Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
March-2020 Volume 21 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2020 Volume 21 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

New markers for regulation of transcription and macromolecule metabolic process in porcine oocytes during in vitro maturation

  • Authors:
    • Maciej Brązert
    • Wiesława Kranc
    • Mariusz J. Nawrocki
    • Patrycja Sujka‑Kordowska
    • Aneta Konwerska
    • Maurycy Jankowski
    • Ievgeniia Kocherova
    • Piotr Celichowski
    • Michal Jeseta
    • Katarzyna Ożegowska
    • Paweł Antosik
    • Dorota Bukowska
    • Mariusz T. Skowroński
    • Małgorzata Bruska
    • Leszek Pawelczyk
    • Maciej Zabel
    • Hanna Piotrowska‑Kempisty
    • Michał Nowicki
    • Bartosz Kempisty
  • View Affiliations / Copyright

    Affiliations: Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Poznan 60‑535, Poland, Department of Anatomy, Poznan University of Medical Sciences, Poznan 60‑781, Poland, Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan 60‑781, Poland, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno 601‑77, Czech Republic, Veterinary Center, Nicolaus Copernicus University in Torun, Torun 87‑100, Poland, Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw 50‑368, Poland, Department of Toxicology, Poznan University of Medical Sciences, Poznan 60‑631, Poland
    Copyright: © Brązert et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1537-1551
    |
    Published online on: January 27, 2020
       https://doi.org/10.3892/mmr.2020.10963
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Oocyte maturation is essential for proper fertilization, embryo implantation and early development. While the physiological conditions of these processes are relatively well‑known, its exact molecular mechanisms remain widely undiscovered. Oocyte growth, differentiation and maturation are therefore the subject of scientific debate. Precious literature has indicated that the oocyte itself serves a regulatory role in the mechanisms underlying these processes. Hence, the present study performed expression microarrays to analyze the complete transcriptome of porcine oocytes during their in vitro maturation (IVM). Pig material was used for experimentation, as it possesses similarities to the reproductive processes and general genetic proximities of Sus scrofa to human. Oocytes, isolated from the ovaries of slaughtered animals were assessed via the Brilliant Cresyl Blue test and directed to IVM. A number of oocytes were left to be analyzed as the ‘before IVM’ group. Oocyte mRNA was isolated and used for microarray analysis, which was subsequently validated via RT‑qPCR. The current study particularly focused on genes belonging to ‘positive regulation of transcription, DNA‑dependent’, ‘positive regulation of gene expression’, ‘positive regulation of macromolecule metabolic process’ and ‘positive regulation of transcription from RNA polymerase II promoter’ ontologies. FOS, VEGFA, ESR1, AR, CCND2, EGR2, ENDRA, GJA1, INHBA, IHH, INSR, APP, WWTR1, SMARCA1, NFAT5, SMAD4, MAP3K1, EGR1, RORA, ECE1, NR5A1, KIT, IKZF2, MEF2C, SH3D19, MITF and PSMB4 were all determined to be significantly altered (fold change, >|2|; P<0.05) among these groups, with their downregulation being observed after IVM. Genes with the most altered expressions were analyzed and considered to be potential markers of maturation associated with transcription regulation and macromolecule metabolism process.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Eppig JJ: Oocyte control of ovarian follicular development and function in mammals. Reproduction. 122:829–838. 2001. View Article : Google Scholar : PubMed/NCBI

2 

Gilchrist RB, Ritter LJ and Armstrong DT: Oocyte-somatic cell interactions during follicle development in mammals. Anim Reprod Sci. 82-83:431–446. 2004. View Article : Google Scholar : PubMed/NCBI

3 

Matzuk MM, Burns KH, Viveiros MM and Eppig JJ: Intercellular communication in the mammalian ovary: Oocytes carry the conversation. Science. 296:2178–2180. 2002. View Article : Google Scholar : PubMed/NCBI

4 

Rybska M, Knap S, Jankowski M, Jeseta M, Bukowska D, Antosik P, Nowicki M, Zabel M, Kempisty B and Jaśkowski JM: Cytoplasmic and nuclear maturation of oocytes in mammals-living in the shadow of cells developmental capability. Med J Cell Biol. 6:13–17. 2018. View Article : Google Scholar

5 

Rybska M, Knap S, Stefańska K, Jankowski M, Gliszczyńska AC, Popis M, Jeseta M, Bukowska D, Antosik P, Kempisty B and Jaśkowski JM: Transforming growth factor (TGF)-is it a key protein in mammalian reproductive biology? Med J Cell Biol. 6:125–130. 2018. View Article : Google Scholar

6 

Rybska M, Knap S, Jankowski M, Jeseta M, Bukowska D, Antosik P, Nowicki M, Zabel M, Kempisty B and Jaśkowski JM: Characteristic of factors influencing the proper course of folliculogenesis in mammals. Med J Cell Biol. 6:33–38. 2018. View Article : Google Scholar

7 

Regassa A, Rings F, Hoelker M, Cinar U, Tholen E, Looft C, Schellander K and Tesfaye D: Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells. BMC Genomics. 12:572011. View Article : Google Scholar : PubMed/NCBI

8 

Borys-Wójcik S, Kocherova I, Celichowski P, Popis M, Jeseta M, Bukowska D, Antosik P, Nowicki M and Kempisty B: Protein oligomerization is the biochemical process highly up-regulated in porcine oocytes before in vitro maturation (IVM). Med J Cell Biol. 6:155–162. 2018. View Article : Google Scholar

9 

Budna J, Celichowski P, Bryja A, Jeseta M, Jankowski M, Bukowska D, Antosik P, Nowicki A, Brüssow KP, Bruska M, et al: Expression changes in fatty acid metabolic processrelated genes in porcine oocytes during in vitro maturation. Med J Cell Biol. 6:48–54. 2018. View Article : Google Scholar

10 

Kranc W, Brązert M, Ożegowska K, Budna-Tukan J, Celichowski P, Jankowski M, Bryja A, Nawrocki MJ, Popis M, Jeseta M, et al: Response to abiotic and organic substances stimulation belongs to ontologic groups significantly up-regulated in porcine immature oocytes. Med J Cell Biol. 6:91–100. 2018. View Article : Google Scholar

11 

Chermuła B, Brązert M, Jeseta M, Ożegowska K, Sujka-Kordowska P, Konwerska A, Bryja A, Kranc W, Jankowski M, Nawrocki MJ, et al: The unique mechanisms of cellular proliferation, migration and apoptosis are regulated through oocyte maturational development-A complete transcriptomic and histochemical study. Int J Mol Sci. 20:E842018. View Article : Google Scholar : PubMed/NCBI

12 

Ożegowska K, Dyszkiewicz-Konwińska M, Celichowski P, Nawrocki MJ, Bryja A, Jankowski M, Kranc W, Brązert M, Knap S, Jeseta M, et al: Expression pattern of new genes regulating female sex differentiation and in vitro maturational status of oocytes in pigs. Theriogenology. 121:122–133. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Borys S, Brązert M, Jankowski M, Kocherova I, Ożegowska K, Celichowski P, Nawrocki MJ, Kranc W, Bryja A, Kulus M, et al: Enzyme linked receptor protein signaling pathway is one of the ontology groups that are highly up-regulated in porcine oocytes before in vitro maturation. J Biol Regul Homeost Agents. 32:1089–1103. 2018.PubMed/NCBI

14 

Pujol M, López-Béjar M and Paramio MT: Developmental competence of heifer oocytes selected using the brilliant cresyl blue (BCB) test. Theriogenology. 61:735–744. 2004. View Article : Google Scholar : PubMed/NCBI

15 

Le Guienne B: Small atlas of bovine oocyte. Elevage et Insemination (France). 24–30. 1998.[In French].

16 

Chomczynski P and Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 162:156–159. 1987. View Article : Google Scholar : PubMed/NCBI

17 

Nawrocki MJ, Celichowski P, Jankowski M, Kranc W, Bryja A, Borys-Wójcik S, Jeseta M, Antosik P, Bukowska D, Bruska M, et al: Ontology groups representing angiogenesis and blood vessels development are highly up-regulated during porcine oviductal epithelial cells long-term real-time proliferation-a primary cell culture approach. Med J Cell Biol. 6:186–194. 2018. View Article : Google Scholar

18 

Budna J, Celichowski P, Karimi P, Kranc W, Bryja A, Ciesiółka S, Rybska M, Borys S, Jeseta M, Bukowska D, et al: Does porcine oocytes maturation in vitro is regulated by genes involved in transforming growth factor beta receptor signaling pathway? Adv Cell Biol. 5:1–14. 2017. View Article : Google Scholar

19 

Curran T and Franza BR Jr: Fos and jun: The AP-1 connection. Cell. 55:395–397. 1988. View Article : Google Scholar : PubMed/NCBI

20 

Angel P and Karin M: The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta. 1072:129–157. 1991.PubMed/NCBI

21 

Rusovici R and LaVoie HA: Expression and distribution of AP-1 transcription factors in the porcine ovary. Biol Reprod. 69:64–74. 2003. View Article : Google Scholar : PubMed/NCBI

22 

Johnson RS, Spiegelman BM and Papaioannou V: Pleiotropic effects of a null mutation in the c-fos proto-oncogene. Cell. 71:577–586. 1992. View Article : Google Scholar : PubMed/NCBI

23 

Müller R, Tremblay JM, Adamson ED and Verma IM: Tissue and cell type-specific expression of two human c-onc genes. Nature. 304:454–456. 1983. View Article : Google Scholar : PubMed/NCBI

24 

Hattori MA, Kato Y and Fujihara N: Retinoic acid suppression of endothelial nitric oxide synthase in porcine oocyte. Can J Physiol Pharmacol. 80:777–782. 2002. View Article : Google Scholar : PubMed/NCBI

25 

Blaha M, Nemcova L, Kepkova KV, Vodicka P and Prochazka R: Gene expression analysis of pig cumulus-oocyte complexes stimulated in vitro with follicle stimulating hormone or epidermal growth factor-like peptides. Reprod Biol Endocrinol. 13:1132015. View Article : Google Scholar : PubMed/NCBI

26 

Leung DW, Cachianes G, Kuang WJ, Goeddel DV and Ferrara N: Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 246:1306–1309. 1989. View Article : Google Scholar : PubMed/NCBI

27 

Ferrara N and Henzel WJ: Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 161:851–858. 1989. View Article : Google Scholar : PubMed/NCBI

28 

Ferrara N and Davis-Smyth T: The biology of vascular endothelial growth factor. Endocr Rev. 18:4–25. 1997. View Article : Google Scholar : PubMed/NCBI

29 

Sousa LM, Campos DB, Fonseca VU, Viau P, Kfoury JR Jr, Oliveira CA, Binelli M, Buratini J Jr and Papa PC: Vascular endothelial growth factor A (VEGFA) modulates bovine placenta steroidogenesis in vitro. Placenta. 33:788–794. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Shimizu T: Promotion of ovarian follicular development by injecting vascular endothelial growth factor (VEGF) and growth differentiation factor 9 (GDF-9) genes. J Reprod Dev. 52:23–32. 2006. View Article : Google Scholar : PubMed/NCBI

31 

McFee RM, Rozell TG and Cupp AS: The balance of proangiogenic and antiangiogenic VEGFA isoforms regulate follicle development. Cell Tissue Res. 349:635–647. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Bui TMT, Nguyễn KX, Karata A, Ferré P, Trần MT, Wakai T and Funahashi H: Presence of vascular endothelial growth factor during the first half of IVM improves the meiotic and developmental competence of porcine oocytes from small follicles. Reprod Fertil Dev. 29:1902–1909. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Ravindranath N, Little-Ihrig L, Phillips HS, Ferrara N and Zeleznik AJ: Vascular endothelial growth factor messenger ribonucleic acid expression in the primate ovary. Endocrinology. 131:254–260. 1992. View Article : Google Scholar : PubMed/NCBI

34 

Yamamoto S, Konishi I, Tsuruta Y, Nanbu K, Mandai M, Kuroda H, Matsushita K, Hamid AA, Yura Y and Mori T: Expression of vascular endothelial growth factor (VEGF) during folliculogenesis and corpus luteum formation in the human ovary. Gynecol Endocrinol. 11:371–381. 1997. View Article : Google Scholar : PubMed/NCBI

35 

Xu J, Xu M, Bernuci MP, Fisher TE, Shea LD, Woodruff TK, Zelinski MB and Stouffer RL: Primate follicular development and oocyte maturation in vitro. Adv Exp Med Biol. 761:43–67. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Silva CM, Matos MH, Rodrigues GQ, Faustino LR, Pinto LC, Chaves RN, Araújo VR, Campello CC and Figueiredo JR: In vitro survival and development of goat preantral follicles in two different oxygen tensions. Anim Reprod Sci. 117:83–89. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Walters KA, Simanainen U and Handelsman DJ: Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models. Hum Reprod Update. 16:543–558. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Gleicher N, Weghofer A and Barad DH: The role of androgens in follicle maturation and ovulation induction: Friend or foe of infertility treatment? Reprod Biol Endocrinol. 9:1162011. View Article : Google Scholar : PubMed/NCBI

39 

Lenie S and Smitz J: Functional AR signaling is evident in an in vitro mouse follicle culture bioassay that encompasses most stages of folliculogenesis. Biol Reprod. 80:685–695. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Li M, Ai JS, Xu BZ, Xiong B, Yin S, Lin SL, Hou Y, Chen DY, Schatten H and Sun QY: Testosterone potentially triggers meiotic resumption by activation of intra-oocyte SRC and MAPK in porcine oocytes. Biol Reprod. 79:897–905. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Van Nieuwerburgh F, Stoop D, Cabri P, Dhont M, Deforce D and De Sutter P: Shorter CAG repeats in the androgen receptor gene may enhance hyperandrogenicity in polycystic ovary syndrome. Gynecol Endocrinol. 24:669–673. 2008. View Article : Google Scholar : PubMed/NCBI

42 

O'Donovan KJ, Tourtellotte WG, Millbrandt J and Baraban JM: The EGR family of transcription-regulatory factors: Progress at the interface of molecular and systems neuroscience. Trends Neurosci. 22:167–173. 1999. View Article : Google Scholar : PubMed/NCBI

43 

Shin H, Seol DW, Nam M, Song H, Lee DR and Lim HJ: Expression of Egr3 in mouse gonads and its localization and function in oocytes. Asian-Australas J Anim Sci. 30:781–787. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Thiel G, Müller I and Rössler OG: Expression, signaling and function of Egr transcription factors in pancreatic β-cells and insulin-responsive tissues. Mol Cell Endocrinol. 388:10–19. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Safford M, Collins S, Lutz MA, Allen A, Huang CT, Kowalski J, Blackford A, Horton MR, Drake C, Schwartz RH and Powell JD: Egr-2 and Egr-3 are negative regulators of T cell activation. Nat Immunol. 6:472–480. 2005. View Article : Google Scholar : PubMed/NCBI

46 

Fang F, Ooka K, Bhattachyya S, Wei J, Wu M, Du P, Lin S, Del Galdo F, Feghali-Bostwick CA and Varga J: The early growth response gene Egr2 (alias Krox20) is a novel transcriptional target of transforming growth factor-β that is up-regulated in systemic sclerosis and mediates profibrotic responses. Am J Pathol. 178:2077–2090. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Nagarajan R, Svaren J, Le N, Araki T, Watson M and Milbrandt J: EGR2 mutations in inherited neuropathies dominant-negatively inhibit myelin gene expression. Neuron. 30:355–368. 2001. View Article : Google Scholar : PubMed/NCBI

48 

Hu TM, Chen CH, Chuang YA, Hsu SH and Cheng MC: Resequencing of early growth response 2 (EGR2) gene revealed a recurrent patient-specific mutation in schizophrenia. Psychiatry Res. 228:958–960. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Le N, Nagarajan R, Wang JY, Araki T, Schmidt RE and Milbrandt J: Analysis of congenital hypomyelinating Egr2Lo/Lo nerves identifies Sox2 as an inhibitor of schwann cell differentiation and myelination. Proc Natl Acad Sci USA. 102:2596–2601. 2005. View Article : Google Scholar : PubMed/NCBI

50 

Li X, Zhang Z, Yu M, Li L, Du G, Xiao W and Yang H: Involvement of miR-20a in promoting gastric cancer progression by targeting early growth response 2 (EGR2). Int J Mol Sci. 14:16226–16239. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Barbeau DJ, La KT, Kim DS, Kerpedjieva SS, Shurin GV and Tamama K: Early growth response-2 signaling mediates immunomodulatory effects of human multipotential stromal cells. Stem Cells Dev. 23:155–166. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Jin H, Won M, Shin E, Kim HM, Lee K and Bae J: EGR2 is a gonadotropin-induced survival factor that controls the expression of IER3 in ovarian granulosa cells. Biochem Biophys Res Commun. 482:877–882. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Burger HG: Inhibin: Definition and nomenclature, including related substances. J Endocrinol. 117:159–160. 1988. View Article : Google Scholar : PubMed/NCBI

54 

Seder CW, Hartojo W, Lin L, Silvers AL, Wang Z, Thomas DG, Giordano TJ, Chen G, Chang AC, Orringer MB and Beer DG: Upregulated INHBA expression may promote cell proliferation and is associated with poor survival in lung adenocarcinoma. Neoplasia. 11:388–396. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Howley BV, Hussey GS, Link LA and Howe PH: Translational regulation of inhibin βa by TGFβ via the RNA-binding protein hnRNP E1 enhances the invasiveness of epithelial-to- mesenchymal transitioned cells. Oncogene. 35:1725–1735. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Katayama Y, Oshima T, Sakamaki K, Aoyama T, Sato T, Masudo K, Shiozawa M, Yoshikawa T, Rino Y, Imada T and Masuda M: Clinical significance of INHBA gene expression in patients with gastric cancer who receive curative resection followed by adjuvant s-1 chemotherapy. In Vivo. 31:565–571. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Donovan P, Dubey OA, Kallioinen S, Rogers KW, Muehlethaler K, Müller P, Rimoldi D and Constam DB: Paracrine activin-A signaling promotes melanoma growth and metastasis through immune evasion. J Invest Dermatol. 137:2578–2587. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Locci M, Wu JE, Arumemi F, Mikulski Z, Dahlberg C, Miller AT and Crotty S: Activin A programs the differentiation of human TFH cells. Nat Immunol. 17:976–984. 2016. View Article : Google Scholar : PubMed/NCBI

59 

McKenzie LJ, Pangas SA, Carson SA, Kovanci E, Cisneros P, Buster JE, Amato P and Matzuk MM: Human cumulus granulosa cell gene expression: A predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod. 19:2869–2874. 2004. View Article : Google Scholar : PubMed/NCBI

60 

Assidi M, Dufort I, Ali A, Hamel M, Algriany O, Dielemann S and Sirard MA: Identification of potential markers of oocyte competence expressed in bovine cumulus cells matured with follicle-stimulating hormone and/or phorbol myristate acetate in vitro. Biol Reprod. 79:209–222. 2008. View Article : Google Scholar : PubMed/NCBI

61 

Bristol-Gould SK, Kreeger PK, Selkirk CG, Kilen SM, Cook RW, Kipp JL, Shea LD, Mayo KE and Woodruff TK: Postnatal regulation of germ cells by activin: The establishment of the initial follicle pool. Dev Biol. 298:132–148. 2006. View Article : Google Scholar : PubMed/NCBI

62 

Myers M, Middlebrook BS, Matzuk MM and Pangas SA: Loss of inhibin alpha uncouples oocyte-granulosa cell dynamics and disrupts postnatal folliculogenesis. Dev Biol. 334:458–467. 2009. View Article : Google Scholar : PubMed/NCBI

63 

Maguire JJ and Davenport AP: Endothelin receptors and their antagonists. Semin Nephrol. 35:125–136. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Asai R, Kurihara Y, Fujisawa K, Sato T, Kawamura Y, Kokubo H, Tonami K, Nishiyama K, Uchijima Y, Miyagawa-Tomita S and Kurihara H: Endothelin receptor type A expression defines a distinct cardiac subdomain within the heart field and is later implicated in chamber myocardium formation. Development. 137:3823–3833. 2010. View Article : Google Scholar : PubMed/NCBI

65 

Kawamura K, Ye Y, Liang CG, Kawamura N, Gelpke MS, Rauch R, Tanaka T and Hsueh AJ: Paracrine regulation of the resumption of oocyte meiosis by endothelin-1. Dev Biol. 327:62–70. 2009. View Article : Google Scholar : PubMed/NCBI

66 

Cui L, Shen J, Fang L, Mao X, Wang H and Ye Y: Endothelin-1 promotes human germinal vesicle-stage oocyte maturation by downregulating connexin-26 expression in cumulus cells. Mol Hum Reprod. 24:27–36. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Cheng JC, Chang HM, Fang L, Sun YP and Leung PC: TGF-β1 up-regulates connexin43 expression: A potential mechanism for human trophoblast cell differentiation. J Cell Physiol. 230:1558–1566. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Salameh A, Haunschild J, Bräuchle P, Peim O, Seidel T, Reitmann M, Kostelka M, Bakhtiary F, Dhein S and Dähnert I: On the role of the gap junction protein Cx43 (GJA1) in human cardiac malformations with fallot-pathology. A study on paediatric cardiac specimen. PLoS One. 9:e953442014. View Article : Google Scholar : PubMed/NCBI

69 

Edry I, Sela-Abramovich S and Dekel N: Meiotic arrest of oocytes depends on cell-to-cell communication in the ovarian follicle. Mol Cell Endocrinol. 252:102–106. 2006. View Article : Google Scholar : PubMed/NCBI

70 

Li SH, Lin MH, Hwu YM, Lu CH, Yeh LY, Chen YJ and Lee RK: Correlation of cumulus gene expression of GJA1, PRSS35, PTX3, and SERPINE2 with oocyte maturation, fertilization, and embryo development. Reprod Biol Endocrinol. 13:932015. View Article : Google Scholar : PubMed/NCBI

71 

Hasegawa J, Yanaihara A, Iwasaki S, Mitsukawa K, Negishi M and Okai T: Reduction of connexin 43 in human cumulus cells yields good embryo competence during ICSI. J Assist Reprod Genet. 24:463–466. 2007. View Article : Google Scholar : PubMed/NCBI

72 

Wang HX, Tong D, El-Gehani F, Tekpetey FR and Kidder GM: Connexin expression and gap junctional coupling in human cumulus cells: Contribution to embryo quality. J Cell Mol Med. 13:972–984. 2009. View Article : Google Scholar : PubMed/NCBI

73 

Amberger JS, Bocchini CA, Schiettecatte F, Scott AF and Hamosh A: OMIM.org: Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 43:D789–D798. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Calatayud NE, Pask AJ, Shaw G, Richings NM, Osborn S and Renfree MB: Ontogeny of the oestrogen receptors ESR1 and ESR2 during gonadal development in the tammar wallaby, Macropus eugenii. Reproduction. 139:599–611. 2010. View Article : Google Scholar : PubMed/NCBI

75 

Jameson JL, DeGroot LJ, De Kretser DM, Giudice LC, Grossman AB, Melmed S, Potts JT Jr and Weir GC: Endocrinology: Adult & Pediatric. 7th. Elsevier; Philadelphia, PA: 2016

76 

Labrie F, Luu-The V, Lin SX, Simard J and Labrie C: Role of 17β-hydroxysteroid dehydrogenases in sex steroid formation in peripheral intracrine tissues. Trends Endocrinol Metab. 11:421–427. 2000. View Article : Google Scholar : PubMed/NCBI

77 

Kuiper GG, Carlsson B, Grandien K, Enmark E, Häggblad J, Nilsson S and Gustafsson JA: Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology. 138:863–870. 1997. View Article : Google Scholar : PubMed/NCBI

78 

Bondesson M, Hao R, Lin CY, Williams C and Gustafsson JÅ: Estrogen receptor signaling during vertebrate development. Biochim Biophys Acta. 1849:142–151. 2014. View Article : Google Scholar : PubMed/NCBI

79 

Paterni I, Granchi C, Katzenellenbogen JA and Minutolo F: Estrogen receptors alpha (ERα) and beta (ERβ): Subtype-selective ligands and clinical potential. Steroids. 90:13–29. 2014. View Article : Google Scholar : PubMed/NCBI

80 

Pelletier G and El-Alfy M: Immunocytochemical localization of estrogen receptors alpha and beta in the human reproductive organs. J Clin Endocrinol Metab. 85:4835–4840. 2000. View Article : Google Scholar : PubMed/NCBI

81 

Nathan MR and Schmid P: A review of fulvestrant in breast cancer. Oncol Ther. 5:17–29. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Artini PG, Tatone C, Sperduti S, D'Aurora M, Franchi S, Di Emidio G, Ciriminna R, Vento M, Di Pietro C, Stuppia L, et al: Cumulus cells surrounding oocytes with high developmental competence exhibit down-regulation of phosphoinositol 1, 3 kinase/protein kinase B (PI3K/AKT) signalling genes involved in proliferation and survival. Hum Reprod. 32:2474–2484. 2017. View Article : Google Scholar : PubMed/NCBI

83 

Musgrove EA, Caldon CE, Barraclough J, Stone A and Sutherland RL: Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 11:558–572. 2011. View Article : Google Scholar : PubMed/NCBI

84 

Robker RL and Richards JS: Hormone-induced proliferation and differentiation of granulosa cells: A coordinated balance of the cell cycle regulators cyclin D2 and p27Kip1. Mol Endocrinol. 12:924–940. 1998. View Article : Google Scholar : PubMed/NCBI

85 

Han Y, Xia G and Tsang BK: Regulation of cyclin D2 expression and degradation by follicle-stimulating hormone during rat granulosa cell proliferation in vitro. Biol Reprod. 88:572013. View Article : Google Scholar : PubMed/NCBI

86 

François CM, Petit F, Giton F, Gougeon A, Ravel C, Magre S, Cohen-Tannoudji J and Guigon CJ: A novel action of follicle-stimulating hormone in the ovary promotes estradiol production without inducing excessive follicular growth before puberty. Sci Rep. 7:462222017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Brązert M, Kranc W, Nawrocki MJ, Sujka‑Kordowska P, Konwerska A, Jankowski M, Kocherova I, Celichowski P, Jeseta M, Ożegowska K, Ożegowska K, et al: New markers for regulation of transcription and macromolecule metabolic process in porcine oocytes during in vitro maturation. Mol Med Rep 21: 1537-1551, 2020.
APA
Brązert, M., Kranc, W., Nawrocki, M.J., Sujka‑Kordowska, P., Konwerska, A., Jankowski, M. ... Kempisty, B. (2020). New markers for regulation of transcription and macromolecule metabolic process in porcine oocytes during in vitro maturation. Molecular Medicine Reports, 21, 1537-1551. https://doi.org/10.3892/mmr.2020.10963
MLA
Brązert, M., Kranc, W., Nawrocki, M. J., Sujka‑Kordowska, P., Konwerska, A., Jankowski, M., Kocherova, I., Celichowski, P., Jeseta, M., Ożegowska, K., Antosik, P., Bukowska, D., Skowroński, M. T., Bruska, M., Pawelczyk, L., Zabel, M., Piotrowska‑Kempisty, H., Nowicki, M., Kempisty, B."New markers for regulation of transcription and macromolecule metabolic process in porcine oocytes during in vitro maturation". Molecular Medicine Reports 21.3 (2020): 1537-1551.
Chicago
Brązert, M., Kranc, W., Nawrocki, M. J., Sujka‑Kordowska, P., Konwerska, A., Jankowski, M., Kocherova, I., Celichowski, P., Jeseta, M., Ożegowska, K., Antosik, P., Bukowska, D., Skowroński, M. T., Bruska, M., Pawelczyk, L., Zabel, M., Piotrowska‑Kempisty, H., Nowicki, M., Kempisty, B."New markers for regulation of transcription and macromolecule metabolic process in porcine oocytes during in vitro maturation". Molecular Medicine Reports 21, no. 3 (2020): 1537-1551. https://doi.org/10.3892/mmr.2020.10963
Copy and paste a formatted citation
x
Spandidos Publications style
Brązert M, Kranc W, Nawrocki MJ, Sujka‑Kordowska P, Konwerska A, Jankowski M, Kocherova I, Celichowski P, Jeseta M, Ożegowska K, Ożegowska K, et al: New markers for regulation of transcription and macromolecule metabolic process in porcine oocytes during in vitro maturation. Mol Med Rep 21: 1537-1551, 2020.
APA
Brązert, M., Kranc, W., Nawrocki, M.J., Sujka‑Kordowska, P., Konwerska, A., Jankowski, M. ... Kempisty, B. (2020). New markers for regulation of transcription and macromolecule metabolic process in porcine oocytes during in vitro maturation. Molecular Medicine Reports, 21, 1537-1551. https://doi.org/10.3892/mmr.2020.10963
MLA
Brązert, M., Kranc, W., Nawrocki, M. J., Sujka‑Kordowska, P., Konwerska, A., Jankowski, M., Kocherova, I., Celichowski, P., Jeseta, M., Ożegowska, K., Antosik, P., Bukowska, D., Skowroński, M. T., Bruska, M., Pawelczyk, L., Zabel, M., Piotrowska‑Kempisty, H., Nowicki, M., Kempisty, B."New markers for regulation of transcription and macromolecule metabolic process in porcine oocytes during in vitro maturation". Molecular Medicine Reports 21.3 (2020): 1537-1551.
Chicago
Brązert, M., Kranc, W., Nawrocki, M. J., Sujka‑Kordowska, P., Konwerska, A., Jankowski, M., Kocherova, I., Celichowski, P., Jeseta, M., Ożegowska, K., Antosik, P., Bukowska, D., Skowroński, M. T., Bruska, M., Pawelczyk, L., Zabel, M., Piotrowska‑Kempisty, H., Nowicki, M., Kempisty, B."New markers for regulation of transcription and macromolecule metabolic process in porcine oocytes during in vitro maturation". Molecular Medicine Reports 21, no. 3 (2020): 1537-1551. https://doi.org/10.3892/mmr.2020.10963
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team