Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2020 Volume 21 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2020 Volume 21 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Review Open Access

Molecular basis of degenerative spinal disorders from a proteomic perspective (Review)

  • Authors:
    • Chang Liu
    • Minghui Yang
    • Libangxi Liu
    • Yang Zhang
    • Qi Zhu
    • Cong Huang
    • Hongwei Wang
    • Yaqing Zhang
    • Haiyin Li
    • Changqing Li
    • Bo Huang
    • Chencheng Feng
    • Yue Zhou
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China, Medical Research Center, Southwestern Hospital, Army Medical University, Chongqing 400037, P.R. China, Department of Orthopedics, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang, Liaoning 110016, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 9-19
    |
    Published online on: November 12, 2019
       https://doi.org/10.3892/mmr.2019.10812
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Intervertebral disc degeneration (IDD) and ligamentum flavum hypertrophy (LFH) are major causes of degenerative spinal disorders. Comparative and proteomic analysis was used to identify differentially expressed proteins (DEPs) in IDD and LFH discs compared with normal discs. Subsequent gene ontology term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the DEPs in human IDD discs or LFH samples were performed to identify the biological processes and signaling pathways involved in IDD and LFH. The PI3K‑AKT signaling pathway, advanced glycation endproducts‑receptor for advanced glycation endproducts signaling pathway, p53 signaling pathway, and transforming growth factor‑b signaling pathway were activated in disc degeneration. This review summarizes the recently identified DEPs, including prolargin, fibronectin 1, cartilage intermediate layer protein, cartilage oligomeric matrix protein, and collagen types I, II and IV, and their pathophysiological roles in degenerative spinal disorders, and may provide a deeper understanding of the pathological processes of human generative spinal disorders. The present review aimed to summarize significantly changed proteins in degenerative spinal disorders and provide a deeper understanding to prevent these diseases.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Iorio JA, Jakoi AM and Singla A: Biomechanics of degenerative spinal disorders. Asian Spine J. 10:377–384. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Cheung KM, Karppinen J, Chan D, Ho DW, Song YQ, Sham P, Cheah KS, Leong JC and Luk KD: Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Phila Pa 1976). 34:934–940. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Szpalski M and Gunzburg R: Lumbar spinal stenosis in the elderly: An overview. Eur Spine J. 12 (Suppl 2):S170–S175. 2003. View Article : Google Scholar : PubMed/NCBI

4 

Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K, Melrose J, Ralphs J, Stokes I and Wilke HJ: Are animal models useful for studying human disc disorders/degeneration? Eur Spine J. 17:2–19. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Adams MA and Roughley PJ: What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976). 31:2151–2161. 2006. View Article : Google Scholar : PubMed/NCBI

6 

Takatalo J, Karppinen J, Niinimäki J, Taimela S, Näyhä S, Mutanen P, Sequeiros RB, Kyllönen E and Tervonen O: Does lumbar disc degeneration on magnetic resonance imaging associate with low back symptom severity in young Finnish adults? Spine (Phila Pa 1976). 36:2180–2189. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Risbud MV and Shapiro IM: Role of cytokines in intervertebral disc degeneration: Pain and disc content. Nat Rev Rheumatol. 10:44–56. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Zhang C, Chen Z, Meng X, Li M, Zhang L and Huang A: The involvement and possible mechanism of pro-inflammatory tumor necrosis factor alpha (TNF-α) in thoracic ossification of the ligamentum flavum. PLoS One. 12:e01789862017. View Article : Google Scholar : PubMed/NCBI

9 

Battié MC, Videman T, Levälahti E, Gill K and Kaprio J: Genetic and environmental effects on disc degeneration by phenotype and spinal level: A multivariate twin study. Spine (Phila Pa 1976). 33:2801–2808. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Yee A, Lam MP, Tam V, Chan WC, Chu IK, Cheah KS, Cheung KM and Chan D: Fibrotic-like changes in degenerate human intervertebral discs revealed by quantitative proteomic analysis. Osteoarthritis Cartilage. 24:503–513. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Kamita M, Mori T, Sakai Y, Ito S, Gomi M, Miyamoto Y, Harada A, Niida S, Yamada T, Watanabe K and Ono M: Proteomic analysis of ligamentum flavum from patients with lumbar spinal stenosis. Proteomics. 15:1622–1630. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Ai C and Kong CL: GPS: A machine learning-based approach integrating multiple gene set analysis tools for better prioritization of biologically relevant pathways. J Genet Genomics. 45:489–504. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Wu J, Mao X, Cai T, Luo J and Wei L: KOBAS server: A web-based platform for automated annotation and pathway identification. Nucleic Acids Res. 34:W720–W724. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY and Wei L: KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39:W316–W322. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Kudo S, Ono M and Russell WJ: Ossification of thoracic ligamenta flava. AJR Am J Roentgenol. 141:117–121. 1983. View Article : Google Scholar : PubMed/NCBI

16 

Hur JW, Kim BJ, Park JH, Kim JH, Park YK, Kwon TH and Moon HJ: The mechanism of ligamentum flavum hypertrophy: Introducing angiogenesis as a critical link that couples mechanical stress and hypertrophy. Neurosurgery. 77:274–282. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Misawa H, Ohtsuka K, Nakata K and Kinoshita H: Embryological study of the spinal ligaments in human fetuses. J Spinal Disord. 7:495–498. 1994. View Article : Google Scholar : PubMed/NCBI

18 

Nguyen AD, Itoh S, Jeney V, Yanagisawa H, Fujimoto M, Ushio-Fukai M and Fukai T: Fibulin-5 is a novel binding protein for extracellular superoxide dismutase. Circ Res. 95:1067–1074. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Liu X, Zhao Y, Gao J, Pawlyk B, Starcher B, Spencer JA, Yanagisawa H, Zuo J and Li T: Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet. 36:178–182. 2004. View Article : Google Scholar : PubMed/NCBI

20 

Postacchini F, Gumina S, Cinotti G, Perugia D and DeMartino C: Ligamenta flava in lumbar disc herniation and spinal stenosis. Light and electron microscopic morphology. Spine (Phila Pa 1976). 19:917–922. 1976. View Article : Google Scholar

21 

Wang B, Chen Z, Meng X, Li M, Yang X and Zhang C: iTRAQ quantitative proteomic study in patients with thoracic ossification of the ligamentum flavum. Biochem Biophys Res Commun. 487:834–839. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Batista MA, Nia HT, Önnerfjord P, Cox KA, Ortiz C, Grodzinsky AJ, Heinegård D and Han L: Nanomechanical phenotype of chondroadherin-null murine articular cartilage. Matrix Biol. 38:84–90. 2014. View Article : Google Scholar : PubMed/NCBI

23 

McEwan PA, Scott PG, Bishop PN and Bella J: Structural correlations in the family of small leucine-rich repeat proteins and proteoglycans. J Struct Biol. 155:294–305. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Hildebrand A, Romarís M, Rasmussen LM, Heinegård D, Twardzik DR, Border WA and Ruoslahti E: Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J. 302:527–534. 1994. View Article : Google Scholar : PubMed/NCBI

25 

Zhang G, Ezura Y, Chervoneva I, Robinson PS, Beason DP, Carine ET, Soslowsky LJ, Iozzo RV and Birk DE: Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development. J Cell Biochem. 98:1436–1449. 2006. View Article : Google Scholar : PubMed/NCBI

26 

Seki S, Kawaguchi Y, Chiba K, Mikami Y, Kizawa H, Oya T, Mio F, Mori M, Miyamoto Y, Masuda I, et al: A functional SNP in CILP, encoding cartilage intermediate layer protein, is associated with susceptibility to lumbar disc disease. Nat Genet. 37:607–612. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Sairyo K, Biyani A, Goel V, Leaman D, Booth R Jr, Thomas J, Gehling D, Vishnubhotla L, Long R and Ebraheim N: Pathomechanism of ligamentum flavum hypertrophy: A multidisciplinary investigation based on clinical, biomechanical, histologic, and biologic assessments. Spine (Phila Pa 1976). 30:2649–2656. 2005. View Article : Google Scholar : PubMed/NCBI

28 

Kelempisioti A, Eskola PJ, Okuloff A, Karjalainen U, Takatalo J, Daavittila I, Niinimäki J, Sequeiros RB, Tervonen O, Solovieva S, et al: Genetic susceptibility of intervertebral disc degeneration among young Finnish adults. BMC Med Genet. 12:1532011. View Article : Google Scholar : PubMed/NCBI

29 

Zhou T, Du L, Chen C, Han C, Li X, Qin A, Zhao C, Zhang K and Zhao J: Lysophosphatidic acid induces ligamentum flavum hypertrophy through the LPAR1/Akt pathway. Cell Physiol Biochem. 45:1472–1486. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Hara K, Shiga A, Fukutake T, Nozaki H, Miyashita A, Yokoseki A, Kawata H, Koyama A, Arima K, Takahashi T, et al: Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med. 360:1729–1739. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Tiaden AN and Richards PJ: The emerging roles of HTRA1 in musculoskeletal disease. Am J Pathol. 182:1482–1488. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Dewan A, Liu M, Hartman S, Zhang SS, Liu DT, Zhao C, Tam PO, Chan WM, Lam DS, Snyder M, et al: HTRA1 promoter polymorphism in wet age-related macular degeneration. Science. 314:989–992. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Tsuchiya A, Yano M, Tocharus J, Kojima H, Fukumoto M, Kawaichi M and Oka C: Expression of mouse HtrA1 serine protease in normal bone and cartilage and its upregulation in joint cartilage damaged by experimental arthritis. Bone. 37:323–336. 2005. View Article : Google Scholar : PubMed/NCBI

34 

Grau S, Richards PJ, Kerr B, Hughes C, Caterson B, Williams AS, Junker U, Jones SA, Clausen T and Ehrmann M: The role of human HtrA1 in arthritic disease. J Biol Chem. 281:6124–6129. View Article : Google Scholar : PubMed/NCBI

35 

Bogduk N: Functional anatomy of the spine. Handb Clin Neurol. 136:675–688. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Feng C, Liu H, Yang M, Zhang Y, Huang B and Zhou Y: Disc cell senescence in intervertebral disc degeneration: Causes and molecular pathways. Cell Cycle. 15:1674–1684. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Gruber HE, Hoelscher G, Ingram JA and Hanley EN Jr: Culture of human anulus fibrosus cells on polyamide nanofibers: Extracellular matrix production. Spine (Phila Pa 1976). 34:4–9. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, Aebi M and Alini M: The human lumbar intervertebral disc: Evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest. 98:996–1003. 1996. View Article : Google Scholar : PubMed/NCBI

39 

Johnson WE, Wootton A, El Haj A, Eisenstein SM, Curtis AS and Roberts S: Topographical guidance of intervertebral disc cell growth in vitro: Towards the development of tissue repair strategies for the anulus fibrosus. Eur Spine J. 15 (Suppl 3):S389–S396. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Singh K, Masuda K, Thonar EJ, An HS and Cs-Szabo G: Age-related changes in the extracellular matrix of nucleus pulposus and anulus fibrosus of human intervertebral disc. Spine (Phila Pa 1976). 34:10–6. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Minogue BM, Richardson SM, Zeef LA, Freemont AJ and Hoyland JA: Transcriptional profiling of bovine intervertebral disc cells: Implications for identification of normal and degenerate human intervertebral disc cell phenotypes. Arthritis Res Ther. 12:R222010. View Article : Google Scholar : PubMed/NCBI

42 

Rutges J, Creemers LB, Dhert W, Milz S, Sakai D, Mochida J, Alini M and Grad S: Variations in gene and protein expression in human nucleus pulposus in comparison with annulus fibrosus and cartilage cells: Potential associations with aging and degeneration. Osteoarthritis Cartilage. 18:416–423. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Johnson WE, Patterson AM, Eisenstein SM and Roberts S: The presence of pleiotrophin in the human intervertebral disc is associated with increased vascularization: An immunohistologic study. Spine (Phila Pa 1976). 32:1295–1302. 2007. View Article : Google Scholar : PubMed/NCBI

44 

Sarath Babu N, Krishnan S, Brahmendra Swamy CV, Venkata Subbaiah GP, Gurava Reddy AV and Idris MM: Quantitative proteomic analysis of normal and degenerated human intervertebral disc. Spine J. 16:989–1000. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Hofmann K and Falquet L: A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem Sci. 26:347–350. 2001. View Article : Google Scholar : PubMed/NCBI

46 

Feng P, Scott CW, Cho NH, Nakamura H, Chung YH, Monteiro MJ and Jung JU: Kaposi's sarcoma-associated herpesvirus K7 protein targets a ubiquitin-like/ubiquitin-associated domain-containing protein to promote protein degradation. Mol Cell Biol. 24:3938–3948. 2004. View Article : Google Scholar : PubMed/NCBI

47 

Duarri A, Nibbeling E, Fokkens MR, Meijer M, Boddeke E, Lagrange E, Stevanin G, Brice A, Durr A and Verbeek DS: Erratum to: The L450F [Corrected] mutation in KCND3 brings spinocerebellar ataxia and Brugada syndrome closer together. Neurogenetics. 16:2432015. View Article : Google Scholar : PubMed/NCBI

48 

Ye D, Liang W, Dai L, Zhou L, Yao Y, Zhong X, Chen H and Xu J: Comparative and quantitative proteomic analysis of normal and degenerated human annulus fibrosus cells. Clin Exp Pharmacol Physiol. 42:530–536. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Tsukahara F, Yoshioka T and Muraki T: Molecular and functional characterization of HSC54, a novel variant of human heat-shock cognate protein 70. Mol Pharmacol. 58:1257–1263. 2000. View Article : Google Scholar : PubMed/NCBI

50 

Persico MG, Viglietto G, Martini G, Toniolo D, Paonessa G, Moscatelli C, Dono R, Vulliamy T, Luzzatto L and D'Urso M: Isolation of human glucose-6-phosphate dehydrogenase (G6PD) cDNA clones: Primary structure of the protein and unusual 5′non-coding region. Nucleic Acids Res. 14:2511–2522. 1986. View Article : Google Scholar : PubMed/NCBI

51 

Feng C, Zhang Y, Yang M, Lan M, Liu H, Huang B and Zhou Y: Oxygen-sensing Nox4 generates genotoxic ROS to induce premature senescence of nucleus pulposus cells through MAPK and NF-κB pathways. Oxid Med Cell Longev. 2017:74264582017. View Article : Google Scholar : PubMed/NCBI

52 

Kamboh MI, Barmada MM, Demirci FY, Minster RL, Carrasquillo MM, Pankratz VS, Younkin SG, Saykin AJ; Alzheimer's Disease Neuroimaging Initiative, ; Sweet RA, et al: Genome-wide association analysis of age-at-onset in Alzheimer's disease. Mol Psychiatry. 17:1340–1346. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Brown DA and Sihra TS: Presynaptic signaling by heterotrimeric G-proteins. Handb Exp Pharmacol. 207–60. 2008. View Article : Google Scholar : PubMed/NCBI

54 

Sajjadi FG and Firestein GS: cDNA cloning and sequence analysis of the human A3 adenosine receptor. Biochim Biophys Acta. 1179:105–107. 1993. View Article : Google Scholar : PubMed/NCBI

55 

Salvatore CA, Jacobson MA, Taylor HE, Linden J and Johnson RG: Molecular cloning and characterization of the human A3 adenosine receptor. Proc Natl Acad Sci USA. 90:10365–10369. 1993. View Article : Google Scholar : PubMed/NCBI

56 

Honsho M, Asaoku S and Fujiki Y: Posttranslational regulation of fatty acyl-CoA reductase 1, Far1, controls ether glycerophospholipid synthesis. J Biol Chem. 285:8537–8542. 2010. View Article : Google Scholar : PubMed/NCBI

57 

Samland AK and Sprenger GA: Transaldolase: From biochemistry to human disease. Int J Biochem Cell Biol. 41:1482–1494. 2009. View Article : Google Scholar : PubMed/NCBI

58 

Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ and Mohammed S: Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem. 81:4493–4501. 2009. View Article : Google Scholar : PubMed/NCBI

59 

Dickson IR, Happey F, Pearson CH, Naylor A and Turner RL: Variations in the protein components of human intervertebral disk with age. Nature. 215:52–53. 1967. View Article : Google Scholar : PubMed/NCBI

60 

Sivan SS, Hayes AJ, Wachtel E, Caterson B, Merkher Y, Maroudas A, Brown S and Roberts S: Biochemical composition and turnover of the extracellular matrix of the normal and degenerate intervertebral disc. Eur Spine J. 23 (Suppl 3):S344–S353. 2014. View Article : Google Scholar : PubMed/NCBI

61 

Elliott DM and Setton LA: Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: Experimental measurement and material model predictions. J Biomech Eng. 123:256–263. 2001. View Article : Google Scholar : PubMed/NCBI

62 

Erwin WM, DeSouza L, Funabashi M, Kawchuk G, Karim MZ, Kim S, Mӓdler S, Matta A, Wang X and Mehrkens KA: The biological basis of degenerative disc disease: Proteomic and biomechanical analysis of the canine intervertebral disc. Arthritis Res Ther. 17:2402015. View Article : Google Scholar : PubMed/NCBI

63 

Markolf KL and Morris JM: The structural components of the intervertebral disc. A study of their contributions to the ability of the disc to withstand compressive forces. J Bone Joint Surg Am. 56:675–687. 1974. View Article : Google Scholar : PubMed/NCBI

64 

Pettine KA, Murphy MB, Suzuki RK and Sand TT: Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months. Stem Cells. 33:146–156. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Shu CC, Smith MM, Smith SM, Dart AJ, Little CB and Melrose J: A histopathological scheme for the quantitative scoring of intervertebral disc degeneration and the therapeutic utility of adult mesenchymal stem cells for intervertebral disc regeneration. Int J Mol Sci. 18(pii): E10492017. View Article : Google Scholar : PubMed/NCBI

66 

Yang F, Leung VY, Luk KD, Chan D and Cheung KM: Mesenchymal stem cells arrest intervertebral disc degeneration through chondrocytic differentiation and stimulation of endogenous cells. Mol Ther. 17:1959–1966. 2009. View Article : Google Scholar : PubMed/NCBI

67 

Meisel HJ, Agarwal N, Hsieh PC, Skelly A, Park JB, Brodke D, Wang JC, Yoon ST and Buser Z: Cell therapy for treatment of intervertebral disc degeneration: A systematic review. Global Spine J. 9 (1 Suppl):39S–52S. 2019. View Article : Google Scholar : PubMed/NCBI

68 

Korecki CL, Taboas JM, Tuan RS and Iatridis JC: Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype. Stem Cell Res Ther. 1:182010. View Article : Google Scholar : PubMed/NCBI

69 

Steck E, Bertram H, Abel R, Chen B, Winter A and Richter W: Induction of intervertebral disc-like cells from adult mesenchymal stem cells. Stem Cells. 23:403–411. 2005. View Article : Google Scholar : PubMed/NCBI

70 

Sive JI, Baird P, Jeziorsk M, Watkins A, Hoyland JA and Freemont AJ: Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs. Mol Pathol. 55:91–97. 2002. View Article : Google Scholar : PubMed/NCBI

71 

Risbud MV, Di Martino A, Guttapalli A, Seghatoleslami R, Denaro V, Vaccaro AR, Albert TJ and Shapiro IM: Toward an optimum system for intervertebral disc organ culture: TGF-beta 3 enhances nucleus pulposus and anulus fibrosus survival and function through modulation of TGF-beta-R expression and ERK signaling. Spine (Phila Pa 1976). 31:884–890. 2006. View Article : Google Scholar : PubMed/NCBI

72 

Purmessur D, Schek RM, Abbott RD, Ballif BA, Godburn KE and Iatridis JC: Notochordal conditioned media from tissue increases proteoglycan accumulation and promotes a healthy nucleus pulposus phenotype in human mesenchymal stem cells. Arthritis Res Ther. 13:R812011. View Article : Google Scholar : PubMed/NCBI

73 

Zhang Y, Xiong C, Kudelko M, Li Y, Wang C, Wong YL, Tam V, Rai MF, Cheverud J, Lawson HA, et al: Early onset disc degeneration in SM/J mice is associated with ion transport systems and fibrotic changes. Matrix Biol. 70:123–139. 2018. View Article : Google Scholar : PubMed/NCBI

74 

Tam V, Chan WCW, Leung VYL, Cheah KSE, Cheung KMC, Sakai D, McCann MR, Bedore J, Séguin CA and Chan D: Histological and reference system for the analysis of mouse intervertebral disc. J Orthop Res. 36:233–243. 2018.PubMed/NCBI

75 

Donnally IC, Hanna A and Varacallo M: Lumbar degenerative disk disease, in StatPearls. StatPearls Publishing. StatPearls Publishing LLC.; Treasure Island (FL): 2019

76 

Liu XD, Zeng BF, Xu JG, Zhu HB and Xia QC: Proteomic analysis of the cerebrospinal fluid of patients with lumbar disk herniation. Proteomics. 6:1019–1028. 2006. View Article : Google Scholar : PubMed/NCBI

77 

Xie P, Liu B, Chen R, Yang B, Dong J and Rong L: Comparative analysis of serum proteomes: Identification of proteins associated with sciatica due to lumbar intervertebral disc herniation. Biomed Rep. 2:693–698. 2014. View Article : Google Scholar : PubMed/NCBI

78 

Horrevoets AJ, Fontijn RD, van Zonneveld AJ, de Vries CJ, ten Cate JW and Pannekoek H: Vascular endothelial genes that are responsive to tumor necrosis factor-alpha in vitro are expressed in atherosclerotic lesions, including inhibitor of apoptosis protein-1, stannin, and two novel genes. Blood. 93:3418–3431. 1999. View Article : Google Scholar : PubMed/NCBI

79 

Murata Y, Nannmark U, Rydevik B, Takahashi K and Olmarker K: The role of tumor necrosis factor-alpha in apoptosis of dorsal root ganglion cells induced by herniated nucleus pulposus in rats. Spine (Phila Pa 1976). 33:155–162. 2008. View Article : Google Scholar : PubMed/NCBI

80 

Luo G, Zhang X, Nilsson-Ehle P and Xu N: Apolipoprotein M. Lipids Health Dis. 3:212004. View Article : Google Scholar : PubMed/NCBI

81 

Palomo T, Vilaca T and Lazaretti-Castro M: Osteogenesis imperfecta: Diagnosis and treatment. Curr Opin Endocrinol Diabetes Obes. 24:381–388. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Deng H, Huang X and Yuan L: Molecular genetics of the COL2A1-related disorders. Mutat Res Rev Mutat Res. 768:1–13. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Zollinger AJ and Smith ML: Fibronectin, the extracellular glue. Matrix Biol. 60-61:27–37. 2017. View Article : Google Scholar : PubMed/NCBI

84 

Oegema TR Jr, Johnson SL, Aguiar DJ and Ogilvie JW: Fibronectin and its fragments increase with degeneration in the human intervertebral disc. Spine (Phila Pa 1976). 25:2742–2747. 2000. View Article : Google Scholar : PubMed/NCBI

85 

Kook SH, Lim SS, Cho ES, Lee YH, Han SK, Lee KY, Kwon J, Hwang JW, Bae CH, Seo YK and Lee JC: COMP-angiopoietin 1 increases proliferation, differentiation, and migration of stem-like cells through Tie-2-mediated activation of p38 MAPK and PI3K/Akt signal transduction pathways. Biochem Biophys Res Commun. 455:371–377. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Zhang Q, Ji Q, Wang X, Kang L, Fu Y, Yin Y, Li Z, Liu Y, Xu X and Wang Y: SOX9 is a regulator of ADAMTSs-induced cartilage degeneration at the early stage of human osteoarthritis. Osteoarthritis Cartilage. 23:2259–2268. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Mo S, Liu C, Chen L, Ma Y, Liang T, Xue J, Zeng H and Zhan X: KEGG-expressed genes and pathways in intervertebral disc degeneration: Protocol for a systematic review and data mining. Medicine (Baltimore). 98:e157962019. View Article : Google Scholar : PubMed/NCBI

88 

Ouyang ZH, Wang WJ, Yan YG, Wang B and Lv GH: The PI3K/Akt pathway: A critical player in intervertebral disc degeneration. Oncotarget. 8:57870–57881. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Tan Y, Yao X, Dai Z, Wang Y and Lv G: Bone morphogenetic protein 2 alleviated intervertebral disc degeneration through mediating the degradation of ECM and apoptosis of nucleus pulposus cells via the PI3K/Akt pathway. Int J Mol Med. 43:583–592. 2019.PubMed/NCBI

90 

Zochodne DW: Mechanisms of diabetic neuron damage: Molecular pathways. Handb Clin Neurol. 126:379–399. 2014. View Article : Google Scholar : PubMed/NCBI

91 

Russo F, Ambrosio L, Ngo K, Vadalà G, Denaro V, Fan Y, Sowa G, Kang JD and Vo N: The role of type I diabetes in intervertebral disc degeneration. Spine (Phila Pa 1976). 44:1177–1185. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Ma X, Han J, Wu Q, Liu H, Shi S, Wang C, Wang Y, Xiao J, Zhao J, Jiang J and Wan C: Involvement of dysregulated Wip1 in manganese-induced p53 signaling and neuronal apoptosis. Toxicol Lett. 235:17–27. 2015. View Article : Google Scholar : PubMed/NCBI

93 

Ben-Porath I and Weinberg RA: The signals and pathways activating cellular senescence. Int J Biochem Cell Biol. 37:961–976. 2005. View Article : Google Scholar : PubMed/NCBI

94 

Muller M: Cellular senescence: Molecular mechanisms, in vivo significance, and redox considerations. Antioxid Redox Signal. 11:59–98. 2009. View Article : Google Scholar : PubMed/NCBI

95 

Jin LZ, Lu JS and Gao JW: Silencing SUMO2 promotes protection against degradation and apoptosis of nucleus pulposus cells through p53 signaling pathway in intervertebral disc degeneration. Biosci Rep. 38(pii): BSR201715232018. View Article : Google Scholar : PubMed/NCBI

96 

Massagué J: TGFβ signalling in context. Nat Rev Mol Cell Biol. 13:616–630. 2012. View Article : Google Scholar : PubMed/NCBI

97 

Chen G, Deng C and Li YP: TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 8:272–288. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Cao C, Zou J, Liu X, Shapiro A, Moral M, Luo Z, Shi Q, Liu J, Yang H and Ebraheim N: Bone marrow mesenchymal stem cells slow intervertebral disc degeneration through the NF-κB pathway. Spine J. 15:530–538. 2015. View Article : Google Scholar : PubMed/NCBI

99 

Lu L, Hu J, Wu Q, An Y, Cui W, Wang J and Ye Z: Berberine prevents human nucleus pulposus cells from IL1betainduced extracellular matrix degradation and apoptosis by inhibiting the NFkappaB pathway. Int J Mol Med. 43:1679–1686. 2019.PubMed/NCBI

100 

Zieba J, Forlenza KN, Khatra JS, Sarukhanov A, Duran I, Rigueur D, Lyons KM, Cohn DH, Merrill AE and Krakow D: TGFβ and BMP dependent cell fate changes due to loss of filamin b produces disc degeneration and progressive vertebral fusions. PLoS Genet. 12:e10059362016. View Article : Google Scholar : PubMed/NCBI

101 

Yang H, Cao C, Wu C, Yuan C, Gu Q, Shi Q and Zou J: TGF-βl suppresses inflammation in cell therapy for intervertebral disc degeneration. Sci Rep. 5:132542015. View Article : Google Scholar : PubMed/NCBI

102 

Posey KL, Coustry F and Hecht JT: Cartilage oligomeric matrix protein: COMPopathies and beyond. Matrix Biol. 71-72:161–173. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu C, Yang M, Liu L, Zhang Y, Zhu Q, Huang C, Wang H, Zhang Y, Li H, Li C, Li C, et al: Molecular basis of degenerative spinal disorders from a proteomic perspective (Review). Mol Med Rep 21: 9-19, 2020.
APA
Liu, C., Yang, M., Liu, L., Zhang, Y., Zhu, Q., Huang, C. ... Zhou, Y. (2020). Molecular basis of degenerative spinal disorders from a proteomic perspective (Review). Molecular Medicine Reports, 21, 9-19. https://doi.org/10.3892/mmr.2019.10812
MLA
Liu, C., Yang, M., Liu, L., Zhang, Y., Zhu, Q., Huang, C., Wang, H., Zhang, Y., Li, H., Li, C., Huang, B., Feng, C., Zhou, Y."Molecular basis of degenerative spinal disorders from a proteomic perspective (Review)". Molecular Medicine Reports 21.1 (2020): 9-19.
Chicago
Liu, C., Yang, M., Liu, L., Zhang, Y., Zhu, Q., Huang, C., Wang, H., Zhang, Y., Li, H., Li, C., Huang, B., Feng, C., Zhou, Y."Molecular basis of degenerative spinal disorders from a proteomic perspective (Review)". Molecular Medicine Reports 21, no. 1 (2020): 9-19. https://doi.org/10.3892/mmr.2019.10812
Copy and paste a formatted citation
x
Spandidos Publications style
Liu C, Yang M, Liu L, Zhang Y, Zhu Q, Huang C, Wang H, Zhang Y, Li H, Li C, Li C, et al: Molecular basis of degenerative spinal disorders from a proteomic perspective (Review). Mol Med Rep 21: 9-19, 2020.
APA
Liu, C., Yang, M., Liu, L., Zhang, Y., Zhu, Q., Huang, C. ... Zhou, Y. (2020). Molecular basis of degenerative spinal disorders from a proteomic perspective (Review). Molecular Medicine Reports, 21, 9-19. https://doi.org/10.3892/mmr.2019.10812
MLA
Liu, C., Yang, M., Liu, L., Zhang, Y., Zhu, Q., Huang, C., Wang, H., Zhang, Y., Li, H., Li, C., Huang, B., Feng, C., Zhou, Y."Molecular basis of degenerative spinal disorders from a proteomic perspective (Review)". Molecular Medicine Reports 21.1 (2020): 9-19.
Chicago
Liu, C., Yang, M., Liu, L., Zhang, Y., Zhu, Q., Huang, C., Wang, H., Zhang, Y., Li, H., Li, C., Huang, B., Feng, C., Zhou, Y."Molecular basis of degenerative spinal disorders from a proteomic perspective (Review)". Molecular Medicine Reports 21, no. 1 (2020): 9-19. https://doi.org/10.3892/mmr.2019.10812
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team