Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
March-2020 Volume 21 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2020 Volume 21 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Roles of inflammation factors in melanogenesis (Review)

  • Authors:
    • Chuhan Fu
    • Jing Chen
    • Jianyun Lu
    • Lu Yi
    • Xiaoliang Tong
    • Liyang Kang
    • Shiyao Pei
    • Yujie Ouyang
    • Ling Jiang
    • Yufang Ding
    • Xiaojiao Zhao
    • Si Li
    • Yan Yang
    • Jinhua Huang
    • Qinghai Zeng
  • View Affiliations / Copyright

    Affiliations: Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
    Copyright: © Fu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1421-1430
    |
    Published online on: January 17, 2020
       https://doi.org/10.3892/mmr.2020.10950
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The occurrence of hyperpigmentation or hypopigmentation after inflammation is a common condition in dermatology and cosmetology. Since the exact mechanism of its occurrence is not yet known, prevention and treatment are troublesome. Previous studies have confirmed that α‑melanocyte‑stimulating hormone, stem cell factor and other factors can promote melanogenesis‑related gene expression through the activation of signaling pathways. Recent studies have revealed that a variety of inflammatory mediators can also participate in the regulation of melanogenesis in melanocytes. In this review, we summarized that interleukin‑18, interleukin‑33, granulocyte‑macrophage colony stimulating factor, interferon‑γ, prostaglandin E2 have the effect of promoting melanogenesis, while interleukin‑1, interleukin‑4, interleukin‑6, interleukin‑17 and tumor necrosis factor can inhibit melanogenesis. Further studies have found that these inflammatory factors may activate or inhibit melanogenesis‑related signaling pathways (such as protein kinase A and mitogen activated protein kinase) by binding to corresponding receptors, thereby promoting or inhibiting the expression of melanogenesis‑related genes and regulating skin pigmentation processes. This suggests that the development of drugs or treatment methods from the perspective of regulating inflammation can provide new ideas and new targets for the treatment of pigmented dermatosis. This review outlines the current understanding of the inflammation factors' roles in melanogenesis.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Gröne A: Keratinocytes and cytokines. Vet Immunol Immunopathol. 88:1–12. 2002. View Article : Google Scholar : PubMed/NCBI

2 

Skobowiat C, Dowdy JC, Sayre RM, Tuckey RC and Slominski A: Cutaneous hypothalamic-pituitary-adrenal axis homolog: Regulation by ultraviolet radiation. Am J Physiol Endocrinol Metab. 301:E484–E493. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Weiss E, Mamelak AJ, La Morgia S, Wang B, Feliciani C, Tulli A and Sauder DN: The role of interleukin 10 in the pathogenesis and potential treatment of skin diseases. J Am Acad Dermatol. 50:657–678. 2004. View Article : Google Scholar : PubMed/NCBI

4 

Martin SF: Contact dermatitis: From pathomechanisms to immunotoxicology. Exp Dermatol. 21:382–389. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Miller LS and Cho JS: Immunity against Staphylococcus aureus cutaneous infections. Nat Rev Immunol. 11:505–518. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Behrends U, Peter RU, Hintermeier-Knabe R, Eissner G, Holler E, Bornkamm GW, Caughman SW and Degitz K: Ionizing radiation induces human intercellular adhesion molecule-1 in vitro. J Invest Dermatol. 103:726–730. 1994. View Article : Google Scholar : PubMed/NCBI

7 

Fuchs J and Kern H: Modulation of UV-light-induced skin inflammation by D-alpha-tocopherol and L-ascorbic acid: A clinical study using solar simulated radiation. Free Radic Biol Med. 25:1006–1012. 1998. View Article : Google Scholar : PubMed/NCBI

8 

Basler K and Brandner JM: Tight junctions in skin inflammation. Pflugers Arch. 469:3–14. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Grine L, Dejager L, Libert C and Vandenbroucke RE: An inflammatory triangle in psoriasis: TNF, type I IFNs and IL-17. Cytokine Growth Factor Rev. 26:25–33. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Wang CQF, Akalu YT, Suarez-Farinas M, Gonzalez J, Mitsui H, Lowes MA, Orlow SJ, Manga P and Krueger JG: IL-17 and TNF synergistically modulate cytokine expression while suppressing melanogenesis: Potential relevance to psoriasis. J Invest Dermatol. 133:2741–2752. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Slominski A, Tobin DJ, Shibahara S and Wortsman J: Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 84:1155–1228. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Swope VB, Abdel-Malek Z, Kassem LM and Nordlund JJ: Interleukins 1 alpha and 6 and tumor necrosis factor-alpha are paracrine inhibitors of human melanocyte proliferation and melanogenesis. J Invest Dermatol. 96:180–185. 1991. View Article : Google Scholar : PubMed/NCBI

13 

Choi H, Choi H, Han J, Jin SH, Park JY, Shin DW, Lee TR, Kim K, Lee AY and Noh M: IL-4 inhibits the melanogenesis of normal human melanocytes through the JAK2-STAT6 signaling pathway. J Invest Dermatol. 133:528–536. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Zhou J, Song J, Ping F and Shang J: Enhancement of the p38 MAPK and PKA signaling pathways is associated with the pro-melanogenic activity of Interleukin 33 in primary melanocytes. J Dermatol Sci. 73:110–116. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Tsatmali M, Ancans J and Thody AJ: Melanocyte function and its control by melanocortin peptides. J Histochem Cytochem. 50:125–133. 2002. View Article : Google Scholar : PubMed/NCBI

16 

Costin GE and Hearing VJ: Human skin pigmentation: Melanocytes modulate skin color in response to stress. FASEB J. 21:976–994. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Videira IF, Moura DF and Magina S: Mechanisms regulating melanogenesis. An Bras Dermatol. 88:76–83. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Yamaguchi Y, Brenner M and Hearing VJ: The regulation of skin pigmentation. J Biol Chem. 282:27557–27561. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Seong ZK, Lee SY, Poudel A, Oh SR and Lee HK: Constituents of cryptotaenia japonica inhibit melanogenesis via CREB- and MAPK-associated signaling pathways in murine B16 melanoma cells. Molecules. 21(pii): E12962016. View Article : Google Scholar : PubMed/NCBI

20 

Campos PM, Prudente AS, Horinouchi CD, Cechinel-Filho V, Fávero GM, Cabrini DA and Otuki MF: Inhibitory effect of GB-2a (I3-naringenin-II8-eriodictyol) on melanogenesis. J Ethnopharmacol. 174:224–229. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Tsao YT, Huang YF, Kuo CY, Lin YC, Chiang WC, Wang WK, Hsu CW and Lee CH: Hinokitiol inhibits melanogenesis via AKT/mTOR signaling in B16F10 mouse melanoma cells. Int J Mol Sci. 17:2482016. View Article : Google Scholar : PubMed/NCBI

22 

Hirobe T: Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes. Pigment Cell Res. 18:2–12. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Schallreuter KU, Kothari S, Chavan B and Spencer JD: Regulation of melanogenesis-controversies and new concepts. Exp Dermatol. 17:395–404. 2008. View Article : Google Scholar : PubMed/NCBI

24 

Lin JY and Fisher DE: Melanocyte biology and skin pigmentation. Nature. 445:843–850. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Park HY, Kosmadaki M, Yaar M and Gilchrest BA: Cellular mechanisms regulating human melanogenesis. Cell Mol Life Sci. 66:1493–1506. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Schiaffino MV: Signaling pathways in melanosome biogenesis and pathology. Int J Biochem Cell Biol. 42:1094–1104. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Yuan XH and Jin ZH: Paracrine regulation of melanogenesis. Br J Dermatol. 178:632–639. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Swope VB and Abdel-Malek ZA: MC1R: Front and center in the bright side of dark eumelanin and DNA repair. Int J Mol Sci. 19(pii): E26672018. View Article : Google Scholar : PubMed/NCBI

29 

Grando SA, Pittelkow MR and Schallreuter KU: Adrenergic and cholinergic control in the biology of epidermis: Physiological and clinical significance. J Invest Dermatol. 126:1948–1965. 2006. View Article : Google Scholar : PubMed/NCBI

30 

Bonaventure J, Domingues MJ and Larue L: Cellular and molecular mechanisms controlling the migration of melanocytes and melanoma cells. Pigment Cell Melanoma Res. 26:316–325. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Besmer P, Murphy JE, George PC, Qiu FH, Bergold PJ, Lederman L, Snyder HW Jr, Brodeur D, Zuckerman EE and Hardy WD: A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family. Nature. 320:415–421. 1986. View Article : Google Scholar : PubMed/NCBI

32 

Yarden Y, Kuang WJ, Yang-Feng T, Coussens L, Munemitsu S, Dull TJ, Chen E, Schlessinger J, Francke U and Ullrich A: Human proto-oncogene c-kit: A new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J. 6:3341–3351. 1987. View Article : Google Scholar : PubMed/NCBI

33 

Dorsky RI, Raible DW and Moon RT: Direct regulation of nacre, a zebrafish MITF homolog required for pigment cell formation, by the Wnt pathway. Genes Dev. 14:158–162. 2000.PubMed/NCBI

34 

Flaherty KT, Hodi FS and Fisher DE: From genes to drugs: Targeted strategies for melanoma. Nat Rev Cancer. 12:349–361. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Widlund HR, Horstmann MA, Price ER, Cui J, Lessnick SL, Wu M, He X and Fisher DE: Beta-catenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. J Cell Biol. 158:1079–1087. 2002. View Article : Google Scholar : PubMed/NCBI

36 

Jung E, Lee J, Huh S, Lee J, Kim YS, Kim G and Park D: Phloridzin-induced melanogenesis is mediated by the cAMP signaling pathway. Food Chem Toxicol. 47:2436–2440. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Satomi H, Wang B, Fujisawa H and Otsuka F: Interferon-beta from melanoma cells suppresses the proliferations of melanoma cells in an autocrine manner. Cytokine. 18:108–115. 2002. View Article : Google Scholar : PubMed/NCBI

38 

Mattei S, Colombo MP, Melani C, Silvani A, Parmiani G and Herlyn M: Expression of cytokine/growth factors and their receptors in human melanoma and melanocytes. Int J Cancer. 56:853–857. 1994. View Article : Google Scholar : PubMed/NCBI

39 

Mosmann TR and Sad S: The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today. 17:138–146. 1996. View Article : Google Scholar : PubMed/NCBI

40 

O'Garra A: Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity. 8:275–283. 1998. View Article : Google Scholar : PubMed/NCBI

41 

Reiner SL and Seder RA: Dealing from the evolutionary pawnshop: How lymphocytes make decisions. Immunity. 11:1–10. 1999. View Article : Google Scholar : PubMed/NCBI

42 

Bennicelli JL and Guerry D VI: Production of multiple cytokines by cultured human melanomas. Exp Dermatol. 2:186–190. 1993. View Article : Google Scholar : PubMed/NCBI

43 

Zhou J, Shang J, Song J and Ping F: Interleukin-18 augments growth ability of primary human melanocytes by PTEN inactivation through the AKT/NF-κB pathway. Int J Biochem Cell Biol. 45:308–316. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Yun W and Li C: JNK pathway is required for TNCB-induced IL-18 expression in murine keratinocytes. Toxicol In Vitro. 24:1064–1069. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Wittmann M, Macdonald A and Renne J: IL-18 and skin inflammation. Autoimmun Rev. 9:45–48. 2009. View Article : Google Scholar : PubMed/NCBI

46 

Zhou J, Ling J, Wang Y, Shang J and Ping F: Cross-talk between interferon-gamma and interleukin-18 in melanogenesis. J Photochem Photobiol B. 163:133–143. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Ali S, Huber M, Kollewe C, Bischoff SC, Falk W and Martin MU: IL-1 receptor accessory protein is essential for IL-33-induced activation of T lymphocytes and mast cells. Proc Natl Acad Sci USA. 104:18660–18665. 2007. View Article : Google Scholar : PubMed/NCBI

48 

Allakhverdi Z, Smith DE, Comeau MR and Delespesse G: Cutting edge: The ST2 ligand IL-33 potently activates and drives maturation of human mast cells. J Immunol. 179:2051–2054. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Moulin D, Donze O, Talabot-Ayer D, Mezin F, Palmer G and Gabay C: Interleukin (IL)-33 induces the release of pro-inflammatory mediators by mast cells. Cytokine. 40:216–225. 2007. View Article : Google Scholar : PubMed/NCBI

50 

Theoharides TC, Zhang B, Kempuraj D, Tagen M, Vasiadi M, Angelidou A, Alysandratos KD, Kalogeromitros D, Asadi S, Stavrianeas N, et al: IL-33 augments substance P-induced VEGF secretion from human mast cells and is increased in psoriatic skin. Proc Natl Acad Sci USA. 107:4448–4453. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Pushparaj PN, Tay HK, H'ng SC, Pitman N, Xu D, McKenzie A, Liew FY and Melendez AJ: The cytokine interleukin-33 mediates anaphylactic shock. Proc Natl Acad Sci USA. 106:9773–9778. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Kurowska-Stolarska M, Stolarski B, Kewin P, Murphy G, Corrigan CJ, Ying S, Pitman N, Mirchandani A, Rana B, van Rooijen N, et al: IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol. 183:6469–6477. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Ohno T, Oboki K, Kajiwara N, Morii E, Aozasa K, Flavell RA, Okumura K, Saito H and Nakae S: Caspase-1, caspase-8, and calpain are dispensable for IL-33 release by macrophages. J Immunol. 183:7890–7897. 2009. View Article : Google Scholar : PubMed/NCBI

54 

Schmieder A, Multhoff G and Radons J: Interleukin-33 acts as a pro-inflammatory cytokine and modulates its receptor gene expression in highly metastatic human pancreatic carcinoma cells. Cytokine. 60:514–521. 2012. View Article : Google Scholar : PubMed/NCBI

55 

Hueber AJ, Alves-Filho JC, Asquith DL, Michels C, Millar NL, Reilly JH, Graham GJ, Liew FY, Miller AM and McInnes IB: IL-33 induces skin inflammation with mast cell and neutrophil activation. Eur J Immunol. 41:2229–2237. 2011. View Article : Google Scholar : PubMed/NCBI

56 

Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, et al: IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 23:479–490. 2005. View Article : Google Scholar : PubMed/NCBI

57 

Suzukawa M, Iikura M, Koketsu R, Nagase H, Tamura C, Komiya A, Nakae S, Matsushima K, Ohta K, Yamamoto K and Yamaguchi M: An IL-1 cytokine member, IL-33, induces human basophil activation via its ST2 receptor. J Immunol. 181:5981–5989. 2008. View Article : Google Scholar : PubMed/NCBI

58 

Rank MA, Kobayashi T, Kozaki H, Bartemes KR, Squillace DL and Kita H: IL-33-activated dendritic cells induce an atypical TH2-type response. J Allergy Clin Immunol. 123:1047–1054. 2009. View Article : Google Scholar : PubMed/NCBI

59 

Arend WP, Palmer G and Gabay C: IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev. 223:20–38. 2008. View Article : Google Scholar : PubMed/NCBI

60 

Byrne SN, Beaugie C, O'Sullivan C, Leighton S and Halliday GM: The immune-modulating cytokine and endogenous Alarmin interleukin-33 is upregulated in skin exposed to inflammatory UVB radiation. Am J Pathol. 179:211–222. 2011. View Article : Google Scholar : PubMed/NCBI

61 

Wu XG, Hong WS and Xu A: GM-CSF: A possible prognostic serum biomarker of vitiligo patients' considered for transplantation treatment with cultured autologous melanocytes: A pilot study. J Eur Acad Dermatol Venereol. 30:1409–1411. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Scott G, Leopardi S, Printup S, Malhi N, Seiberg M and Lapoint R: Proteinase-activated receptor-2 stimulates prostaglandin production in keratinocytes: Analysis of prostaglandin receptors on human melanocytes and effects of PGE2 and PGF2alpha on melanocyte dendricity. J Invest Dermatol. 122:1214–1224. 2004. View Article : Google Scholar : PubMed/NCBI

63 

Scott G, Jacobs S, Leopardi S, Anthony FA, Learn D, Malaviya R and Pentland A: Effects of PGF2alpha on human melanocytes and regulation of the FP receptor by ultraviolet radiation. Exp Cell Res. 304:407–416. 2005. View Article : Google Scholar : PubMed/NCBI

64 

Ma HJ, Ma HY, Yang Y, Li PC, Zi SX, Jia CY and Chen R: a-Melanocyte stimulating hormone (MSH) and prostaglandin E2 (PGE2) drive melanosome transfer by promoting filopodia delivery and shedding spheroid granules: Evidences from atomic force microscopy observation. J Dermatol Sci. 76:222–230. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Bach EA, Aguet M and Schreiber RD: The IFN gamma receptor: A paradigm for cytokine receptor signaling. Annu Rev Immunol. 15:563–591. 1997. View Article : Google Scholar : PubMed/NCBI

66 

Carnaud C, Lee D, Donnars O, Park SH, Beavis A, Koezuka Y and Bendelac A: Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol. 163:4647–4650. 1999.PubMed/NCBI

67 

Frucht DM, Fukao T, Bogdan C, Schindler H, O'Shea JJ and Koyasu S: IFN-gamma production by antigen-presenting cells: Mechanisms emerge. Trends Immunol. 22:556–560. 2001. View Article : Google Scholar : PubMed/NCBI

68 

Flaishon L, Hershkoviz R, Lantner F, Lider O, Alon R, Levo Y, Flavell RA and Shachar I: Autocrine secretion of interferon gamma negatively regulates homing of immature B cells. J Exp Med. 192:1381–1388. 2000. View Article : Google Scholar : PubMed/NCBI

69 

Harris JE, Harris TH, Weninger W, Wherry EJ, Hunter CA and Turka LA: A mouse model of vitiligo with focused epidermal depigmentation requires IFN-γ for autoreactive CD8+ T-cell accumulation in the skin. J Invest Dermatol. 132:1869–1876. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Gregg RK, Nichols L, Chen Y, Lu B and Engelhard VH: Mechanisms of spatial and temporal development of autoimmune vitiligo in tyrosinase-specific TCR transgenic mice. J Immunol. 184:1909–1917. 2010. View Article : Google Scholar : PubMed/NCBI

71 

Yang L, Wei Y, Sun Y, Shi W, Yang J, Zhu L and Li M: Interferon-gamma inhibits melanogenesis and induces apoptosis in melanocytes: A pivotal role of CD8+ cytotoxic T lymphocytes in vitiligo. Acta Derm Venereol. 95:664–670. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Natarajan VT, Ganju P, Singh A, Vijayan V, Kirty K, Yadav S, Puntambekar S, Bajaj S, Dani PP, Kar HK, et al: IFN-γ signaling maintains skin pigmentation homeostasis through regulation of melanosome maturation. Proc Natl Acad Sci USA. 111:2301–2306. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Kristensen M, Chu CQ, Eedy DJ, Feldmann M, Brennan FM and Breathnach SM: Localization of tumour necrosis factor-alpha (TNF-alpha) and its receptors in normal and psoriatic skin: Epidermal cells express the 55-kD but not the 75-kD TNF receptor. Clin Exp Immunol. 94:354–362. 1993. View Article : Google Scholar : PubMed/NCBI

74 

Kholmanskikh O, van Baren N, Brasseur F, Ottaviani S, Vanacker J, Arts N, van der Bruggen P, Coulie P and De Plaen E: Interleukins 1alpha and 1beta secreted by some melanoma cell lines strongly reduce expression of MITF-M and melanocyte differentiation antigens. Int J Cancer. 127:1625–1636. 2010. View Article : Google Scholar : PubMed/NCBI

75 

Martin MU and Wesche H: Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family. Biochim Biophys Acta. 1592:265–280. 2002. View Article : Google Scholar : PubMed/NCBI

76 

Tang A and Gilchrest B: Regulation of keratinocyte growth factor gene expression in human skin fibroblasts. J Dermatol Sci. 11:41–50. 1996. View Article : Google Scholar : PubMed/NCBI

77 

Grewe M, Gyufko K, Budnik A, Ruzicka T, Olaizola-Horn S, Berneburg M and Krutmann J: Interleukin-1 receptors type I and type II are differentially regulated in human keratinocytes by ultraviolet B radiation. J Invest Dermatol. 107:865–870. 1996.PubMed/NCBI

78 

Kondo S, Sauder DN, Kono T, Galley KA and McKenzie RC: Differential modulation of interleukin-1 alpha (IL-1 alpha) and interleukin-1 beta (IL-1 beta) in human epidermal keratinocytes by UVB. Exp Dermatol. 3:29–39. 1994. View Article : Google Scholar : PubMed/NCBI

79 

Chen N, Hu Y, Li WH, Eisinger M, Seiberg M and Lin CB: The role of keratinocyte growth factor in melanogenesis: A possible mechanism for the initiation of solar lentigines. Exp Dermatol. 19:865–872. 2010. View Article : Google Scholar : PubMed/NCBI

80 

Sims J, March C, Cosman D, Widmer MB, MacDonald HR, McMahan CJ, Grubin CE, Wignall JM, Jackson JL, Call SM, et al: cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. Science. 241:585–589. 1988. View Article : Google Scholar : PubMed/NCBI

81 

Barata LT, Ying S, Meng Q, Barkans J, Rajakulasingam K, Durham SR and Kay AB: IL-4- and IL-5-positive T lymphocytes, eosinophils, and mast cells in allergen-induced late-phase cutaneous reactions in atopic subjects. J Allergy Clin Immunol. 101:222–230. 1998. View Article : Google Scholar : PubMed/NCBI

82 

Min B, Prout M, Hu-Li J, Zhu J, Jankovic D, Morgan ES, Urban JF Jr, Dvorak AM, Finkelman FD, LeGros G and Paul WE: Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. J Exp Med. 200:507–517. 2004. View Article : Google Scholar : PubMed/NCBI

83 

Imran M, Laddha N, Dwivedi M, Mansuri MS, Singh J, Rani R, Gokhale RS, Sharma VK, Marfatia YS and Begum R: Interleukin-4 genetic variants correlate with its transcript and protein levels in patients with vitiligo. Br J Dermatol. 167:314–323. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Salgame P, Abrams JS, Clayberger C, Goldstein H, Convit J, Modlin RL and Bloom BR: Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science. 254:279–282. 1991. View Article : Google Scholar : PubMed/NCBI

85 

Basak PY, Adiloglu AK, Ceyhan AM, Tas T and Akkaya VB: The role of helper and regulatory T cells in the pathogenesis of vitiligo. J Am Acad Dermatol. 60:256–260. 2009. View Article : Google Scholar : PubMed/NCBI

86 

Nouri-Koupaee A, Mansouri P, Jahanbini H, Sanati MH and Jadali Z: Differential expression of mRNA for T-bet and GATA-3 transcription factors in peripheral blood mononuclear cells of patients with vitiligo. Clin Exp Dermatol. 40:735–740. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Hirano T, Ishihara K and Hibi M: Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene. 19:2548–2556. 2000. View Article : Google Scholar : PubMed/NCBI

88 

Speeckaert R, Lambert J, Grine L, Van Gele M, De Schepper S and van Geel N: The many faces of interleukin-17 in inflammatory skin diseases. Br J Dermatol. 175:892–901. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Volpe E, Servant N, Zollinger R, Bogiatzi SI, Hupé P, Barillot E and Soumelis V: A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol. 9:650–657. 2008. View Article : Google Scholar : PubMed/NCBI

90 

Kang WH, Yoon KH, Lee ES, Kim J, Lee KB, Yim H, Sohn S and Im S: Melasma: Histopathological characteristics in 56 Korean patients. Br J Dermatol. 146:228–237. 2002. View Article : Google Scholar : PubMed/NCBI

91 

Nakajima M, Shinoda I, Fukuwatari Y and Hayasawa H: Arbutin increases the pigmentation of cultured human melanocytes through mechanisms other than the induction of tyrosinase activity. Pigment Cell Res. 11:12–17. 1998. View Article : Google Scholar : PubMed/NCBI

92 

Palumbo A, d'Ischia M, Misuraca G and Prota G: Mechanism of inhibition of melanogenesis by hydroquinone. Biochim Biophys Acta. 1073:85–90. 1991. View Article : Google Scholar : PubMed/NCBI

93 

Smith CJ, O'Hare KB and Allen JC: Selective cytotoxicity of hydroquinone for melanocyte-derived cells is mediated by tyrosinase activity but independent of melanin content. Pigment Cell Res. 1:386–389. 1988. View Article : Google Scholar : PubMed/NCBI

94 

Wang X and Zhang Y: Resveratrol alleviates LPS-induced injury in human keratinocyte cell line HaCaT by up-regulation of miR-17. Biochem Biophys Res Commun. 501:106–112. 2018. View Article : Google Scholar : PubMed/NCBI

95 

Kim ES, Chang H, Choi H, Shin JH, Park SJ, Jo YK, Choi ES, Baek SY, Kim BG, Chang JW, et al: Autophagy induced by resveratrol suppresses a-MSH-induced melanogenesis. Exp Dermatol. 23:204–206. 2014. View Article : Google Scholar : PubMed/NCBI

96 

Salzes C, Abadie S, Seneschal J, Whitton M, Meurant JM, Jouary T, Ballanger F, Boralevi F, Taieb A, Taieb C and Ezzedine K: The vitiligo impact patient scale (VIPs): Development and validation of a vitiligo burden assessment tool. J Invest Dermatol. 136:52–58. 2016. View Article : Google Scholar : PubMed/NCBI

97 

Moretti S, Spallanzani A, Amato L, Hautmann G, Gallerani I, Fabiani M and Fabbri P: New insights into the pathogenesis of vitiligo: Imbalance of epidermal cytokines at sites of lesions. Pigment Cell Res. 15:87–92. 2002. View Article : Google Scholar : PubMed/NCBI

98 

Moretti S, Fabbri P, Baroni G, Berti S, Bani D, Berti E, Nassini R, Lotti T and Massi D: Keratinocyte dysfunction in vitiligo epidermis: Cytokine microenvironment and correlation to keratinocyte apoptosis. Histol Histopathol. 24:849–857. 2009.PubMed/NCBI

99 

Kim NH, Jeon S, Lee HJ and Lee AY: Impaired PI3K/Akt activation-mediated NF-kappaB inactivation under elevated TNF-alpha is more vulnerable to apoptosis in vitiliginous keratinocytes. J Invest Dermatol. 127:2612–2617. 2007. View Article : Google Scholar : PubMed/NCBI

100 

Barygina V, Becatti M, Lotti T, Moretti S, Taddei N and Fiorillo C: Treatment with low-dose cytokines reduces oxidative-mediated injury in perilesional keratinocytes from vitiligo skin. J Dermatol Sci. 79:163–170. 2015. View Article : Google Scholar : PubMed/NCBI

101 

Debbaneh MG, Levin E, Sanchez Rodriguez R, Leon A, Koo J and Rosenblum MD: Plaque-based sub-blistering dosimetry: Reaching PASI-75 after two treatments with 308-nm excimer laser in a generalized psoriasis patient. J Dermatolog Treat. 26:45–48. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Grimes P, Morris R, Avaniss-Aghajani E, Soriano T, Meraz M and Metzger A: Topical tacrolimus therapy for vitiligo: Therapeutic responses and skin messenger RNA expression of proinflammatory cytokines. J Am Acad Dermatol. 51:52–61. 2004. View Article : Google Scholar : PubMed/NCBI

103 

Sakuma S, Higashi Y, Sato N, Sasakawa T, Sengoku T, Ohkubo Y, Amaya T and Goto T: Tacrolimus suppressed the production of cytokines involved in atopic dermatitis by direct stimulation of human PBMC system. (Comparison with steroids). Int Immunopharmacol. 1:1219–1226. 2001. View Article : Google Scholar : PubMed/NCBI

104 

Birol A, Kisa U, Kurtipek GS, Kara F, Kocak M, Erkek E and Caglayan O: Increased tumor necrosis factor alpha (TNF-alpha) and interleukin 1 alpha (IL1-alpha) levels in the lesional skin of patients with nonsegmental vitiligo. Int J Dermatol. 45:992–993. 2006. View Article : Google Scholar : PubMed/NCBI

105 

Alghamdi K and Khurrum H: Methotrexate for the treatment of generalized vitiligo. Saudi Pharm J. 21:423–424. 2013. View Article : Google Scholar : PubMed/NCBI

106 

Grimes PE, Hamzavi I, Lebwohl M, Ortonne JP and Lim HW: The efficacy of afamelanotide and narrowband UV-B phototherapy for repigmentation of vitiligo. JAMA Dermatol. 149:68–73. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Fu C, Chen J, Lu J, Yi L, Tong X, Kang L, Pei S, Ouyang Y, Jiang L, Ding Y, Ding Y, et al: Roles of inflammation factors in melanogenesis (Review). Mol Med Rep 21: 1421-1430, 2020.
APA
Fu, C., Chen, J., Lu, J., Yi, L., Tong, X., Kang, L. ... Zeng, Q. (2020). Roles of inflammation factors in melanogenesis (Review). Molecular Medicine Reports, 21, 1421-1430. https://doi.org/10.3892/mmr.2020.10950
MLA
Fu, C., Chen, J., Lu, J., Yi, L., Tong, X., Kang, L., Pei, S., Ouyang, Y., Jiang, L., Ding, Y., Zhao, X., Li, S., Yang, Y., Huang, J., Zeng, Q."Roles of inflammation factors in melanogenesis (Review)". Molecular Medicine Reports 21.3 (2020): 1421-1430.
Chicago
Fu, C., Chen, J., Lu, J., Yi, L., Tong, X., Kang, L., Pei, S., Ouyang, Y., Jiang, L., Ding, Y., Zhao, X., Li, S., Yang, Y., Huang, J., Zeng, Q."Roles of inflammation factors in melanogenesis (Review)". Molecular Medicine Reports 21, no. 3 (2020): 1421-1430. https://doi.org/10.3892/mmr.2020.10950
Copy and paste a formatted citation
x
Spandidos Publications style
Fu C, Chen J, Lu J, Yi L, Tong X, Kang L, Pei S, Ouyang Y, Jiang L, Ding Y, Ding Y, et al: Roles of inflammation factors in melanogenesis (Review). Mol Med Rep 21: 1421-1430, 2020.
APA
Fu, C., Chen, J., Lu, J., Yi, L., Tong, X., Kang, L. ... Zeng, Q. (2020). Roles of inflammation factors in melanogenesis (Review). Molecular Medicine Reports, 21, 1421-1430. https://doi.org/10.3892/mmr.2020.10950
MLA
Fu, C., Chen, J., Lu, J., Yi, L., Tong, X., Kang, L., Pei, S., Ouyang, Y., Jiang, L., Ding, Y., Zhao, X., Li, S., Yang, Y., Huang, J., Zeng, Q."Roles of inflammation factors in melanogenesis (Review)". Molecular Medicine Reports 21.3 (2020): 1421-1430.
Chicago
Fu, C., Chen, J., Lu, J., Yi, L., Tong, X., Kang, L., Pei, S., Ouyang, Y., Jiang, L., Ding, Y., Zhao, X., Li, S., Yang, Y., Huang, J., Zeng, Q."Roles of inflammation factors in melanogenesis (Review)". Molecular Medicine Reports 21, no. 3 (2020): 1421-1430. https://doi.org/10.3892/mmr.2020.10950
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team