1
|
Rohrich RJ: The American Society of
Plastic Surgeons' procedural statistics: What they really mean.
Plast Reconstr Surg. 112:1389–1392. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Claro F Jr, Figueiredo JC, Zampar AG and
Pinto-Neto AM: Applicability and safety of autologous fat for
reconstruction of the breast. Br J Surg. 99:768–780. 2012.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Wang CF, Zhou Z, Yan YJ, Zhao DM, Chen F
and Qiao Q: Clinical analyses of clustered microcalcifications
after autologous fat injection for breast augmentation. Plast
Reconstr Surg. 127:1669–1673. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Coleman SR: Structural fat grafting: More
than a permanent filler. Plast Reconstr Surg. 118 (3
Suppl):S108–S120. 2006. View Article : Google Scholar
|
5
|
Lu F, Li J, Gao J, Ogawa R, Ou C, Yang B
and Fu B: Improvement of the survival of human autologous fat
transplantation by using VEGF-transfected adipose-derived stem
cells. Plast Reconstr Surg. 124:1437–1446. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kirkham JC, Lee JH, Medina MA III,
McCormack MC, Randolph MA and Austen WG Jr: The impact of
liposuction cannula size on adipocyte viability. Ann Plast Surg.
69:479–481. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nguyen A, Pasyk KA, Bouvier TN, Hassett CA
and Argenta LC: Comparative study of survival of autologous adipose
tissue taken and transplanted by different techniques. Plast
Reconstr Surg. 85:378–389. 1990. View Article : Google Scholar : PubMed/NCBI
|
8
|
Billings E Jr and May JW Jr: Historical
review and present status of free fat graft autotransplantation in
plastic and reconstructive surgery. Plast Reconstr Surg.
83:368–381. 1989. View Article : Google Scholar : PubMed/NCBI
|
9
|
Pal R, Venkataramana NK, Bansal A,
Balaraju S, Jan M, Chandra R, Dixit A, Rauthan A, Murgod U and
Totey S: Ex vivo-expanded autologous bone marrow-derived
mesenchymal stromal cells in human spinal cord injury/paraplegia: A
pilot clinical study. Cytotherapy. 11:897–911. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zuk PA: The adipose-derived stem cell:
Looking back and looking ahead. Mol Biol Cell. 21:1783–1787. 2010.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Ionescu L, Byrne RN, van Haaften T,
Vadivel A, Alphonse RS, Rey-Parra GJ, Weissmann G, Hall A, Eaton F
and Thébaud B: Stem cell conditioned medium improves acute lung
injury in mice: In vivo evidence for stem cell paracrine action. Am
J Physiol Lung Cell Mol Physiol. 303:L967–L977. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Fouraschen SM, Pan Q, de Ruiter PE, Farid
WR, Kazemier G, Kwekkeboom J, Ijzermans JN, Metselaar HJ, Tilanus
HW, de Jonge J and van der Laan LJ: Secreted factors of human
liver-derived mesenchymal stem cells promote liver regeneration
early after partial hepatectomy. Stem Cells Dev. 21:2410–2419.
2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zuk PA, Zhu M, Mizuno H, Huang J, Futrell
JW, Katz AJ, Benhaim P, Lorenz HP and Hedrick MH: Multilineage
cells from human adipose tissue: Implications for cell-based
therapies. Tissue Eng. 7:211–228. 2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kern S, Eichler H, Stoeve J, Klüter H and
Bieback K: Comparative analysis of mesenchymal stem cells from bone
marrow, umbilical cord blood, or adipose tissue. Stem Cells.
24:1294–1301. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Su M, Guan H, Zhang F, Gao Y, Teng X and
Yang W: HDAC6 regulates the chaperone-mediated autophagy to prevent
oxidative damage in injured neurons after experimental spinal cord
injury. Oxid Med Cell Longev. 2016:72637362016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chen X, Yan L, Guo Z, Chen Z, Chen Y, Li
M, Huang C, Zhang X and Chen L: Adipose-derived mesenchymal stem
cells promote the survival of fat grafts via crosstalk between the
Nrf2 and TLR4 pathways. Cell Death Dis. 7:e23692016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang X, Rice K, Wang Y, Chen W, Zhong Y,
Nakayama Y, Zhou Y and Klibanski A: Maternally expressed gene 3
(MEG3) noncoding ribonucleic acid: Isoform structure, expression,
and functions. Endocrinology. 151:939–947. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Luo G, Wang M, Wu X, Tao D, Xiao X, Wang
L, Min F, Zeng F and Jiang G: Long non-coding RNA MEG3 inhibits
cell proliferation and induces apoptosis in prostate cancer. Cell
Physiol Biochem. 37:2209–2220. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Peng W, Si S, Zhang Q, Li C, Zhao F, Wang
F, Yu J and Ma R: Long non-coding RNA MEG3 functions as a competing
endogenous RNA to regulate gastric cancer progression. J Exp Clin
Cancer Res. 34:792015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang X, Zhou Y, Mehta KR, Danila DC,
Scolavino S, Johnson SR and Klibanski A: A pituitary-derived MEG3
isoform functions as a growth suppressor in tumor cells. J Clin
Endocrinol Metab. 88:5119–5126. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lu KH, Li W, Liu XH, Sun M, Zhang ML, Wu
WQ, Xie WP and Hou YY: Long non-coding RNA MEG3 inhibits NSCLC
cells proliferation and induces apoptosis by affecting p53
expression. BMC Cancer. 13:4612013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhou Y, Zhong Y, Wang Y, Zhang X, Batista
DL, Gejman R, Ansell PJ, Zhao J, Weng C and Klibanski A: Activation
of p53 by MEG3 non-coding RNA. J Biol Chem. 282:24731–24742. 2007.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Neuber F: Fettransplantation. Chir Kongr
Verhandl Dsch Gesellch Chir. 22:661893.
|
25
|
Coleman SR: Hand rejuvenation with
structural fat grafting. Plast Reconstr Surg. 110:1731–1747. 2002.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Matsumoto D, Sato K, Gonda K, Takaki Y,
Shigeura T, Sato T, Aiba-Kojima E, Iizuka F, Inoue K, Suga H and
Yoshimura K: Cell-assisted lipotransfer: Supportive use of human
adipose-derived cells for soft tissue augmentation with
lipoinjection. Tissue Eng. 12:3375–3382. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Moseley TA, Zhu M and Hedrick MH:
Adipose-derived stem and progenitor cells as fillers in plastic and
reconstructive surgery. Plast Reconstr Surg. 118 (3
Suppl):S121–S128. 2006. View Article : Google Scholar
|
28
|
Toyserkani NM, Quaade ML and Sørensen JA:
Cell-Assisted Lipotransfer: A systematic review of its efficacy.
Aesthetic Plast Surg. 40:309–318. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ponting CP, Oliver PL and Reik W:
Evolution and functions of long noncoding RNAs. Cell. 136:629–641.
2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ying L, Huang Y, Chen H, Wang Y, Xia L,
Chen Y, Liu Y and Qiu F: Downregulated MEG3 activates autophagy and
increases cell proliferation in bladder cancer. Mol Biosyst.
9:407–411. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sun M, Xia R, Jin F, Xu T, Liu Z, De W and
Liu X: Downregulated long noncoding RNA MEG3 is associated with
poor prognosis and promotes cell proliferation in gastric cancer.
Tumour Biol. 35:1065–1073. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Shi Y, Lv C, Shi L and Tu G: MEG3 inhibits
proliferation and invasion and promotes apoptosis of human
osteosarcoma cells. Oncol Lett. 15:1917–1923. 2018.PubMed/NCBI
|
33
|
Carrière A, Ebrahimian TG, Dehez S, Augé
N, Joffre C, André M, Arnal S, Duriez M, Barreau C, Arnaud E, et
al: Preconditioning by mitochondrial reactive oxygen species
improves the proangiogenic potential of adipose-derived cells-based
therapy. Arterioscler Thromb Vasc Biol. 29:1093–1099. 2009.
View Article : Google Scholar : PubMed/NCBI
|