|
1
|
Finkel MP, Reilly CA Jr and Biskis BO:
Pathogenesis of radiation and virus-induced bone tumors. Recent
Results Cancer Res. 92–103. 1976.PubMed/NCBI
|
|
2
|
Li X, Liu X, Fang J, Li H and Chen J:
microRNA-363 plays a tumor suppressive role in osteosarcoma by
directly targeting MAP2K4. Int J Clin Exp Med. 8:20157–20167.
2015.PubMed/NCBI
|
|
3
|
Rosen G: The current management of
malignant bone tumours: Where do we go from here? Med J Aust.
148:373–377. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chien MH, Lin CW, Cheng CW, Wen YC and
Yang SF: Matrix metalloproteinase-2 as a target for head and neck
cancer therapy. Expert Opin Ther Targets. 17:203–216. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lin CW, Chou YE, Chiou HL, Chen MK, Yang
WE, Hsieh MJ and Yang SF: Pterostilbene suppresses oral cancer cell
invasion by inhibiting MMP-2 expression. Expert Opin Ther Targets.
18:1109–1120. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Nawaz M, Shah N, Zanetti BR, Maugeri M,
Silvestre RN, Fatima F, Neder L and Valadi H: Extracellular
vesicles and matrix remodeling enzymes: The emerging roles in
extracellular matrix remodeling, progression of diseases and tissue
repair. Cells. 7:E1672018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Bjørnland K, Flatmark K, Pettersen S,
Aaasen AO, Fodstad Ø and Maelandsmo GM: Matrix metalloproteinases
participate in osteosarcoma invasion. J Surg Res. 127:151–156.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kang HG, Kim HS, Kim KJ, Oh JH, Lee MR,
Seol SM and Han I: RECK expression in osteosarcoma: Correlation
with matrix metalloproteinases activation and tumor invasiveness. J
Orthop Res. 25:696–702. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhang G, Li M, Zhu X, Bai Y and Yang C:
Knockdown of Akt sensitizes osteosarcoma cells to apoptosis induced
by cisplatin treatment. Int J Mol Sci. 12:2994–3005. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Díaz-Montero CM, Wygant JN and McIntyre
BW: PI3-K/Akt-mediated anoikis resistance of human osteosarcoma
cells requires Src activation. Eur J Cancer. 42:1491–1500. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhang J, Yu XH, Yan YG, Wang C and Wang
WJ: PI3K/Akt signaling in osteosarcoma. Clin Chim Acta.
444:182–192. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhai M, Cong L, Han Y and Tu G: CIP2A is
overexpressed in osteosarcoma and regulates cell proliferation and
invasion. Tumour Biol. 35:1123–1128. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ding L, He S and Sun X: HSP70 desensitizes
osteosarcoma cells to baicalein and protects cells from undergoing
apoptosis. Apoptosis. 19:1269–1280. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhu LB, Jiang J, Zhu XP, Wang TF, Chen XY,
Luo QF, Shu Y, Liu ZL and Huang SH: Knockdown of aurora-B inhibits
osteosarcoma cell invasion and migration via modulating
PI3K/Akt/NF-κB signaling pathway. Int J Clin Exp Pathol.
7:3984–3991. 2014.PubMed/NCBI
|
|
15
|
Zhou R, Zhang Z, Zhao L, Jia C, Xu S, Mai
Q, Lu M, Huang M, Wang L, Wang X, et al: Inhibition of mTOR
signaling by oleanolic acid contributes to its anti-tumor activity
in osteosarcoma cells. J Orthop Res. 29:846–852. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Shang HS, Chang JB, Lin JH, Lin JP, Hsu
SC, Liu CM, Liu JY, Wu PP, Lu HF, Au MK and Chung JG: Deguelin
inhibits the migration and invasion of U-2 OS human osteosarcoma
cells via the inhibition of matrix metalloproteinase-2/-9 in vitro.
Molecules. 19:16588–16608. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhang X and Zhang HM: Alantolactone
induces gastric cancer BGC-823 cell apoptosis by regulating
reactive oxygen species generation and the AKT signaling pathway.
Oncol Lett. 17:4795–4802. 2019.PubMed/NCBI
|
|
18
|
Chun J, Choi RJ, Khan S, Lee DS, Kim YC,
Nam YJ, Lee DU and Kim YS: Alantolactone suppresses inducible
nitric oxide synthase and cyclooxygenase-2 expression by
down-regulating NF-κB, MAPK and AP-1 via the MyD88 signaling
pathway in LPS-activated RAW 264.7 cells. Int Immunopharmacol.
14:375–383. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zheng H, Yang L, Kang Y, Chen M, Lin S,
Xiang Y, Li C, Dai X, Huang X, Liang G and Zhao C: Alantolactone
sensitizes human pancreatic cancer cells to EGFR inhibitors through
the inhibition of STAT3 signaling. Mol Carcinog. 58:565–576. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
He Y, Cao X, Kong Y, Wang S, Xia Y, Bi R
and Liu J: Apoptosis-promoting and migration-suppressing effect of
alantolactone on gastric cancer cell lines BGC-823 and SGC-7901 via
regulating p38MAPK and NF-κB pathways. Hum Exp Toxicol.
38:1132–1144. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Liu J, Liu M, Wang S, He Y, Huo Y, Yang Z
and Cao X: Alantolactone induces apoptosis and suppresses migration
in MCF-7 human breast cancer cells via the p38 MAPK, NF-κB and Nrf2
signaling pathways. Int J Mol Med. 42:1847–1856. 2018.PubMed/NCBI
|
|
22
|
Kang X, Wang H, Li Y, Xiao Y, Zhao L,
Zhang T, Zhou S, Zhou X, Li Y, Shou Z, et al: Alantolactone induces
apoptosis through ROS-mediated AKT pathway and inhibition of
PINK1-mediated mitophagy in human HepG2 cells. Artif Cells Nanomed
Biotechnol. 47:1961–1970. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ioannou YA and Chen FW: Quantitation of
DNA fragmentation in apoptosis. Nucleic Acids Res. 24:992–993.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhang Y, Zhang Q, Bao J, Huang J and Zhang
H: Apiosporamide, a 4-hydroxy-2-pyridone alkaloid, induces
apoptosis via PI3K/Akt signaling pathway in osteosarcoma cells.
Onco Targets Ther. 12:8611–8620. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhang Y, Sun S, Chen J, Ren P, Hu Y, Cao
Z, Sun H and Ding Y: Oxymatrine induces mitochondria dependent
apoptosis in human osteosarcoma MNNG/HOS cells through inhibition
of PI3K/Akt pathway. Tumor Biol. 35:1619–1625. 2014. View Article : Google Scholar
|
|
26
|
Ni Y, Schmidt KR, Werner BA, Koenig JK,
Guldner IH, Schnepp PM, Tan X, Jiang L, Host M, Sun L, et al: Death
effector domain-containing protein induces vulnerability to cell
cycle inhibition in triple-negative breast cancer. Nat Commun.
10:28602019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zhang YW, Morita I, Ikeda M, Ma KW and
Murota S: Connexin43 suppresses proliferation of osteosarcoma U2OS
cells through post-transcriptional regulation of p27. Oncogene.
20:4138–4149. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Muhammad T, Ikram M, Ullah R, Rehman SU
and Kim MO: Hesperetin, a citrus flavonoid, attenuates lps-induced
neuroinflammation, apoptosis and memory impairments by modulating
TLR4/NF-κB signaling. Nutrients. 11:E6482019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Sun WJ, Huang H, He B, Hu DH, Li PH, Yu
YJ, Zhou XH, Lv Z, Zhou L, Hu TY, et al: Romidepsin induces G2/M
phase arrest via Erk/cdc25C/cdc2/cyclinB pathway and apoptosis
induction through JNK/c-Jun/caspase3 pathway in hepatocellular
carcinoma cells. Biochem Pharmacol. 127:90–100. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Jiang L, Zhang X, Zheng X, Ru A, Ni X, Wu
Y, Tian N, Huang Y, Xue E, Wang X and Xu H: Apoptosis, senescence,
and autophagy in rat nucleus pulposus cells: Implications for
diabetic intervertebral disc degeneration. J Orthop Res.
31:692–702. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Cho HJ, Lee TS, Park JB, Park KK, Choe JY,
Sin DI, Park YY, Moon YS, Lee KG, Yeo JH, et al: Disulfiram
suppresses invasive ability of osteosarcoma cells via the
inhibition of MMP-2 and MMP-9 expression. J Biochem Mol Biol.
40:1069–1076. 2007.PubMed/NCBI
|
|
32
|
Bjørnland K, Winberg JO, Odegaard OT,
Hovig E, Loennechen T, Aasen AO, Fodstad O and Maelandsmo GM:
S100A4 involvement in metastasis: Deregulation of matrix
metalloproteinases and tissue inhibitors of matrix
metalloproteinases in osteosarcoma cells transfected with an
anti-S100A4 ribozyme. Cancer Res. 59:4702–4708. 1999.PubMed/NCBI
|
|
33
|
Jin J, Cai L, Liu ZM and Zhou XS:
MiRNA-218 inhibits osteosarcoma cell migration and invasion by
down-regulating of TIAM1, MMP2 and MMP9. Asian Pac J Cancer Prev.
14:3681–3684. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Dong Y, Liang G, Yuan B, Yang C, Gao R and
Zhou X: MALAT1 promotes the proliferation and metastasis of
osteosarcoma cells by activating the PI3K/Akt pathway. Tumour Biol.
36:1477–1486. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hou CH, Lin FL, Tong KB, Hou SM and Liu
JF: Transforming growth factor alpha promotes osteosarcoma
metastasis by ICAM-1 and PI3K/Akt signaling pathway. Biochem
Pharmacol. 89:453–463. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhang A, He S, Sun X, Ding L, Bao X and
Wang N: Wnt5a promotes migration of human osteosarcoma cells by
triggering a phosphatidylinositol-3 kinase/Akt signals. Cancer Cell
Int. 14:152014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Takagi S, Takemoto A, Takami M, Oh-Hara T
and Fujita N: Platelets promote osteosarcoma cell growth through
activation of the platelet-derived growth factor receptor-Akt
signaling axis. Cancer Sci. 105:983–988. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Shukla A, Alsarraj J and Hunter K:
Understanding susceptibility to breast cancer metastasis: The
genetic approach. Breast Cancer Manag. 3:165–172. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Long XH, Zhang GM, Peng AF, Luo QF, Zhang
L, Wen HC, Zhou RP, Gao S, Zhou Y and Liu ZL: Lapatinib alters the
malignant phenotype of osteosarcoma cells via downregulation of the
activity of the HER2-PI3K/AKT-FASN axis in vitro. Oncol Rep.
31:328–334. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Goedhart LM, Ho VKY, Dijkstra PDS,
Schreuder HWB, Schaap GR, Ploegmakers JJW, van der Geest ICM, van
de Sande MAJ, Bramer JA, Suurmeijer AJH and Jutte PC: Bone sarcoma
incidence in the Netherlands. Cancer Epidemiol. 60:31–38. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Reed DR, Hayashi M, Wagner L, Binitie O,
Steppan DA, Brohl AS, Shinohara ET, Bridge JA, Loeb DM, Borinstein
SC and Isakoff MS: Treatment pathway of bone sarcoma in children,
adolescents, and young adults. Cancer. 123:2206–2218. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Liu YR, Cai QY, Gao YG, Luan X, Guan YY,
Lu Q, Sun P, Zhao M and Fang C: Alantolactone, a sesquiterpene
lactone, inhibits breast cancer growth by antiangiogenic activity
via blocking VEGFR2 signaling. Phytother Res. 32:643–650. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kranenburg O, van der Eb AJ and Zantema A:
Cyclin D1 is an essential mediator of apoptotic neuronal cell
death. EMBO J. 15:46–54. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zhang Y, Hu H, Song L, Cai L, Wei R and
Jin W: Epirubicin-mediated expression of miR-302b is involved in
osteosarcoma apoptosis and cell cycle regulation. Toxicol Lett.
222:1–9. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chao DT and Korsmeyer SJ: BCL-2 family:
Regulators of cell death. Annu Rev Immunol. 16:395–419. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Reed JC: Double identity for proteins of
the Bcl-2 family. Nature. 387:773–776. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Eliseev RA, Dong YF, Sampson E, Zuscik MJ,
Schwarz EM, O'Keefe RJ, Rosier RN and Drissi MH: Runx2-mediated
activation of the Bax gene increases osteosarcoma cell sensitivity
to apoptosis. Oncogene. 27:3605–3614. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Raisova M, Hossini AM, Eberle J, Riebeling
C, Wieder T, Sturm I, Daniel PT, Orfanos CE and Geilen CC: The
Bax/Bcl-2 ratio determines the susceptibility of human melanoma
cells to CD95/Fas-mediated apoptosis. J Invest Dermatol.
117:333–340. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Porter AG and Jänicke RU: Emerging roles
of caspase-3 in apoptosis. Cell Death Diff. 6:99–104. 1999.
View Article : Google Scholar
|
|
50
|
Li H, Zhu H, Xu CJ and Yuan J: Cleavage of
BID by caspase 8 mediates the mitochondrial damage in the fas
pathway of apoptosis. Cell. 94:491–501. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Katayose Y, Kim M, Rakkar AN, Li Z, Cowan
KH and Seth P: Promoting apoptosis: A novel activity associated
with the cyclin-dependent kinase inhibitor p27. Cancer Res.
57:5441–5445. 1997.PubMed/NCBI
|
|
52
|
Sofer-Levi Y and Resnitzky D: Apoptosis
induced by ectopic expression of cyclin D1 but not cyclin E.
Oncogene. 13:2431–2437. 1996.PubMed/NCBI
|
|
53
|
Shishodia S, Amin HM, Lai R and Aggarwal
BB: Curcumin (diferuloylmethane) inhibits constitutive NF-κB
activation, induces G1/S arrest, suppresses proliferation, and
induces apoptosis in mantle cell lymphoma. Biochem Pharmacol.
70:700–713. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Pietenpol JA and Stewart ZA: Cell cycle
checkpoint signaling: Cell cycle arrest versus apoptosis.
Toxicology. 181-182:475–481. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Rocha S, Martin AM, Meek DW and Perkins
ND: p53 represses cyclin D1 transcription through down regulation
of Bcl-3 and inducing increased association of the p52 NF-κB
subunit with histone deacetylase 1. Mol Cell Biol. 23:4713–4727.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chipuk JE, Kuwana T, Bouchier-Hayes L,
Droin NM, Newmeyer DD, Schuler M and Green DR: Direct activation of
bax by p53 mediates mitochondrial membrane permeabilization and
apoptosis. Science. 303:1010–1014. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wu Yl, Mehew JW, Heckman CA, Arcinas M and
Boxer LM: Negative regulation of bcl-2 expression by p53 in
hematopoietic cells. Oncogene. 20:240–251. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Cregan SP, MacLaurin JG, Craig CG,
Robertson GS, Nicholson DW, Park DS and Slack RS: Bax-dependent
caspase-3 activation is a key determinant in p53-induced apoptosis
in neurons. J Neurosci. 19:7860–7869. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Ding HF, Lin YL, McGill G, Juo P, Zhu H,
Blenis J, Yuan J and Fisher DE: Essential role for caspase-8 in
transcription-independent apoptosis triggered by p53. J Biol Chem.
275:38905–38911. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sheng L, Tang T, Liu Y, Ma Y, Wang Z, Tao
H, Zhang Y and Qi Z: Inducible HSP70 antagonizes cisplatin-induced
cell apoptosis through inhibition of the MAPK signaling pathway in
HGC-27 cells. Int J Mol Med. 42:2089–2097. 2018.PubMed/NCBI
|
|
61
|
Liu YW, Yang T, Zhao L, Ni Z, Yang N, He F
and Dai SS: Activation of adenosine 2A receptor inhibits neutrophil
apoptosis in an autophagy-dependent manner in mice with systemic
inflammatory response syndrome. Sci Rep. 6:336142016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Resnitzky D and Reed SI: Different roles
for cyclins D1 and E in regulation of the G1-to-S transition. Mol
Cell Biol. 15:3463–3469. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kline CL, Van den Heuvel AP, Allen JE,
Prabhu VV, Dicker DT and El-Deiry WS: ONC201 kills solid tumor
cells by triggering an integrated stress response dependent on ATF4
activation by specific eIF2α kinases. Sci Signal. 9:ra182016.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wang L, Zhang ZG, Zhang RL, Gregg SR,
Hozeska-Solgot A, LeTourneau Y, Wang Y and Chopp M: Matrix
metalloproteinase 2 (MMP2) and MMP9 secreted by
erythropoietin-activated endothelial cells promote neural
progenitor cell migration. J Neurosci. 26:5996–6003. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kuijjer ML, van den Akker BE, Hilhorst R,
Mommersteeg M, Buddingh EP, Serra M, Bürger H, Hogendoorn PC and
Cleton-Jansen AM: Kinome and mRNA expression profiling of
high-grade osteosarcoma cell lines implies Akt signaling as
possible target for therapy. BMC Med Genomics. 7:42014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Hideshima T, Catley L, Yasui H, Ishitsuka
K, Raje N, Mitsiades C, Podar K, Munshi NC, Chauhan D, Richardson
PG and Anderson KC: Perifosine, an oral bioactive novel
alkylphospholipid, inhibits Akt and induces in vitro and in vivo
cytotoxicity in human multiple myeloma cells. Blood. 107:4053–4062.
2006. View Article : Google Scholar : PubMed/NCBI
|