Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2020 Volume 21 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2020 Volume 21 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Wnt2 overexpression protects against PINK1 mutant‑induced mitochondrial dysfunction and oxidative stress

  • Authors:
    • Sui‑Rui Xia
    • Xue‑Yi Wen
    • Xiao‑Li Fan
    • Xiao‑Rong Chen
    • Zai‑Wa Wei
    • Qing‑Hua Li
    • Li Sun
  • View Affiliations / Copyright

    Affiliations: Department of Hospital Infection‑Control, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541002, P.R. China, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541004, P.R. China, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
  • Pages: 2633-2641
    |
    Published online on: April 8, 2020
       https://doi.org/10.3892/mmr.2020.11066
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The PTEN induced putative kinase 1 (PINK1) mutation is the second most common cause of autosomal recessive adolescent Parkinson's disease (PD). Furthermore, mitochondrial disorders and oxidative stress are important mechanisms in the pathogenesis of PD. Numerous members of the Wnt family have been found to be associated with neurodegenerative diseases. Therefore, the present study investigated the role of the Wnt2 gene in PINK1B9 transgenic flies, which is a PD model, and its underlying mechanism. It was identified that overexpression of Wnt2 reduced the abnormality rate of PD transgenic Drosophila and improved their flight ability, while other intervention groups had no significant effect. Furthermore, an increase in ATP concentration normalized mitochondrial morphology, and increased the mRNA expression levels of NADH‑ubiquinone oxidoreductase chain 1 (ND1), ND42, ND75, succinate dehydrogenase complex subunits B, Cytochrome b and Cyclooxygenase 1, which are associated with Wnt2 overexpression. Moreover, overexpression of Wnt2 in PD transgenic Drosophila resulted in the downregulation of reactive oxygen species and malondialdehyde production, and increased manganese superoxide dismutase (MnSOD), while glutathione was not significantly affected. It was found that overexpression of Wnt2 did not alter the protein expression of β‑catenin in PINK1B9 transgenic Drosophila, but did increase the expression levels of PPARG coactivator 1α (PGC‑1α) and forkhead box sub‑group O (FOXO). Collectively, the present results indicated that the Wnt2 gene may have a protective effect on PD PINK1B9 transgenic Drosophila. Thus, it was speculated that the reduction of oxidative stress and the restoration of mitochondrial function via Wnt2 overexpression may be related to the PGC‑1α/FOXO/MnSOD signaling pathway in PINK1 mutant transgenic Drosophila.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Zhou C, Huang Y, Shao Y, May J, Prou D, Perier C, Dauer W, Schon EA and Przedborski S: The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc Natl Acad Sci USA. 105:12022–12027. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Hatano Y, Li Y, Sato K, Asakawa S, Yamamura Y, Tomiyama H, Yoshino H, Asahina M, Kobayashi S, Hassin-Baer S, et al: Novel PINK1 mutations in early-onset parkinsonism. Ann Neurol. 56:424–427. 2004. View Article : Google Scholar : PubMed/NCBI

3 

Liu S, Sawada T, Lee S, Yu W, Silverio G, Alapatt P, Millan I, Shen A, Saxton W, Kanao T, et al: Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet. 8:e10025372012. View Article : Google Scholar : PubMed/NCBI

4 

Wang W, Wang X, Fujioka H, Hoppel C, Whone AL, Caldwell MA, Cullen PJ, Liu J and Zhu X: Parkinson's disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes. Nat Med. 22:54–63. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Wu Z, Wang Y, Lim J, Liu B, Li Y, Vartak R, Stankiewicz T, Montgomery S and Lu B: Ubiquitination of ABCE1 by NOT4 in response to mitochondrial damage links co-translational quality control to PINK1-directed mitophagy. Cell Metab. 28:130–144.e7. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Oh SE, Park HJ, He L, Skibiel C, Junn E and Mouradian MM: The Parkinson's disease gene product DJ-1 modulates miR-221 to promote neuronal survival against oxidative stress. Redox Biol. 19:62–73. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Burbulla LF, Song P, Mazzulli JR, Zampese E, Wong YC, Jeon S, Santos DP, Blanz J, Obermaier CD, Strojny C, et al: Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease. Science. 357:1255–1261. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Andersson ER, Saltó C, Villaescusa JC, Cajanek L, Yang S, Bryjova L, Nagy II, Vainio SJ, Ramirez C, Bryja V, et al: Wnt5a cooperates with canonical Wnts to generate midbrain dopaminergic neurons in vivo and in stem cells. Proc Natl Acad Sci USA. 110:E602–E610. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Sousa KM, Villaescusa JC, Cajanek L, Ondr JK, Castelo-Branco G, Hofstra W, Bryja V, Palmberg C, Bergman T, Wainwright B, et al: Wnt2 regulates progenitor proliferation in the developing ventral midbrain. J Biol Chem. 285:7246–7253. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Marui T, Funatogawa I, Koishi S, Yamamoto K, Matsumoto H, Hashimoto O, Jinde S, Nishida H, Sugiyama T, Kasai K, et al: Association between autism and variants in the wingless-type MMTV integration site family member 2 (WNT2) gene. Int J Neuropsychopharmacol. 13:443–449. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Zhang X, Abreu JG, Yokota C, MacDonald BT, Singh S, Coburn KL, Cheong SM, Zhang MM, Ye QZ, Hang HC, et al: Tiki1 is required for head formation via Wnt cleavage-oxidation and inactivation. Cell. 149:1565–1577. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Kahn M: Can we safely target the WNT pathway? Nat Rev Drug Discov. 13:513–532. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Parker JA, Vazquez-Manrique RP, Tourette C, Farina F, Offner N, Mukhopadhyay A, Orfila AM, Darbois A, Menet S, Tissenbaum HA, et al: Integration of β-catenin, sirtuin, and FOXO signaling protects from mutant huntingtin toxicity. J Neurosci. 32:12630–12640. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Arrázola MS, Ramos-Fernández E, Cisternas P, Ordenes D and Inestrosa NC: Wnt signaling prevents the Aβ oligomer-induced mitochondrial permeability transition pore opening preserving mitochondrial Structure in hippocampal neurons. PLoS One. 12:e01688402017. View Article : Google Scholar : PubMed/NCBI

15 

Wei L, Ding L, Mo MS, Lei M, Zhang L, Chen K and Xu P: Wnt3a protects SH-SY5Y cells against 6-hydroxydopamine toxicity by restoration of mitochondria function. Transl Neurodegener. 4:112015. View Article : Google Scholar : PubMed/NCBI

16 

Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y, Wang JW, Yang L, Beal MF, Vogel H and Lu B: Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci USA. 103:10793–10798. 2006. View Article : Google Scholar : PubMed/NCBI

17 

Liu W, Acín-Peréz R, Geghman KD, Manfredi G, Lu B and Li C: Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission. Proc Natl Acad Sci USA. 108:12920–12924. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Dung VM and Thao DTP: Parkinson's Disease Model. Adv Exp Med Biol. 1076:41–61. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Bilder D and Irvine KD: Taking stock of the Drosophila research ecosystem. Genetics. 206:1227–1236. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Barwell T, DeVeale B, Poirier L, Zheng J, Seroude F and Seroude L: Regulating the UAS/GAL4 system in adult Drosophila with Tet-off GAL80 transgenes. PeerJ. 5:e41672017. View Article : Google Scholar : PubMed/NCBI

21 

Southall TD, Elliott DA and Brand AH: The GAL4 system: A versatile toolkit for gene expression in Drosophila. CSH Protoc. doi:10.1101/pdb.top49.

22 

Tu H and Casadaban MJ: The upstream activating sequence for L-leucine gene regulation in Saccharomyces cerevisiae. Nucleic Acids Res. 18:3923–3931. 1990. View Article : Google Scholar : PubMed/NCBI

23 

Robertson LK, Dey BK, Campos AR and Mahaffey JW: Expression of the drosophila gene disconnected using the UAS/GAL4 system. Genesis. 34:103–106. 2002. View Article : Google Scholar : PubMed/NCBI

24 

Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M and Kim JM: Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 441:1157–1161. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

26 

Rogério M, Cardoso C and Pestana C: Measurement of malondialdehyde in fish: A comparison study between HPLC methods and the traditional spectrophotometric test. Food Chem. 112:1038–1045. 2009. View Article : Google Scholar

27 

Dragun Z, Filipović Marijić V, Krasnići N, Ramani S, Valić D, Rebok K, Kostov V, Jordanova M and Erk M: Malondialdehyde concentrations in the intestine and gills of Vardar chub (Squalius vardarensis Karaman) as indicator of lipid peroxidation. Environ Sci Pollut Res Int. 24:16917–16926. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Boonchai W, Walsh M, Cummings M and Chenevix-Trench G: Expression of beta-catenin, a key mediator of the WNT signaling pathway, in basal cell carcinoma. Arch Dermatol. 136:937–938. 2000. View Article : Google Scholar : PubMed/NCBI

29 

Gehrke S, Wu Z, Klinkenberg M, Sun Y, Auburger G, Guo S and Lu B: PINK1 and Parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane. Cell Metabolism. 21:95–108. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Tsunemi T and La Spada AR: PGC-1α at the intersection of bioenergetics regulation and neuron function: From Huntington's disease to Parkinson's disease and beyond. Prog Neurobiol. 97:142–151. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Zorov DB, Juhaszova M and Sollott SJ: Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 94:909–950. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Ray A, Martinez BA, Berkowitz LA, Caldwell GA and Caldwell KA: Mitochondrial dysfunction, oxidative stress, and neurodegeneration elicited by a bacterial metabolite in a C. elegans Parkinson's model. Cell Death Dis. 5:e9842014. View Article : Google Scholar : PubMed/NCBI

33 

Subramaniam SR and Chesselet MF: Mitochondrial dysfunction and oxidative stress in Parkinson's disease. Prog Neurobiol 106–107. 17–32. 2013. View Article : Google Scholar

34 

Kudryavtseva AV, Krasnov GS, Dmitriev AA, Alekseev BY, Kardymon OL, Sadritdinova AF, Fedorova MS, Pokrovsky AV, Melnikova NV, Kaprin AD, et al: Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget. 7:44879–44905. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Zuo L and Motherwell MS: The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson's disease. Gene. 532:18–23. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Weismann D, Hartvigsen K, Lauer N, Bennett KL, Scholl HP, Charbel Issa P, Cano M, Brandstätter H, Tsimikas S and Skerka C: Complement factor H binds malondialdehyde epitopes and protects from oxidative stress. Nature. 478:76–81. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Sheshadri P and Kumar A: Managing odds in stem cells: Insights into the role of mitochondrial antioxidant enzyme MnSOD. Free Radic Res. 50:570–584. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Koh H, Kim H, Kim MJ, Park J, Lee HJ and Chung J: Silent information regulator 2 (Sir2) and Forkhead box O (FOXO) complement mitochondrial dysfunction and dopaminergic neuron loss in Drosophila PTEN-induced kinase 1 (PINK1) null mutant. J Biol Chem. 287:12750–12758. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Swarup S and Verheyen EM: Wnt/Wingless signaling in Drosophila. Cold Spring Harb Perspect Biol. 4:a0079302012. View Article : Google Scholar : PubMed/NCBI

40 

Yu M, Ting DT, Stott SL, Wittner BS, Ozsolak F, Paul S, Ciciliano JC, Smas ME, Winokur D and Gilman AJ: RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature. 487:510–513. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Mukherjee S and Duttaroy A: Spargel/dPGC-1 is a new downstream effector in the insulin-TOR signaling pathway in Drosophila. Genetics. 195:433–441. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Salih DA, Rashid AJ, Colas D, de la Torre-Ubieta L, Zhu RP, Morgan AA, Santo EE, Ucar D, Devarajan K, Cole CJ, et al: FoxO6 regulates memory consolidation and synaptic function. Genes Dev. 26:2780–2801. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Sears JC and Broihier HT: FoxO regulates microtubule dynamics and polarity to promote dendrite branching in Drosophila sensory neurons. Dev Biol. 418:40–54. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH and Burgering BM: Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature. 419:316–321. 2002. View Article : Google Scholar : PubMed/NCBI

45 

Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, et al: Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature. 423:550–555. 2003. View Article : Google Scholar : PubMed/NCBI

46 

Speckmann B, Walter PL, Alili L, Reinehr R, Sies H, Klotz LO and Steinbrenner H: Selenoprotein P expression is controlled through interaction of the coactivator PGC-1alpha with FoxO1a and hepatocyte nuclear factor 4alpha transcription factors. Hepatology. 48:1998–2006. 2008. View Article : Google Scholar : PubMed/NCBI

47 

Chung HW, Lim JH, Kim MY, Shin SJ, Chung S, Choi BS, Kim HW, Kim YS, Park CW and Chang YS: High-fat diet-induced renal cell apoptosis and oxidative stress in spontaneously hypertensive rat are ameliorated by fenofibrate through the PPARα-FoxO3a-PGC-1α pathway. Nephrol Dial Transplant. 27:2213–2225. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Geng T, Li P, Yin X and Yan Z: PGC-1α promotes nitric oxide antioxidant defenses and inhibits FOXO signaling against cardiac cachexia in mice. Am J Pathol. 178:1738–1748. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM and Korswagen HC: Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science. 308:1181–1184. 2005. View Article : Google Scholar : PubMed/NCBI

50 

Yang Y, Cehrke S, Imai Y, Huang Z, Ouyang Y, Wang JW, Yang L, Beal MF, Vogel H and Lu B: Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivitation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci USA. 103:10793–10798. 2006. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Xia SR, Wen XY, Fan XL, Chen XR, Wei ZW, Li QH and Sun L: Wnt2 overexpression protects against PINK1 mutant‑induced mitochondrial dysfunction and oxidative stress. Mol Med Rep 21: 2633-2641, 2020.
APA
Xia, S., Wen, X., Fan, X., Chen, X., Wei, Z., Li, Q., & Sun, L. (2020). Wnt2 overexpression protects against PINK1 mutant‑induced mitochondrial dysfunction and oxidative stress. Molecular Medicine Reports, 21, 2633-2641. https://doi.org/10.3892/mmr.2020.11066
MLA
Xia, S., Wen, X., Fan, X., Chen, X., Wei, Z., Li, Q., Sun, L."Wnt2 overexpression protects against PINK1 mutant‑induced mitochondrial dysfunction and oxidative stress". Molecular Medicine Reports 21.6 (2020): 2633-2641.
Chicago
Xia, S., Wen, X., Fan, X., Chen, X., Wei, Z., Li, Q., Sun, L."Wnt2 overexpression protects against PINK1 mutant‑induced mitochondrial dysfunction and oxidative stress". Molecular Medicine Reports 21, no. 6 (2020): 2633-2641. https://doi.org/10.3892/mmr.2020.11066
Copy and paste a formatted citation
x
Spandidos Publications style
Xia SR, Wen XY, Fan XL, Chen XR, Wei ZW, Li QH and Sun L: Wnt2 overexpression protects against PINK1 mutant‑induced mitochondrial dysfunction and oxidative stress. Mol Med Rep 21: 2633-2641, 2020.
APA
Xia, S., Wen, X., Fan, X., Chen, X., Wei, Z., Li, Q., & Sun, L. (2020). Wnt2 overexpression protects against PINK1 mutant‑induced mitochondrial dysfunction and oxidative stress. Molecular Medicine Reports, 21, 2633-2641. https://doi.org/10.3892/mmr.2020.11066
MLA
Xia, S., Wen, X., Fan, X., Chen, X., Wei, Z., Li, Q., Sun, L."Wnt2 overexpression protects against PINK1 mutant‑induced mitochondrial dysfunction and oxidative stress". Molecular Medicine Reports 21.6 (2020): 2633-2641.
Chicago
Xia, S., Wen, X., Fan, X., Chen, X., Wei, Z., Li, Q., Sun, L."Wnt2 overexpression protects against PINK1 mutant‑induced mitochondrial dysfunction and oxidative stress". Molecular Medicine Reports 21, no. 6 (2020): 2633-2641. https://doi.org/10.3892/mmr.2020.11066
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team