976). 33:2801–2808. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Yee A, Lam MP, Tam V, Chan WC, Chu IK,
Cheah KS, Cheung KM and Chan D: Fibrotic-like changes in degenerate
human intervertebral discs revealed by quantitative proteomic
analysis. Osteoarthritis Cartilage. 24:503–513. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kamita M, Mori T, Sakai Y, Ito S, Gomi M,
Miyamoto Y, Harada A, Niida S, Yamada T, Watanabe K and Ono M:
Proteomic analysis of ligamentum flavum from patients with lumbar
spinal stenosis. Proteomics. 15:1622–1630. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ai C and Kong CL: GPS: A machine
learning-based approach integrating multiple gene set analysis
tools for better prioritization of biologically relevant pathways.
J Genet Genomics. 45:489–504. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wu J, Mao X, Cai T, Luo J and Wei L: KOBAS
server: A web-based platform for automated annotation and pathway
identification. Nucleic Acids Res. 34:W720–W724. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong
S, Kong L, Gao G, Li CY and Wei L: KOBAS 2.0: A web server for
annotation and identification of enriched pathways and diseases.
Nucleic Acids Res. 39:W316–W322. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kudo S, Ono M and Russell WJ: Ossification
of thoracic ligamenta flava. AJR Am J Roentgenol. 141:117–121.
1983. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hur JW, Kim BJ, Park JH, Kim JH, Park YK,
Kwon TH and Moon HJ: The mechanism of ligamentum flavum
hypertrophy: Introducing angiogenesis as a critical link that
couples mechanical stress and hypertrophy. Neurosurgery.
77:274–282. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Misawa H, Ohtsuka K, Nakata K and
Kinoshita H: Embryological study of the spinal ligaments in human
fetuses. J Spinal Disord. 7:495–498. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Nguyen AD, Itoh S, Jeney V, Yanagisawa H,
Fujimoto M, Ushio-Fukai M and Fukai T: Fibulin-5 is a novel binding
protein for extracellular superoxide dismutase. Circ Res.
95:1067–1074. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Liu X, Zhao Y, Gao J, Pawlyk B, Starcher
B, Spencer JA, Yanagisawa H, Zuo J and Li T: Elastic fiber
homeostasis requires lysyl oxidase-like 1 protein. Nat Genet.
36:178–182. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
20
|
Postacchini F, Gumina S, Cinotti G,
Perugia D and DeMartino C: Ligamenta flava in lumbar disc
herniation and spinal stenosis. Light and electron microscopic
morphology. Spine (Phila Pa 1976). 19:917–922. 1976. View Article : Google Scholar
|
|
21
|
Wang B, Chen Z, Meng X, Li M, Yang X and
Zhang C: iTRAQ quantitative proteomic study in patients with
thoracic ossification of the ligamentum flavum. Biochem Biophys Res
Commun. 487:834–839. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Batista MA, Nia HT, Önnerfjord P, Cox KA,
Ortiz C, Grodzinsky AJ, Heinegård D and Han L: Nanomechanical
phenotype of chondroadherin-null murine articular cartilage. Matrix
Biol. 38:84–90. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
McEwan PA, Scott PG, Bishop PN and Bella
J: Structural correlations in the family of small leucine-rich
repeat proteins and proteoglycans. J Struct Biol. 155:294–305.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Hildebrand A, Romarís M, Rasmussen LM,
Heinegård D, Twardzik DR, Border WA and Ruoslahti E: Interaction of
the small interstitial proteoglycans biglycan, decorin and
fibromodulin with transforming growth factor beta. Biochem J.
302:527–534. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhang G, Ezura Y, Chervoneva I, Robinson
PS, Beason DP, Carine ET, Soslowsky LJ, Iozzo RV and Birk DE:
Decorin regulates assembly of collagen fibrils and acquisition of
biomechanical properties during tendon development. J Cell Biochem.
98:1436–1449. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Seki S, Kawaguchi Y, Chiba K, Mikami Y,
Kizawa H, Oya T, Mio F, Mori M, Miyamoto Y, Masuda I, et al: A
functional SNP in CILP, encoding cartilage intermediate layer
protein, is associated with susceptibility to lumbar disc disease.
Nat Genet. 37:607–612. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sairyo K, Biyani A, Goel V, Leaman D,
Booth R Jr, Thomas J, Gehling D, Vishnubhotla L, Long R and
Ebraheim N: Pathomechanism of ligamentum flavum hypertrophy: A
multidisciplinary investigation based on clinical, biomechanical,
histologic, and biologic assessments. Spine (Phila Pa 1976).
30:2649–2656. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kelempisioti A, Eskola PJ, Okuloff A,
Karjalainen U, Takatalo J, Daavittila I, Niinimäki J, Sequeiros RB,
Tervonen O, Solovieva S, et al: Genetic susceptibility of
intervertebral disc degeneration among young Finnish adults. BMC
Med Genet. 12:1532011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhou T, Du L, Chen C, Han C, Li X, Qin A,
Zhao C, Zhang K and Zhao J: Lysophosphatidic acid induces
ligamentum flavum hypertrophy through the LPAR1/Akt pathway. Cell
Physiol Biochem. 45:1472–1486. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hara K, Shiga A, Fukutake T, Nozaki H,
Miyashita A, Yokoseki A, Kawata H, Koyama A, Arima K, Takahashi T,
et al: Association of HTRA1 mutations and familial ischemic
cerebral small-vessel disease. N Engl J Med. 360:1729–1739. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Tiaden AN and Richards PJ: The emerging
roles of HTRA1 in musculoskeletal disease. Am J Pathol.
182:1482–1488. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Dewan A, Liu M, Hartman S, Zhang SS, Liu
DT, Zhao C, Tam PO, Chan WM, Lam DS, Snyder M, et al: HTRA1
promoter polymorphism in wet age-related macular degeneration.
Science. 314:989–992. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Tsuchiya A, Yano M, Tocharus J, Kojima H,
Fukumoto M, Kawaichi M and Oka C: Expression of mouse HtrA1 serine
protease in normal bone and cartilage and its upregulation in joint
cartilage damaged by experimental arthritis. Bone. 37:323–336.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Grau S, Richards PJ, Kerr B, Hughes C,
Caterson B, Williams AS, Junker U, Jones SA, Clausen T and Ehrmann
M: The role of human HtrA1 in arthritic disease. J Biol Chem.
281:6124–6129. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Bogduk N: Functional anatomy of the spine.
Handb Clin Neurol. 136:675–688. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Feng C, Liu H, Yang M, Zhang Y, Huang B
and Zhou Y: Disc cell senescence in intervertebral disc
degeneration: Causes and molecular pathways. Cell Cycle.
15:1674–1684. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Gruber HE, Hoelscher G, Ingram JA and
Hanley EN Jr: Culture of human anulus fibrosus cells on polyamide
nanofibers: Extracellular matrix production. Spine (Phila Pa 1976).
34:4–9. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Antoniou J, Steffen T, Nelson F,
Winterbottom N, Hollander AP, Poole RA, Aebi M and Alini M: The
human lumbar intervertebral disc: Evidence for changes in the
biosynthesis and denaturation of the extracellular matrix with
growth, maturation, ageing, and degeneration. J Clin Invest.
98:996–1003. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Johnson WE, Wootton A, El Haj A,
Eisenstein SM, Curtis AS and Roberts S: Topographical guidance of
intervertebral disc cell growth in vitro: Towards the development
of tissue repair strategies for the anulus fibrosus. Eur Spine J.
15 (Suppl 3):S389–S396. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Singh K, Masuda K, Thonar EJ, An HS and
Cs-Szabo G: Age-related changes in the extracellular matrix of
nucleus pulposus and anulus fibrosus of human intervertebral disc.
Spine (Phila Pa 1976). 34:10–6. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Minogue BM, Richardson SM, Zeef LA,
Freemont AJ and Hoyland JA: Transcriptional profiling of bovine
intervertebral disc cells: Implications for identification of
normal and degenerate human intervertebral disc cell phenotypes.
Arthritis Res Ther. 12:R222010. View
Article : Google Scholar : PubMed/NCBI
|
|
42
|
Rutges J, Creemers LB, Dhert W, Milz S,
Sakai D, Mochida J, Alini M and Grad S: Variations in gene and
protein expression in human nucleus pulposus in comparison with
annulus fibrosus and cartilage cells: Potential associations with
aging and degeneration. Osteoarthritis Cartilage. 18:416–423. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Johnson WE, Patterson AM, Eisenstein SM
and Roberts S: The presence of pleiotrophin in the human
intervertebral disc is associated with increased vascularization:
An immunohistologic study. Spine (Phila Pa 1976). 32:1295–1302.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Sarath Babu N, Krishnan S, Brahmendra
Swamy CV, Venkata Subbaiah GP, Gurava Reddy AV and Idris MM:
Quantitative proteomic analysis of normal and degenerated human
intervertebral disc. Spine J. 16:989–1000. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hofmann K and Falquet L: A
ubiquitin-interacting motif conserved in components of the
proteasomal and lysosomal protein degradation systems. Trends
Biochem Sci. 26:347–350. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Feng P, Scott CW, Cho NH, Nakamura H,
Chung YH, Monteiro MJ and Jung JU: Kaposi's sarcoma-associated
herpesvirus K7 protein targets a
ubiquitin-like/ubiquitin-associated domain-containing protein to
promote protein degradation. Mol Cell Biol. 24:3938–3948. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Duarri A, Nibbeling E, Fokkens MR, Meijer
M, Boddeke E, Lagrange E, Stevanin G, Brice A, Durr A and Verbeek
DS: Erratum to: The L450F [Corrected] mutation in KCND3 brings
spinocerebellar ataxia and Brugada syndrome closer together.
Neurogenetics. 16:2432015. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ye D, Liang W, Dai L, Zhou L, Yao Y, Zhong
X, Chen H and Xu J: Comparative and quantitative proteomic analysis
of normal and degenerated human annulus fibrosus cells. Clin Exp
Pharmacol Physiol. 42:530–536. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Tsukahara F, Yoshioka T and Muraki T:
Molecular and functional characterization of HSC54, a novel variant
of human heat-shock cognate protein 70. Mol Pharmacol.
58:1257–1263. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Persico MG, Viglietto G, Martini G,
Toniolo D, Paonessa G, Moscatelli C, Dono R, Vulliamy T, Luzzatto L
and D'Urso M: Isolation of human glucose-6-phosphate dehydrogenase
(G6PD) cDNA clones: Primary structure of the protein and unusual
5′non-coding region. Nucleic Acids Res. 14:2511–2522. 1986.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Feng C, Zhang Y, Yang M, Lan M, Liu H,
Huang B and Zhou Y: Oxygen-sensing Nox4 generates genotoxic ROS to
induce premature senescence of nucleus pulposus cells through MAPK
and NF-κB pathways. Oxid Med Cell Longev. 2017:74264582017.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kamboh MI, Barmada MM, Demirci FY, Minster
RL, Carrasquillo MM, Pankratz VS, Younkin SG, Saykin AJ;
Alzheimer's Disease Neuroimaging Initiative, ; Sweet RA, et al:
Genome-wide association analysis of age-at-onset in Alzheimer's
disease. Mol Psychiatry. 17:1340–1346. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Brown DA and Sihra TS: Presynaptic
signaling by heterotrimeric G-proteins. Handb Exp Pharmacol.
207–60. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Sajjadi FG and Firestein GS: cDNA cloning
and sequence analysis of the human A3 adenosine receptor. Biochim
Biophys Acta. 1179:105–107. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Salvatore CA, Jacobson MA, Taylor HE,
Linden J and Johnson RG: Molecular cloning and characterization of
the human A3 adenosine receptor. Proc Natl Acad Sci USA.
90:10365–10369. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Honsho M, Asaoku S and Fujiki Y:
Posttranslational regulation of fatty acyl-CoA reductase 1, Far1,
controls ether glycerophospholipid synthesis. J Biol Chem.
285:8537–8542. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Samland AK and Sprenger GA: Transaldolase:
From biochemistry to human disease. Int J Biochem Cell Biol.
41:1482–1494. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Gauci S, Helbig AO, Slijper M, Krijgsveld
J, Heck AJ and Mohammed S: Lys-N and trypsin cover complementary
parts of the phosphoproteome in a refined SCX-based approach. Anal
Chem. 81:4493–4501. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Dickson IR, Happey F, Pearson CH, Naylor A
and Turner RL: Variations in the protein components of human
intervertebral disk with age. Nature. 215:52–53. 1967. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sivan SS, Hayes AJ, Wachtel E, Caterson B,
Merkher Y, Maroudas A, Brown S and Roberts S: Biochemical
composition and turnover of the extracellular matrix of the normal
and degenerate intervertebral disc. Eur Spine J. 23 (Suppl
3):S344–S353. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Elliott DM and Setton LA: Anisotropic and
inhomogeneous tensile behavior of the human anulus fibrosus:
Experimental measurement and material model predictions. J Biomech
Eng. 123:256–263. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Erwin WM, DeSouza L, Funabashi M, Kawchuk
G, Karim MZ, Kim S, Mӓdler S, Matta A, Wang X and Mehrkens KA: The
biological basis of degenerative disc disease: Proteomic and
biomechanical analysis of the canine intervertebral disc. Arthritis
Res Ther. 17:2402015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Markolf KL and Morris JM: The structural
components of the intervertebral disc. A study of their
contributions to the ability of the disc to withstand compressive
forces. J Bone Joint Surg Am. 56:675–687. 1974. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Pettine KA, Murphy MB, Suzuki RK and Sand
TT: Percutaneous injection of autologous bone marrow concentrate
cells significantly reduces lumbar discogenic pain through 12
months. Stem Cells. 33:146–156. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Shu CC, Smith MM, Smith SM, Dart AJ,
Little CB and Melrose J: A histopathological scheme for the
quantitative scoring of intervertebral disc degeneration and the
therapeutic utility of adult mesenchymal stem cells for
intervertebral disc regeneration. Int J Mol Sci. 18(pii):
E10492017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yang F, Leung VY, Luk KD, Chan D and
Cheung KM: Mesenchymal stem cells arrest intervertebral disc
degeneration through chondrocytic differentiation and stimulation
of endogenous cells. Mol Ther. 17:1959–1966. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Meisel HJ, Agarwal N, Hsieh PC, Skelly A,
Park JB, Brodke D, Wang JC, Yoon ST and Buser Z: Cell therapy for
treatment of intervertebral disc degeneration: A systematic review.
Global Spine J. 9 (1 Suppl):39S–52S. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Korecki CL, Taboas JM, Tuan RS and
Iatridis JC: Notochordal cell conditioned medium stimulates
mesenchymal stem cell differentiation toward a young nucleus
pulposus phenotype. Stem Cell Res Ther. 1:182010. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Steck E, Bertram H, Abel R, Chen B, Winter
A and Richter W: Induction of intervertebral disc-like cells from
adult mesenchymal stem cells. Stem Cells. 23:403–411. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Sive JI, Baird P, Jeziorsk M, Watkins A,
Hoyland JA and Freemont AJ: Expression of chondrocyte markers by
cells of normal and degenerate intervertebral discs. Mol Pathol.
55:91–97. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Risbud MV, Di Martino A, Guttapalli A,
Seghatoleslami R, Denaro V, Vaccaro AR, Albert TJ and Shapiro IM:
Toward an optimum system for intervertebral disc organ culture:
TGF-beta 3 enhances nucleus pulposus and anulus fibrosus survival
and function through modulation of TGF-beta-R expression and ERK
signaling. Spine (Phila Pa 1976). 31:884–890. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Purmessur D, Schek RM, Abbott RD, Ballif
BA, Godburn KE and Iatridis JC: Notochordal conditioned media from
tissue increases proteoglycan accumulation and promotes a healthy
nucleus pulposus phenotype in human mesenchymal stem cells.
Arthritis Res Ther. 13:R812011. View
Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhang Y, Xiong C, Kudelko M, Li Y, Wang C,
Wong YL, Tam V, Rai MF, Cheverud J, Lawson HA, et al: Early onset
disc degeneration in SM/J mice is associated with ion transport
systems and fibrotic changes. Matrix Biol. 70:123–139. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Tam V, Chan WCW, Leung VYL, Cheah KSE,
Cheung KMC, Sakai D, McCann MR, Bedore J, Séguin CA and Chan D:
Histological and reference system for the analysis of mouse
intervertebral disc. J Orthop Res. 36:233–243. 2018.PubMed/NCBI
|
|
75
|
Donnally IC, Hanna A and Varacallo M:
Lumbar degenerative disk disease, in StatPearls. StatPearls
Publishing. StatPearls Publishing LLC.; Treasure Island (FL):
2019
|
|
76
|
Liu XD, Zeng BF, Xu JG, Zhu HB and Xia QC:
Proteomic analysis of the cerebrospinal fluid of patients with
lumbar disk herniation. Proteomics. 6:1019–1028. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Xie P, Liu B, Chen R, Yang B, Dong J and
Rong L: Comparative analysis of serum proteomes: Identification of
proteins associated with sciatica due to lumbar intervertebral disc
herniation. Biomed Rep. 2:693–698. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Horrevoets AJ, Fontijn RD, van Zonneveld
AJ, de Vries CJ, ten Cate JW and Pannekoek H: Vascular endothelial
genes that are responsive to tumor necrosis factor-alpha in vitro
are expressed in atherosclerotic lesions, including inhibitor of
apoptosis protein-1, stannin, and two novel genes. Blood.
93:3418–3431. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Murata Y, Nannmark U, Rydevik B, Takahashi
K and Olmarker K: The role of tumor necrosis factor-alpha in
apoptosis of dorsal root ganglion cells induced by herniated
nucleus pulposus in rats. Spine (Phila Pa 1976). 33:155–162. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Luo G, Zhang X, Nilsson-Ehle P and Xu N:
Apolipoprotein M. Lipids Health Dis. 3:212004. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Palomo T, Vilaca T and Lazaretti-Castro M:
Osteogenesis imperfecta: Diagnosis and treatment. Curr Opin
Endocrinol Diabetes Obes. 24:381–388. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Deng H, Huang X and Yuan L: Molecular
genetics of the COL2A1-related disorders. Mutat Res Rev Mutat Res.
768:1–13. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zollinger AJ and Smith ML: Fibronectin,
the extracellular glue. Matrix Biol. 60-61:27–37. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Oegema TR Jr, Johnson SL, Aguiar DJ and
Ogilvie JW: Fibronectin and its fragments increase with
degeneration in the human intervertebral disc. Spine (Phila Pa
1976). 25:2742–2747. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kook SH, Lim SS, Cho ES, Lee YH, Han SK,
Lee KY, Kwon J, Hwang JW, Bae CH, Seo YK and Lee JC:
COMP-angiopoietin 1 increases proliferation, differentiation, and
migration of stem-like cells through Tie-2-mediated activation of
p38 MAPK and PI3K/Akt signal transduction pathways. Biochem Biophys
Res Commun. 455:371–377. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhang Q, Ji Q, Wang X, Kang L, Fu Y, Yin
Y, Li Z, Liu Y, Xu X and Wang Y: SOX9 is a regulator of
ADAMTSs-induced cartilage degeneration at the early stage of human
osteoarthritis. Osteoarthritis Cartilage. 23:2259–2268. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Mo S, Liu C, Chen L, Ma Y, Liang T, Xue J,
Zeng H and Zhan X: KEGG-expressed genes and pathways in
intervertebral disc degeneration: Protocol for a systematic review
and data mining. Medicine (Baltimore). 98:e157962019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Ouyang ZH, Wang WJ, Yan YG, Wang B and Lv
GH: The PI3K/Akt pathway: A critical player in intervertebral disc
degeneration. Oncotarget. 8:57870–57881. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Tan Y, Yao X, Dai Z, Wang Y and Lv G: Bone
morphogenetic protein 2 alleviated intervertebral disc degeneration
through mediating the degradation of ECM and apoptosis of nucleus
pulposus cells via the PI3K/Akt pathway. Int J Mol Med. 43:583–592.
2019.PubMed/NCBI
|
|
90
|
Zochodne DW: Mechanisms of diabetic neuron
damage: Molecular pathways. Handb Clin Neurol. 126:379–399. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Russo F, Ambrosio L, Ngo K, Vadalà G,
Denaro V, Fan Y, Sowa G, Kang JD and Vo N: The role of type I
diabetes in intervertebral disc degeneration. Spine (Phila Pa
1976). 44:1177–1185. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Ma X, Han J, Wu Q, Liu H, Shi S, Wang C,
Wang Y, Xiao J, Zhao J, Jiang J and Wan C: Involvement of
dysregulated Wip1 in manganese-induced p53 signaling and neuronal
apoptosis. Toxicol Lett. 235:17–27. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Ben-Porath I and Weinberg RA: The signals
and pathways activating cellular senescence. Int J Biochem Cell
Biol. 37:961–976. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Muller M: Cellular senescence: Molecular
mechanisms, in vivo significance, and redox considerations.
Antioxid Redox Signal. 11:59–98. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Jin LZ, Lu JS and Gao JW: Silencing SUMO2
promotes protection against degradation and apoptosis of nucleus
pulposus cells through p53 signaling pathway in intervertebral disc
degeneration. Biosci Rep. 38(pii): BSR201715232018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Massagué J: TGFβ signalling in context.
Nat Rev Mol Cell Biol. 13:616–630. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Chen G, Deng C and Li YP: TGF-β and BMP
signaling in osteoblast differentiation and bone formation. Int J
Biol Sci. 8:272–288. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Cao C, Zou J, Liu X, Shapiro A, Moral M,
Luo Z, Shi Q, Liu J, Yang H and Ebraheim N: Bone marrow mesenchymal
stem cells slow intervertebral disc degeneration through the NF-κB
pathway. Spine J. 15:530–538. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Lu L, Hu J, Wu Q, An Y, Cui W, Wang J and
Ye Z: Berberine prevents human nucleus pulposus cells from
IL1betainduced extracellular matrix degradation and apoptosis by
inhibiting the NFkappaB pathway. Int J Mol Med. 43:1679–1686.
2019.PubMed/NCBI
|
|
100
|
Zieba J, Forlenza KN, Khatra JS,
Sarukhanov A, Duran I, Rigueur D, Lyons KM, Cohn DH, Merrill AE and
Krakow D: TGFβ and BMP dependent cell fate changes due to loss of
filamin b produces disc degeneration and progressive vertebral
fusions. PLoS Genet. 12:e10059362016. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Yang H, Cao C, Wu C, Yuan C, Gu Q, Shi Q
and Zou J: TGF-βl suppresses inflammation in cell therapy for
intervertebral disc degeneration. Sci Rep. 5:132542015. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Posey KL, Coustry F and Hecht JT:
Cartilage oligomeric matrix protein: COMPopathies and beyond.
Matrix Biol. 71-72:161–173. 2018. View Article : Google Scholar : PubMed/NCBI
|