Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
May-2020 Volume 21 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2020 Volume 21 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

β‑asarone modulates Beclin‑1, LC3 and p62 expression to attenuate Aβ40 and Aβ42 levels in APP/PS1 transgenic mice with Alzheimer's disease

  • Authors:
    • Minzhen Deng
    • Liping Huang
    • Xiaoqin Zhong
  • View Affiliations / Copyright

    Affiliations: Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China, Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, Guangdong 524048, P.R. China
    Copyright: © Deng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2095-2102
    |
    Published online on: March 13, 2020
       https://doi.org/10.3892/mmr.2020.11026
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Alzheimer's disease (AD) is a common neurodegenerative disease in the elderly population. Autophagy is a well‑known regulator of neurodegenerative diseases and β‑asarone has been discovered to have certain neuropharmacological effects. Thus, the present study aimed to analyze the potential effects of β‑asarone in AD and its possible mechanism of action in relation to autophagy. The present study investigated the effects of β‑asarone on the number of senile plaques and amyloid β(Aβ)40, Aβ42, amyloid precursor protein (APP) and Beclin‑1 mRNA levels in the hippocampus of APP/presenilin‑1 (PS1) transgenic mice. The possible mechanism of β‑asarone on autophagy‑related proteins, including Beclin‑1, light chain (LC)3A, LC3B and p62 levels, and the number of autophagosomes was also investigated. Mice were divided into a normal control group, a model group, a β‑asarone‑treated group, a 3‑MA‑treated group and a rapamycin‑treated group. Treatments were continuously administered to all mice for 30 days by intragastric administration. The mice, including those in the normal and model control groups, were given equal volumes of saline. It was demonstrated that β‑asarone treatment reduced the number of senile plaques and autophagosomes, and decreased Aβ40, Aβ42, APP and Beclin‑1 expression in the hippocampus of model mice compared with untreated model mice. β‑asarone also inhibited LC3A/B expression levels, but increased p62 expression. It was deduced that the neuroprotective effects of β‑asarone in APP/PS1 transgenic mice resulted from its inhibition of autophagy. In conclusion, the data suggested that β‑asarone should be explored further as a potential therapeutic agent in AD.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Selkoe D, Mandelkow E and Holtzman D: Deciphering Alzheimer disease. Cold Spring Harb Perspect Med. 2:a0114602012. View Article : Google Scholar : PubMed/NCBI

2 

Gouras GK, Almeida CG and Takahashi RH: Intraneuronal Abeta accumulation and origin of plaques in Alzheimer's disease. Neurobiol Aging. 26:1235–1244. 2005. View Article : Google Scholar : PubMed/NCBI

3 

Whitehouse IJ, Brown D, Baybutt H, Diack AB, Kellett KA, Piccardo P, Manson JC and Hooper NM: Ablation of prion protein in wild type human amyloid precursor protein (APP) transgenic mice does not alter the proteolysis of APP, levels of amyloid-β or pathologic phenotype. PLoS One. 11:e01591192016. View Article : Google Scholar : PubMed/NCBI

4 

Oczypok EA, Oury TD and Chu CT: It's a cell-eat-cell world: Autophagy and phagocytosis. Am J Pathol. 182:612–622. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Han K, Kim J and Choi M: Autophagy mediates phase transitions from cell death to life. Heliyon. 1:e000272015. View Article : Google Scholar : PubMed/NCBI

6 

Salminen A, Kaarniranta K, Kauppinen A, Ojala J, Haapasalo A, Soininen H and Hiltunen M: Impaired autophagy and APP processing in Alzheimer's disease: The potential role of Beclin 1 interactome. Prog Neurobiol. 106-107:33–54. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Gali CC, Fanaee-Danesh E, Zandl-Lang M, Albrecher NM, Tam-Amersdorfer C, Stracke A, Sachdev V, Reichmann F, Sun Y, Avdili A, et al: Amyloid-beta impairs insulin signaling by accelerating autophagy-lysosomal degradation of LRP-1 and IR-β in blood-brain barrier endothelial cells in vitro and in 3XTg-AD mice. Mol Cell Neurosci. 99:1033902019. View Article : Google Scholar : PubMed/NCBI

8 

Lauritzen I, Pardossi-Piquard R, Bourgeois A, Pagnotta S, Biferi MG, Barkats M, Lacor P, Klein W, Bauer C and Checler F: Intraneuronal aggregation of the β-CTF fragment of APP (C99) induces Aβ-independent lysosomal-autophagic pathology. Acta Neuropathol. 132:257–276. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Hertel C, Terzi E, Hauser N, Jakob-Rotne R, Seelig J and Kemp JA: Inhibition of the electrostatic interaction between beta-amyloid peptide and membranes prevents beta-amyloid-induced toxicity. Proc Natl Acad Sci USA. 94:9412–9416. 1997. View Article : Google Scholar : PubMed/NCBI

10 

Zhang Y, Liu C, Wang J, Li Q, Ping H, Gao S and Wang P: MiR-299-5p regulates apoptosis through autophagy in neurons and ameliorates cognitive capacity in APPswe/PS1dE9 mice. Sci Rep. 6:245662016. View Article : Google Scholar : PubMed/NCBI

11 

Huang L, Deng M, He Y, Lu S, Ma R and Fang Y: β-asarone and levodopa co-administration increase striatal dopamine level in 6-hydroxydopamine induced rats by modulating P-glycoprotein and tight junction proteins at the blood-brain barrier and promoting levodopa into the brain. Clin Exp Pharmacol Physiol. 43:634–643. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Lim HW, Kumar H, Kim BW, More SV, Kim IW, Park JI, Park SY, Kim SK and Choi DK: β-Asarone (cis-2,4,5-trimethoxy-1-allyl phenyl), attenuates pro-inflammatory mediators by inhibiting NF-κB signaling and the JNK pathway in LPS activated BV-2 microglia cells. Food Chem Toxicol. 72:265–272. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Dong H, Gao Z, Rong H, Jin M and Zhang X: β-asarone reverses chronic unpredictable mild stress-induced depression-like behavior and promotes hippocampal neurogenesis in rats. Molecules. 19:5634–5649. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Zhang QS, Wang ZH, Zhang JL, Duan YL, Li GF and Zheng DL: Beta-asarone protects against MPTP-induced Parkinson's disease via regulating long non-coding RNA MALAT1 and inhibiting α-synuclein protein expression. Biomed Pharmacother. 83:153–159. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Chang W and Teng J: β-asarone prevents Aβ25-35-induced inflammatory responses and autophagy in SH-SY5Y cells: Down expression Beclin-1, LC3B and up expression Bcl-2. Int J Clin Exp Med. 8:20658–20663. 2015.PubMed/NCBI

16 

Xue Z, Guo Y, Zhang S, Huang L, He Y, Fang R and Fang Y: Beta-asarone attenuates amyloid beta-induced autophagy via Akt/mTOR pathway in PC12 cells. Eur J Pharmacol. 741:195–204. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Liu L, Fang YQ, Xue ZF, He YP, Fang RM and Li L: Beta-asarone attenuates ischemia-reperfusion-induced autophagy in rat brains via modulating JNK, p-JNK, Bcl-2 and Beclin 1. Eur J Pharmacol. 680:34–40. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F and Cole G: Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science. 274:99–102. 1996. View Article : Google Scholar : PubMed/NCBI

19 

Liu L and Fang YQ: Analysis of the distribution of β-asarone in rat hippocampus, brainstem, cortex and cerebellum with gas chromatography-mass spectrometry (GC-MS). J Med Plants Res. 5:1728–1734. 2011.

20 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Huang LP, Deng MZ, He YP and Fang YQ: β-asarone and levodopa co-administration protects against 6-hydroxydopamine-induced damage in parkinsonian rat mesencephalon by regulating autophagy: Down-expression Beclin-1 and light chain 3B and up-expression P62. Clin Exp Pharmacol Physiol. 42:269–277. 2015. View Article : Google Scholar : PubMed/NCBI

22 

He Y, Mo Z, Xue Z and Fang Y: Establish a flow cytometric method for quantitative detection of Beclin-1 expression. Cytotechnology. 65:481–489. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Bonham LW, Desikan RS and Yokoyama JS; Alzheimer's Disease Neuroimaging Initiative, : The relationship between complement factor C3, APOE ε4, amyloid and tau in Alzheimer's disease. Acta Neuropathol Commun. 4:652016. View Article : Google Scholar : PubMed/NCBI

24 

Abad S, Ramon C, Pubill D, Camarasa J, Camins A and Escubedo E: Adolescent exposure to MDMA induces dopaminergic toxicity in substantia nigra and potentiates the amyloid plaque deposition in the striatum of APPswe/PS1dE9 mice. Biochim Biophys Acta. 1862:1815–1826. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Gautam V, D'Avanzo C, Berezovska O, Tanzi RE and Kovacs DM: Synaptotagmins interact with APP and promote Aβ generation. Mol Neurodegener. 10:312015. View Article : Google Scholar : PubMed/NCBI

26 

Schmitz KJ, Ademi C, Bertram S, Schmid KW and Baba HA: Prognostic relevance of autophagy-related markers LC3, p62/sequestosome 1, Beclin-1 and ULK1 in colorectal cancer patients with respect to KRAS mutational status. World J Surg Oncol. 14:1892016. View Article : Google Scholar : PubMed/NCBI

27 

Pattingre S, Espert L, Biard-Piechaczyk M and Codogno P: Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie. 90:313–323. 2008. View Article : Google Scholar : PubMed/NCBI

28 

O'Brien CE and Wyss-Coray T: Sorting through the roles of beclin 1 in microglia and neurodegeneration. J Neuroimmune Pharmacol. 9:285–292. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Bel S, Pendse M, Wang Y, Li Y, Ruhn KA, Hassell B, Leal T, Winter SE, Xavier RJ and Hooper LV: Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine. Science. 357:1047–1052. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Choi J, Jung W and Koo JS: Expression of autophagy-related markers beclin-1, light chain 3A, light chain 3B and p62 according to the molecular subtype of breast cancer. Histopathology. 62:275–286. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Huang H, Zhu J, Li Y, Zhang L, Gu J, Xie Q, Jin H, Che X, Li J, Huang C, et al: Upregulation of SQSTM1/p62 contributes to nickel-induced malignant transformation of human bronchial epithelial cells. Autophagy. 12:1687–1703. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Kwon I, Lee Y, Cosio-Lima LM, Cho JY and Yeom DC: Effects of long-term resistance exercise training on autophagy in rat skeletal muscle of chloroquine-induced sporadic inclusion body myositis. J Exerc Nutrition Biochem. 19:225–234. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Wei X, Zhou Z, Li L, Gu J, Wang C, Xu F, Dong Q and Zhou X: Intrathecal injection of 3-methyladenine reduces neuronal damage and promotes functional recovery via autophagy attenuation after spinal cord ischemia/reperfusion injury in rats. Biol Pharm Bull. 39:665–673. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Li Y, Liu F, Wang Y, Li D, Guo F, Xu L, Zeng Z, Zhong X and Qian K: Rapamycin-induced autophagy sensitizes A549 cells to radiation associated with DNA damage repair inhibition. Thorac Cancer. 7:379–386. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Deng M, Huang L and Zhong X: β‑asarone modulates Beclin‑1, LC3 and p62 expression to attenuate Aβ40 and Aβ42 levels in APP/PS1 transgenic mice with Alzheimer's disease. Mol Med Rep 21: 2095-2102, 2020.
APA
Deng, M., Huang, L., & Zhong, X. (2020). β‑asarone modulates Beclin‑1, LC3 and p62 expression to attenuate Aβ40 and Aβ42 levels in APP/PS1 transgenic mice with Alzheimer's disease. Molecular Medicine Reports, 21, 2095-2102. https://doi.org/10.3892/mmr.2020.11026
MLA
Deng, M., Huang, L., Zhong, X."β‑asarone modulates Beclin‑1, LC3 and p62 expression to attenuate Aβ40 and Aβ42 levels in APP/PS1 transgenic mice with Alzheimer's disease". Molecular Medicine Reports 21.5 (2020): 2095-2102.
Chicago
Deng, M., Huang, L., Zhong, X."β‑asarone modulates Beclin‑1, LC3 and p62 expression to attenuate Aβ40 and Aβ42 levels in APP/PS1 transgenic mice with Alzheimer's disease". Molecular Medicine Reports 21, no. 5 (2020): 2095-2102. https://doi.org/10.3892/mmr.2020.11026
Copy and paste a formatted citation
x
Spandidos Publications style
Deng M, Huang L and Zhong X: β‑asarone modulates Beclin‑1, LC3 and p62 expression to attenuate Aβ40 and Aβ42 levels in APP/PS1 transgenic mice with Alzheimer's disease. Mol Med Rep 21: 2095-2102, 2020.
APA
Deng, M., Huang, L., & Zhong, X. (2020). β‑asarone modulates Beclin‑1, LC3 and p62 expression to attenuate Aβ40 and Aβ42 levels in APP/PS1 transgenic mice with Alzheimer's disease. Molecular Medicine Reports, 21, 2095-2102. https://doi.org/10.3892/mmr.2020.11026
MLA
Deng, M., Huang, L., Zhong, X."β‑asarone modulates Beclin‑1, LC3 and p62 expression to attenuate Aβ40 and Aβ42 levels in APP/PS1 transgenic mice with Alzheimer's disease". Molecular Medicine Reports 21.5 (2020): 2095-2102.
Chicago
Deng, M., Huang, L., Zhong, X."β‑asarone modulates Beclin‑1, LC3 and p62 expression to attenuate Aβ40 and Aβ42 levels in APP/PS1 transgenic mice with Alzheimer's disease". Molecular Medicine Reports 21, no. 5 (2020): 2095-2102. https://doi.org/10.3892/mmr.2020.11026
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team