|
1
|
World Health Organization (WHO), . Top 10
global causes of deaths, 2016. https://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-deathWHO;
Geneva: 2016 May 24–2018
|
|
2
|
GBD 2016 Stroke Collaborators, . Global,
regional, and national burden of stroke, 1990–2016: A systematic
analysis for the Global Burden of Disease Study 2016. Lancet
Neurol. 18:439–458. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Feigin VL, Lawes CMM, Bennett DA,
Barker-Collo SL and Parag V: Worldwide stroke incidence and early
case fatality reported in 56 population-based studies: A systematic
review. Lancet Neurol. 8:355–369. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Navis A, Garcia-Santibanez R and Skliut M:
Epidemiology and outcomes of ischemic stroke and transient ischemic
attack in the adult and geriatric population. J Stroke Cerebrovasc
Dis. 28:84–89. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ozaki T, Nakamura H and Kishima H:
Therapeutic strategy against ischemic stroke with the concept of
neurovascular unit. Neurochem Int. 126:246–251. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Thiebaut AM, Gauberti M, Ali C, Martinez
De Lizarrondo S, Vivien D, Yepes M and Roussel BD: The role of
plasminogen activators in stroke treatment: Fibrinolysis and
beyond. Lancet Neurol. 17:1121–1132. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Xu XJ, Zhang L, Ye XC, Hao Q, Zhang T, Cui
GY and Yu M: Nrf2/ARE pathway inhibits ROS-induced NLRP3
inflammasome activation in BV2 cells after cerebral ischemia
reperfusion. Inflamm Res. 67:57–65. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Azedi F, Mehrpour M, Talebi S, Zendedel A,
Kazemnejad S, Mousavizadeh K, Beyer C, Zarnani A and Joghataei MT:
Melatonin regulates neuroinflammation ischemic stroke damage
through interactions with microglia in reperfusion phase. Brain
Res. 1723:1464012019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhuang P, Wan Y, Geng S, He Y, Feng B, Ye
Z, Zhou D, Li D, Wei H, Li H, et al: Salvianolic Acids for
Injection (SAFI) suppresses inflammatory responses in activated
microglia to attenuate brain damage in focal cerebral ischemia. J
Ethnopharmacol. 198:194–204. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Chamorro Á, Dirnagl U, Urra X and Planas
AM: Neuroprotection in acute stroke: Targeting excitotoxicity,
oxidative and nitrosative stress, and inflammation. Lancet Neurol.
15:869–881. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhou SJ, Zhu WQ, Zhang Y, Pan SP and Bao
JH: S100B promotes microglia M1 polarization and migration to
aggravate cerebral ischemia. Inflamm Res. 67:937–949. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhao HR, Wan LH, Chen Y, Zhang H, Xu Y and
Qiu SW: FasL incapacitation alleviates CD4(+) T cells-induced brain
injury through remodeling of microglia polarization in mouse
ischemic stroke. J Neuroimmunol. 318:36–44. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Xiong XY, Liu L and Yang QW: Functions and
mechanisms of microglia/macrophages in neuroinflammation and
neurogenesis after stroke. Prog Neurobiol. 142:23–44. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Neher JJ and Cunningham C: Priming
microglia for innate immune memory in the brain. Trends Immunol.
40:358–374. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Li B, Concepcion K, Meng XM and Zhang LB:
Brain-immune interactions in perinatal hypoxic-ischemic brain
injury. Prog Neurobiol. 159:50–68. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yang S, Wang H, Yang Y, Wang R, Wang Y, Wu
C and Du G: Baicalein administered in the subacute phase
ameliorates ischemia-reperfusion-induced brain injury by reducing
neuroinflammation and neuronal damage. Biomed Pharmacother.
117:1091022019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Weng L, Wu Z, Zheng W, Meng H, Han L, Wang
S, Yuan Z and Xu Y: Malibatol A enhances alternative activation of
microglia by inhibiting phosphorylation of Mammalian Ste20-like
kinase1 in OGD-BV-2 cells. Neurol Res. 38:342–348. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zheng X, Huang H, Liu J, Li M, Liu M and
Luo T: Propofol attenuates inflammatory response in LPS-activated
microglia by regulating the miR-155/SOCS1 pathway. Inflammation.
41:11–19. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Meng HL, Li XX, Chen YT, Yu LJ, Zhang H,
Lao JM, Zhang X and Xu Y: Neuronal soluble Fas ligand drives
M1-microglia polarization after cerebral ischemia. CNS Neurosci
Ther. 22:771–781. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Greco R, Demartini C, Zanaboni AM,
Blandini F, Amantea D and Tassorelli C: Endothelial nitric oxide
synthase inhibition triggers inflammatory responses in the brain of
male rats exposed to ischemia-reperfusion injury. J Neurosci Res.
96:151–159. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ji J, Xiang P, Li T, Lan L, Xu X, Lu G, Ji
H, Zhang Y and Li Y: NOSH-NBP, a novel nitric oxide and hydrogen
sulfide- releasing hybrid, attenuates ischemic stroke-induced
neuroinflammatory injury by modulating microglia polarization.
Front Cell Neurosci. 11:1542017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wang J, Xing H, Wan L, Jiang X, Wang C and
Wu Y: Treatment targets for M2 microglia polarization in ischemic
stroke. Biomed Pharmacother. 105:518–525. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Liu X, Liu J, Zhao S, Zhang H, Cai W, Cai
M, Ji X, Leak R, Gao Y, Chen J and Hu X: Interleukin-4 is essential
for microglia/macrophage M2 polarization and long-term recovery
after cerebral ischemia. Stroke. 47:498–504. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Feng YK, He XF, Luo SJ, Chen XF, Long SM,
Liang FY, Shi TT, Pei Z and Li ZD: Chronic colitis induces meninges
traffic of gut-derived T cells, unbalances M1 and M2
microglia/macrophage and increases ischemic brain injury in mice.
Brain Res. 1707:8–17. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhu J, Cao D, Guo C, Liu M, Tao Y, Zhou J,
Wang F, Zhao Y, Wei J, Zhang Y, et al: Berberine facilitates
angiogenesis against ischemic stroke through modulating microglial
polarization via AMPK signaling. Cell Mol Neurobiol. 39:751–768.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Liu R, Diao J, He S, Li B, Fei Y, Li Y and
Fang W: XQ-1H protects against ischemic stroke by regulating
microglia polarization through PPARgamma pathway in mice. Int
Immunopharmacol. 57:72–81. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Boddaert J, Bielen K, 's Jongers B,
Manocha E, Yperzeele L, Cras P, Pirici D and Kumar-Singh S: CD8
signaling in microglia/macrophage M1 polarization in a rat model of
cerebral ischemia. PLoS One. 13:e01869372018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Collmann FM, Pijnenburg R, Hamzei-Taj S,
Minassian A, Folz-Donahue K, Kukat C, Aswendt M and Hoehn M:
Individual in vivo profiles of microglia polarization after stroke,
represented by the genes iNOS and Ym1. Front Immunol. 10:12362019.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Chen AQ, Fang Z, Chen XL, Yang S, Zhou YF,
Mao L, Xia YP, Jin HJ, Li YN, You MF, et al: Microglia-derived
TNF-alpha mediates endothelial necroptosis aggravating blood
brain-barrier disruption after ischemic stroke. Cell Death Dis.
10:4872019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Moraes CA, Santos G, de Sampaio e Spohr
TC, D'Avila JC, Lima FR, Benjamim CF, Bozza FA and Gomes FC:
Activated microglia-induced deficits in excitatory synapses through
IL-1β: Implications for cognitive impairment in sepsis. Mol
Neurobiol. 52:653–663. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lv M, Zhang D, Dai D, Zhang W and Zhang L:
Sphingosine kinase 1/sphingosine-1-phosphate regulates the
expression of interleukin-17A in activated microglia in cerebral
ischemia/reperfusion. Inflamm Res. 65:551–562. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Xie L, Sun F, Wang J, Mao X, Xie L, Yang
S, Su D, Simpkins J, Greenberg D and Jin K: mTOR signaling
inhibition modulates macrophage/microglia-mediated
neuroinflammation and secondary injury via regulatory T cells after
focal ischemia. J Immunol. 192:6009–6019. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wang SW, Zhang H and Xu Y: Crosstalk
between microglia and T cells contributes to brain damage and
recovery after ischemic stroke. Neurol Res. 38:495–503. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhou T, Huang Z, Sun X, Zhu X, Zhou L, Li
M, Cheng B, Liu X and He C: Microglia polarization with M1/M2
phenotype changes in rd1 mouse model of retinal degeneration. Front
Neuroanat. 11:772017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Huang M, Li Y, Wu K, Yan W, Tian T, Wang Y
and Yang H: Paraquat modulates microglia M1/M2 polarization via
activation of TLR4-mediated NF-κB signaling pathway. Chem Biol
Interact. 310:1087432019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Huang XP, Peng JH, Pang JW, Tian XC, Li
XS, Wu Y, Li Y, Jiang Y and Sun XC: Peli1 contributions in
microglial activation, neuroinflammatory responses and neurological
deficits following experimental subarachnoid hemorrhage. Front Mol
Neurosci. 10:3982017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Liu LQ, Liu XR, Zhao JY, Yan F, Wang RL,
Wen SH, Wang L, Luo YM and Ji XM: Brain-selective mild hypothermia
promotes long-term white matter integrity after ischemic stroke in
mice. CNS Neurosci Ther. 24:1275–1285. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Jiang M, Liu X, Zhang D, Wang Y, Hu X, Xu
F, Jin M, Cao F and Xu L: Celastrol treatment protects against
acute ischemic stroke-induced brain injury by promoting an
IL-33/ST2 axis-mediated microglia/macrophage M2 polarization. J
Neuroinflammation. 15:782018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Jin Q, Cheng J, Liu Y, Wu J, Wang X, Wei
S, Zhou X, Qin Z, Jia J and Zhen X: Improvement of functional
recovery by chronic metformin treatment is associated with enhanced
alternative activation of microglia/macrophages and increased
angiogenesis and neurogenesis following experimental stroke. Brain
Behav Immun. 40:131–142. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Li R, Liu WC, Yin J, Chen YC, Guo SQ, Fan
HY, Li XF, Zhang X, He XY and Duan CZ: TSG-6 attenuates
inflammation-induced brain injury via modulation of microglial
polarization in SAH rats through the SOCS3/STAT3 pathway. J
Neuroinflammation. 15:2312018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Liu Z, Ran Y, Huang S, Wen S, Zhang W, Liu
X, Ji Z, Geng X, Ji X, Du H, et al: Curcumin protects against
ischemic stroke by titrating microglia/macrophage polarization.
Front Aging Neurosci. 9:2332017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Satoh J, Kino Y, Asahina N, Takitani M,
Miyoshi J, Ishida T and Saito Y: TMEM119 marks a subset of
microglia in the human brain. Neuropathology. 36:39–49. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Huang M, Wan Y, Mao L, He QW, Xia YP, Li
M, Li YN, Jin HJ and Hu B: Inhibiting the migration of M1 microglia
at hyperacute period could improve outcome of tMCAO rats. CNS
Neurosci Ther. 23:222–232. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Hu X, Li P, Guo Y, Wang H, Leak R, Chen S,
Gao Y and Chen J: Microglia/macrophage polarization dynamics reveal
novel mechanism of injury expansion after focal cerebral ischemia.
Stroke. 43:3063–3070. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hwang IK, Park JH, Lee TK, Kim DW, Yoo KY,
Ahn JH, Kim YH, Cho JH, Kim YM, Won MH and Moon SM:
CD74-immunoreactive activated M1 microglia are shown late in the
gerbil hippocampal CA1 region following transient cerebral
ischemia. Mol Med Rep. 15:4148–4154. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang L, Wang R, Chen Z, Zhao H and Luo Y:
Xinnao Shutong modulates the neuronal plasticity through regulation
of microglia/macrophage polarization following chronic cerebral
hypoperfusion in rats. Front Physiol. 9:5292018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Shang K, He J, Zou J, Qin C, Lin L, Zhou
LQ, Yang LL, Wu LJ, Wang W, Zhan KB and Tian DS: Fingolimod
promotes angiogenesis and attenuates ischemic brain damage via
modulating microglial polarization. Brain Res. 1726:1465092020.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yang L, Tucker D, Dong Y, Wu C, Lu Y, Li
Y, Zhang J, Liu TC and Zhang Q: Photobiomodulation therapy promotes
neurogenesis by improving post-stroke local microenvironment and
stimulating neuroprogenitor cells. Exp Neurol. 299:86–96. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zong X, Dong Y, Li Y, Yang L, Li Y, Yang
B, Tucker L, Zhao N, Brann DW, Yan X, et al: Beneficial effects of
theta-burst transcranial magnetic stimulation on stroke injury via
improving neuronal microenvironment and mitochondrial integrity.
Transl Stroke Res. Sep 12–2019.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhao SC, Wang C, Xu H, Wu WQ, Chu ZH, Ma
LS, Zhang YD and Liu F: Age-related differences in interferon
regulatory factor-4 and −5 signaling in ischemic brains of mice.
Acta Pharmacol Sin. 38:1425–1434. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Suenaga J, Hu X, Pu H, Shi Y, Hassan SH,
Xu M, Leak RK, Stetler RA, Gao Y and Chen J: White matter injury
and microglia/macrophage polarization are strongly linked with
age-related long-term deficits in neurological function after
stroke. Exp Neurol. 272:109–119. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhao X, Wang H, Sun G, Zhang J, Edwards NJ
and Aronowski J: Neuronal interleukin-4 as a modulator of
microglial pathways and ischemic brain damage. J Neurosci.
35:11281–11291. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Choi JY, Kim JY, Kim JY, Park J, Lee WT
and Lee JE: M2 phenotype microglia-derived cytokine stimulates
proliferation and neuronal differentiation of endogenous stem cells
in ischemic brain. Exp Neurobiol. 26:33–41. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Perego C, Fumagalli S, Zanier ER, Carlino
E, Panini N, Erba E and De Simoni MG: Macrophages are essential for
maintaining a M2 protective response early after ischemic brain
injury. Neurobiol Dis. 96:284–293. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zheng Y, He RY, Wang P, Shi YJ, Zhao L and
Liang J: Exosomes from LPS-stimulated macrophages induce
neuroprotection and functional improvement after ischemic stroke by
modulating microglial polarization. Biomater Sci. 7:2037–2049.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhang Q, Bian G, Chen P, Liu L, Yu C, Liu
F, Xue Q, Chung SK, Song B, Ju G and Wang J: Aldose reductase
regulates microglia/macrophages polarization through the cAMP
response element-binding protein after spinal cord injury in mice.
Mol Neurobiol. 53:662–676. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Li L, Yihao T, Zhou F, Yin N, Qiang T,
Haowen Z, Qianwei C, Jun T, Yuan Z, Gang Z, et al: Inflammatory
regulation by driving microglial M2 polarization: Neuroprotective
effects of cannabinoid receptor-2 activation in intracerebral
hemorrhage. Front Immunol. 8:1122017.PubMed/NCBI
|
|
58
|
Zhang Y, Xu N, Ding Y, Zhang Y, Li Q,
Flores J, Haghighiabyaneh M, Doycheva D, Tang J and Zhang JH:
Chemerin suppresses neuroinflammation and improves neurological
recovery via CaMKK2/AMPK/Nrf2 pathway after germinal matrix
hemorrhage in neonatal rats. Brain Behav Immun. 70:179–193. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Shu ZM, Shu XD, Li HQ, Sun Y, Shan H, Sun
XY, Du RH, Lu M, Xiao M, Ding JH and Hu G: Ginkgolide B protects
against ischemic stroke via modulating microglia polarization in
mice. CNS Neurosci Ther. 22:729–739. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Moretti R, Leger PL, Besson VC, Csaba Z,
Pansiot J, Di Criscio L, Gentili A, Titomanlio L, Bonnin P, Baud O
and Charriaut-Marlangue C: Sildenafil, a cyclic GMP
phosphodiesterase inhibitor, induces microglial modulation after
focal ischemia in the neonatal mouse brain. J Neuroinflammation.
13:952016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Han L, Cai W, Mao L, Liu J, Li P, Leak RK,
Xu Y, Hu X and Chen J: Rosiglitazone promotes white matter
integrity and long-term functional recovery after focal cerebral
ischemia. Stroke. 46:2628–2636. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Xiang B, Xiao C, Shen T and Li XF:
Anti-inflammatory effects of anisalcohol on
lipopolysaccharide-stimulated BV2 microglia via selective
modulation of microglia polarization and down-regulation of
NF-kappaB p65 and JNK activation. Mol Immunol. 95:39–46. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Chen J, Yin W, Tu Y, Wang S, Yang X, Chen
Q, Zhang X, Han Y and Pi R: L-F001, a novel multifunctional ROCK
inhibitor, suppresses neuroinflammation in vitro and in vivo:
Involvement of NF-κB inhibition and Nrf2 pathway activation. Eur J
Pharmacol. 806:1–9. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Xiao L, Sun W, Lan W, Xiong Y, Duan Z,
Zhang Z, Fan W, Xu L, Xie X, Ma N, et al: Correlation between
cerebral microbleeds and S100B/RAGE in acute lacunar stroke
patients. J Neurol Sci. 340:208–212. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chen C, Chu SF, Ai QD, Zhang Z, Guan FF,
Wang SS, Dong YX, Zhu J, Jian WX and Chen NH: CKLF1 Aggravates
focal cerebral ischemia injury at early stage partly by modulating
microglia/macrophage toward M1 polarization through CCR4. Cell Mol
Neurobiol. 39:651–669. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chen C, Ai Q, Chu S, Zhang Z, Zhou X, Luo
P, Liu Y and Chen N: IMM-H004 protects against oxygen-glucose
deprivation/reperfusion injury to BV2 microglia partly by
modulating CKLF1 involved in microglia polarization. Int
Immunopharmacol. 70:69–79. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kong LL, Wang ZY, Hu JF, Yuan YH and Chen
NH: Inhibition of chemokine-like factor 1 improves blood-brain
barrier dysfunction in rats following focal cerebral ischemia.
Neurosci Lett. 627:192–198. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kwon YW, Cheon SY, Park SY, Song J and Lee
JH: Tryptanthrin suppresses the activation of the LPS-treated BV2
microglial cell line via Nrf2/HO-1 antioxidant signaling. Front
Cell Neurosci. 11:182017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Liu R, Liao XY, Pan MX, Tang JC, Chen SF,
Zhang Y, Lu PX, Lu LJ, Zou YY, Qin XP, et al: Glycine exhibits
neuroprotective effects in ischemic stroke in rats through the
inhibition of M1 microglial polarization via the NF-κB p65/Hif-1α
signaling pathway. J Immunol. 202:1704–1714. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Butturini E, Boriero D, Carcereri de Prati
A and Mariotto S: STAT1 drives M1 microglia activation and
neuroinflammation under hypoxia. Arch Biochem Biophys. 669:22–30.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Qin C, Fan WH, Liu Q, Shang K, Murugan M,
Wu LJ, Wang W and Tian DS: Fingolimod protects against ischemic
white matter damage by modulating microglia toward M2 polarization
via STAT3 pathway. Stroke. 48:3336–3346. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ding Y, Qian J, Li H, Shen H, Li X, Kong
Y, Xu Z and Chen G: Effects of SC99 on cerebral ischemia-perfusion
injury in rats: Selective modulation of microglia polarization to
M2 phenotype via inhibiting JAK2-STAT3 pathway. Neurosci Res.
142:58–68. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhou K, Chen J, Wu J, Wu Q, Jia C, Xu YXZ,
Chen L, Tu W, Yang G, Kong J, et al: Atractylenolide III
ameliorates cerebral ischemic injury and neuroinflammation
associated with inhibiting JAK2/STAT3/Drp1-dependent mitochondrial
fission in microglia. Phytomedicine. 59:1529222019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yang X, Xu S, Qian Y and Xiao Q:
Resveratrol regulates microglia M1/M2 polarization via PGC-1alpha
in conditions of neuroinflammatory injury. Brain Behav Immun.
64:162–172. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhang W, Wei R, Zhang L, Tan Y and Qian C:
Sirtuin 6 protects the brain from cerebral ischemia/reperfusion
injury through NRF2 activation. Neuroscience. 366:95–104. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Xue F, Huang JW, Ding PY, Zang HG, Kou ZJ,
Li T, Fan J, Peng ZW and Yan WJ: Nrf2/antioxidant defense pathway
is involved in the neuroprotective effects of Sirt1 against focal
cerebral ischemia in rats after hyperbaric oxygen preconditioning.
Behav Brain Res. 309:1–8. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Alfieri A, Srivastava S, Siow RC, Modo M,
Fraser PA and Mann GE: Targeting the Nrf2-Keap1 antioxidant defence
pathway for neurovascular protection in stroke. J Physiol.
589:4125–4136. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Cai W, Yang T, Liu H, Han LJ, Zhang K, Hu
XM, Zhang XJ, Yin KJ, Cao YQ, Bennett MVL, et al: Peroxisome
proliferator-activated receptor γ (pparγ): A master gatekeeper in
CNS injury and repair. Prog Neurobiol. 163-164:27–28. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yao X, Liu S, Ding W, Yue P, Jiang Q, Zhao
M, Hu F and Zhang H: TLR4 signal ablation attenuated neurological
deficits by regulating microglial M1/M2 phenotype after traumatic
brain injury in mice. J Neuroimmunol. 310:38–45. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Yan A, Zhang T, Yang X, Shao J, Fu N, Shen
FX, Fu Y and Xia W: Thromboxane A2 receptor antagonist SQ29548
reduces ischemic stroke-induced microglia/macrophages activation
and enrichment, and ameliorates brain injury. Sci Rep. 6:358852016.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Hyakkoku K, Hamanaka J, Tsuruma K,
himazawa M, Tanaka H, Uematsu S, Akira S, Inagaki N, Nagai H and
Hara H: Toll-like receptor 4 (TLR4), but not TLR3 or TLR9,
knock-out mice have neuroprotective effects against focal cerebral
ischemia. Neuroscience. 171:258–267. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Le K, Chibaatar Daliv E, Wu SS, Qian FY,
Ali AI, Yu DF and Guo Y: SIRT1-regulated HMGB1 release is partially
involved in TLR4 signal transduction: A possible
anti-neuroinflammatory mechanism of resveratrol in neonatal
hypoxic-ischemic brain injury. Int Immunopharmacol. 75:1057792019.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Di Lucente J, Nguyen HM, Wulff H, Jin LW
and Maezawa I: The voltage-gated potassium channel Kv1.3 is
required for microglial pro-inflammatory activation in vivo. Glia.
66:1881–1895. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhao Y, Wang H, Chen W, Chen L, Liu D and
Wang X and Wang X: Melatonin attenuates white matter damage after
focal brain ischemia in rats by regulating the TLR4/NF-kappaB
pathway. Brain Res Bull. 150:168–178. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Palma-Tortosa S, Hurtado O, Pradillo JM,
Ferreras-Martin R, García-Yébenes I, García-Culebras A, Moraga A,
Moro MA and Lizasoain I: Toll-like receptor 4 regulates
subventricular zone proliferation and neuroblast migration after
experimental stroke. Brain Behav Immun. 80:573–582. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Xiang HF, Cao DH, Yang YQ, Wang HQ, Zhu
LJ, Ruan BH, Du J and Wang MC: Isoflurane protects against injury
caused by deprivation of oxygen and glucose in microglia through
regulation of the Toll-like receptor 4 pathway. J Mol Neurosci.
54:664–670. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Luo Y, Wang C, Li WH, Liu J, He HH, Long
JH, Yang J, Sui X, Wang S, You Z and Wang YA: Madecassoside
protects BV2 microglial cells from oxygen-glucose
deprivation/reperfusion-induced injury via inhibition of the
toll-like receptor 4 signaling pathway. Brain Res. 1679:144–154.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Spiegel S and Milstien S:
Sphingosine-1-phosphate: An enigmatic signalling lipid. Nat Rev Mol
Cell Biol. 4:397–407. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Gaire BP, Lee CH, Sapkota A, Lee SY, Chun
J, Cho HJ, Nam TG and Choi JW: Identification of Sphingosine
1-Phosphate Receptor Subtype 1 (S1P1) as a pathogenic
factor in transient focal cerebral ischemia. Mol Neurobiol.
55:2320–2332. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Kim GS, Yang L, Zhang G, Zhao H, Selim M,
McCullough LD, Kluk MJ and Sanchez T: Critical role of
sphingosine-1-phosphate receptor-2 in the disruption of
cerebrovascular integrity in experimental stroke. Nat Commun.
6:78932015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Gaire BP, Song MR and Choi JW: Sphingosine
1-phosphate receptor subtype 3 (S1P3) contributes to
brain injury after transient focal cerebral ischemia via modulating
microglial activation and their M1 polarization. J
Neuroinflammation. 15:2842018. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Chen H: Role of thromboxane A2 signaling
in endothelium-dependent contractions of arteries. Prostaglandins
Other Lipid Mediat. 134:32–37. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Huang JS, Ramamurthy SK, Lin X and Breton
GCL: Cell signalling through thromboxane A2 receptors. Cell Signal.
16:521–533. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Tian DS, Li CY, Qin C, Murugan M, Wu LJ
and Liu JL: Deficiency in the voltage-gated proton channel Hv1
increases M2 polarization of microglia and attenuates brain damage
from photothrombotic ischemic stroke. J Neurochem. 139:96–105.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wu LJ, Wu G, Akhavan Sharif MR, Baker A,
Jia Y, Fahey FH, Luo HR, Feener EP and Clapham DE: The
voltage-gated proton channel Hv1 enhances brain damage from
ischemic stroke. Nat Neurosci. 15:565–573. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Yu Y, Yu ZY, Xie MJ, Wang W and Luo X: Hv1
proton channel facilitates production of ROS and pro-inflammatory
cytokines in microglia and enhances oligodendrocyte progenitor
cells damage from oxygen-glucose deprivation in vitro. Biochem
Biophys Res Commun. 498:1–8. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Nguyen HM, Grössinger EM, Horiuchi M,
Davis KW, Jin LW, Maezawa I and Wulff H: Differential Kv1.3,
KCa3.1, and Kir2.1 expression in ‘classically’ and ‘alternatively’
activated microglia. Glia. 65:106–121. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wang J, Zhao H, Fan Z, Li G, Ma Q, Tao Z,
Wang R, Feng J and Luo Y: Long noncoding RNA H19 promotes
neuroinflammation in ischemic stroke by driving histone deacetylase
1-dependent M1 microglial polarization. Stroke. 48:2211–2221. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Hamzei Taj S, Kho W, Riou A, Wiedermann D
and Hoehn M: MiRNA-124 induces neuroprotection and functional
improvement after focal cerebral ischemia. Biomaterials.
91:151–165. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Shao Y, Deng T, Zhang T, Li P and Wang Y:
FAM19A3, a novel secreted protein, modulates the
microglia/macrophage polarization dynamics and ameliorates cerebral
ischemia. FEBS Lett. 589:467–475. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Wang J, Cao B, Zhao H, Gao Y, Luo Y, Chen
Y and Feng J: Long noncoding RNA H19 prevents neurogenesis in
ischemic stroke through p53/Notch1 pathway. Brain Res Bull.
150:111–117. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Huang Y, Wang L, Mao Y and Nan G: Long
noncoding RNA-H19 contributes to atherosclerosis and induces
ischemic stroke via the upregulation of acid phosphatase 5. Front
Neurol. 10:322019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Wang J, Cao B, Han D, Sun M and Feng J:
Long non-coding RNA H19 induces cerebral ischemia reperfusion
injury via activation of autophagy. Aging Dis. 8:71–84. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Huang Y, Zheng Y, Jin C, Li X, Jia L and
Li W: Long non-coding RNA H19 inhibits adipocyte differentiation of
bone marrow mesenchymal stem cells through epigenetic modulation of
histone deacetylases. Sci Rep. 6:288972016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Han CL, Ge M, Liu YP, Zhao XM, Wang KL,
Chen N, Meng WJ, Hu W, Zhang JG, Li L and Meng FG: LncRNA H19
contributes to hippocampal glial cell activation via JAK/STAT
signaling in a rat model of temporal lobe epilepsy. J
Neuroinflammation. 15:1032018. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
William JP, Alejandro AR, Teri A, Opeolu
MA, Nicholas CB, Kyra B, José B, Michael B, Bart MD, Brian H, et
al: 2018 Guidelines for the early management of patients with acute
ischemic stroke. Stroke. 49:e46–e99. 2018.PubMed/NCBI
|
|
107
|
Woodbury ME, Freilich RW, Cheng CJ, Asai
H, Ikezu S, Boucher JD, Slack F and Ikezu T: miR-155 is essential
for inflammation-induced hippocampal neurogenic dysfunction. J
Neurosci. 35:9764–9781. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Sun Y, Luo ZM, Guo XM, Su DF and Liu X: An
updated role of microRNA-124 in central nervous system disorders: A
review. Front Cell Neurosci. 9:1932015. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Zhang W and Meng A: MicroRNA-124
expression in the brains of rats during early cerebral ischemia and
reperfusion injury is associated with cell apoptosis involving
STAT3. Exp Ther Med. 17:2870–2876. 2019.PubMed/NCBI
|
|
110
|
Hamzei Taj S, Kho W, Aswendt M, Collmann
FM, Green C, Adamczak J, Tennstaedt A and Hoehn M: Dynamic
modulation of microglia/macrophage polarization by miR-124 after
focal cerebral ischemia. J Neuroimmune Pharmacol. 11:733–748. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Tom Tang Y, Emtage P, Funk WD, Hu T,
Arterburn M, Park EE and Rupp F: TAFA: A novel secreted family with
conserved cysteine residues and restricted expression in the brain.
Genomics. 83:727–734. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Wen L, You W, Wang H, Meng Y, Feng J and
Yang X: Polarization of microglia to the M2 phenotype in a
peroxisome proliferator-activated receptor gamma-dependent manner
attenuates axonal injury induced by traumatic brain injury in mice.
J Neurotrauma. 35:2330–2340. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Liu X, Wen S, Yan F, Liu K, Liu L, Wang L,
Zhao S and Ji X: Salidroside provides neuroprotection by modulating
microglial polarization after cerebral ischemia. J
Neuroinflammation. 15:392018. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Wang P, Shao BZ, Deng ZQ, Chen S, Yue ZY
and Miao CY: Autophagy in ischemic stroke. Prog Neurobiol.
163-164:98–117. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Yang Z, Zhong L, Zhong S, Xian R and Yuan
B: Hypoxia induces microglia autophagy and neural inflammation
injury in focal cerebral ischemia model. Exp Mol Pathol.
98:219–224. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
He HY, Ren L, Guo T and Deng YH: Neuronal
autophagy aggravates microglial inflammatory injury by
downregulating CX3CL1/fractalkine after ischemic stroke. Neural
Regen Res. 14:280–288. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Xia CY, Zhang S, Chu SF, Wang ZZ, Song XY,
Zuo W, Gao Y, Yang PF and Chen NH: Autophagic flux regulates
microglial phenotype according to the time of oxygen-glucose
deprivation/reperfusion. Int Immunopharmacol. 39:140–148. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Jiang J, Dai JC and Cui H: Vitexin
reverses the autophagy dysfunction to attenuate MCAO-induced
cerebral ischemic stroke via mTOR/Ulk1 pathway. Biomed
Pharmacother. 99:583–590. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Li D, Wang C, Yao Y, Chen L, Liu G, Zhang
R, Liu Q, Shi F and Hao J: mTORC1 pathway disruption ameliorates
brain inflammation following stroke via a shift in microglia
phenotype from M1 type to M2 type. FASEB J. 30:3388–3399. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Jiang M, Wang H, Jin M, Yang X, Ji H,
Jiang Y, Zhang H, Wu F, Wu G, Lai X, et al: Exosomes from
mir-30d-5p-adscs reverse acute ischemic stroke-induced,
autophagy-mediated brain injury by promoting m2
microglial/macrophage polarization. Cell Physiol Biochem.
47:864–878. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Hemphill JC III, Greenberg SM, Anderson
CS, Becker K, Bendok BR, Cushman M, Fung GL, Goldstein JN,
Macdonald RL, Mitchell PH, et al: Guidelines for the management of
spontaneous intracerebral hemorrhage. A Guideline for Healthcare
Professionals From the American Heart Association/American Stroke
Association. Stroke. 46:2032–2060. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Lan X, Han X, Li Q, Yang QW and Wang J:
Modulators of microglial activation and polarization after
intracerebral haemorrhage. Nat Rev Neurol. 13:420–433. 2017.
View Article : Google Scholar : PubMed/NCBI
|