Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
August-2020 Volume 22 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2020 Volume 22 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Diabetic‑induced alterations in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes mellitus (Review)

  • Authors:
    • Saizhi Jiang
    • Jamie L. Young
    • Kai Wang
    • Yan Qian
    • Lu Cai
  • View Affiliations / Copyright

    Affiliations: Department of Paediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA, Department of Paediatrics, Paediatric Research Institute, University of Louisville, Louisville, KY 40202, USA
    Copyright: © Jiang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 603-611
    |
    Published online on: May 22, 2020
       https://doi.org/10.3892/mmr.2020.11175
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Diabetes mellitus (DM) is a growing health concern in society. Type 1 and type 2 DM are the two main types of diabetes; both types are chronic diseases that affect glucose metabolism in the body and the impaired regulation of glucose and lipid metabolism promotes the development and progression of DM. During the physiological metabolism process, the liver serves a unique role in glucose and lipid metabolism. The present article aimed to review the association between DM and glucose metabolism in the liver and discuss the changes of the following hepatic glucose fluxes: Gluconeogenesis, glucose/glucose 6‑phosphate cycling, glycogenolysis, glycogenesis and the pentose phosphate pathway. Moreover, the incidence of fatty liver in DM was also investigated.
View Figures

Figure 1

Figure 2

View References

1 

Towle HC: Glucose as a regulator of eukaryotic gene transcription. Trends Endocrinol Metab. 16:489–494. 2005. View Article : Google Scholar : PubMed/NCBI

2 

Habegger KM, Heppner KM, Geary N, Bartness TJ, DiMarchi R and Tschop MH: The metabolic actions of glucagon revisited. Nat Rev Endocrinol. 6:689–697. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Bhatt HB and Smith RJ: Fatty liver disease in diabetes mellitus. Hepatobiliary Surg Nutr. 4:101–108. 2015.PubMed/NCBI

4 

Sumida Y and Yoneda M: Glycogen hepatopathy: An under-recognized hepatic complication of uncontrolled type 1 diabetes mellitus. Intern Med. 57:1063–1064. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Moore MC, Coate KC, Winnick JJ, An Z and Cherrington AD: Regulation of hepatic glucose uptake and storage in vivo. Adv Nutr. 3:286–294. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Petersen MC, Vatner DF and Shulman GI: Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol. 13:572–587. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Dorcely B, Katz K, Jagannathan R, Chiang SS, Oluwadare B, Goldberg IJ and Bergman M: Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes Metab Syndr Obes. 10:345–361. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Rines AK, Sharabi K, Tavares CD and Puigserver P: Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat Rev Drug Discov. 15:786–804. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Rui L: Energy metabolism in the liver. Compr Physiol. 4:177–197. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Girard J: Glucagon, a key factor in the pathophysiology of type 2 diabetes. Biochimie. 143:33–36. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Mittendorfer B and Klein S: Absence of leptin triggers type 1 diabetes. Nat Med. 20:705–706. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Unger RH and Orci L: Paracrinology of islets and the paracrinopathy of diabetes. Proc Natl Acad Sci USA. 107:16009–16012. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Wewer Albrechtsen NJ, Pedersen J, Galsgaard KD, Winther-Sørensen M, Suppli MP, Janah L, Gromada J, Vilstrup H, Knop FK and Holst JJ: The liver-α cell axis and type 2 diabetes. Endocr Rev. 40:1353–1366. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Bergman RN and Iyer MS: Indirect Regulation of endogenous glucose production by insulin: The single gateway hypothesis revisited. Diabetes. 66:1742–1747. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Pearson MJ, Unger RH and Holland WL: Clinical trials, triumphs, and tribulations of glucagon receptor antagonists. Diabetes Care. 39:1075–1077. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Basco D, Zhang Q, Salehi A, Tarasov A, Dolci W, Herrera P, Spiliotis I, Berney X, Tarussio D, Rorsman P and Thorens B: α-cell glucokinase suppresses glucose-regulated glucagon secretion. Nat Commun. 9:5462018. View Article : Google Scholar : PubMed/NCBI

17 

Quesada I, Tuduri E, Ripoll C and Nadal A: Physiology of the pancreatic alpha-cell and glucagon secretion: Role in glucose homeostasis and diabetes. J Endocrinol. 199:5–19. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Liu S, Ammirati MJ, Song X, Knafels JD, Zhang J, Greasley SE, Pfefferkorn JA and Qiu X: Insights into mechanism of glucokinase activation: Observation of multiple distinct protein conformations. J Biol Chem. 287:13598–13610. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Giordano S, Martocchia A, Toussan L, Stefanelli M, Pastore F, Devito A, Risicato MG, Ruco L and Falaschi P: Diagnosis of hepatic glycogenosis in poorly controlled type 1 diabetes mellitus. World J Diabetes. 5:882–888. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Barzilai N and Rossetti L: Role of glucokinase and glucose-6-phosphatase in the acute and chronic regulation of hepatic glucose fluxes by insulin. J Biol Chem. 268:25019–25025. 1993.PubMed/NCBI

21 

Holste LC, Connolly CC, Moore MC, Neal DW and Cherrington AD: Physiological changes in circulating glucagon alter hepatic glucose disposition during portal glucose delivery. Am J Physiol. 273:E488–E496. 1997.PubMed/NCBI

22 

Ramnanan CJ, Edgerton DS, Kraft G and Cherrington AD: Physiologic action of glucagon on liver glucose metabolism. Diabetes Obes Metab. 13 (Suppl 1):S118–S125. 2011. View Article : Google Scholar

23 

Agius L: Glucokinase and molecular aspects of liver glycogen metabolism. Biochem J. 414:1–18. 2008. View Article : Google Scholar : PubMed/NCBI

24 

Iozzo P, Hallsten K, Oikonen V, Virtanen KA, Kemppainen J, Solin O, Ferrannini E, Knuuti J and Nuutila P: Insulin-mediated hepatic glucose uptake is impaired in type 2 diabetes: Evidence for a relationship with glycemic control. J Clin Endocrinol Metab. 88:2055–2060. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Coate KC, Kraft G, Shiota M, Smith MS, Farmer B, Neal DW, Williams P, Cherrington AD and Moore MC: Chronic overeating impairs hepatic glucose uptake and disposition. Am J Physiol Endocrinol Metab. 308:E860–E867. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Watanabe H, Inaba Y, Kimura K, Matsumoto M, Kaneko S, Kasuga M and Inoue H: Sirt2 facilitates hepatic glucose uptake by deacetylating glucokinase regulatory protein. Nat Commun. 9:302018. View Article : Google Scholar : PubMed/NCBI

27 

van Dijk TH, van der Sluijs FH, Wiegman CH, Baller JF, Gustafson LA, Burger HJ, Herling AW, Kuipers F, Meijer AJ and Reijngoud DJ: Acute inhibition of hepatic glucose-6-phosphatase does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats. A pharmacological study with the chlorogenic acid derivative S4048. J Biol Chem. 276:25727–25735. 2001. View Article : Google Scholar : PubMed/NCBI

28 

Foufelle F and Ferré P: New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: A role for the transcription factor sterol regulatory element binding protein-1c. Biochem J. 366:377–391. 2002. View Article : Google Scholar : PubMed/NCBI

29 

Clore JN, Stillman J and Sugerman H: Glucose-6-phosphatase flux in vitro is increased in type 2 diabetes. Diabetes. 49:969–974. 2000. View Article : Google Scholar : PubMed/NCBI

30 

Bandsma RH, Grefhorst A, van Dijk TH, van der Sluijs FH, Hammer A, Reijngoud DJ and Kuipers F: Enhanced glucose cycling and suppressed de novo synthesis of glucose-6-phosphate result in a net unchanged hepatic glucose output in ob/ob mice. Diabetologia. 47:2022–2031. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Rooney DP, Neely RD, Beatty O, Bell NP, Sheridan B, Atkinson AB, Trimble ER and Bell PM: Contribution of glucose/glucose 6-phosphate cycle activity to insulin resistance in type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 36:106–112. 1993. View Article : Google Scholar : PubMed/NCBI

32 

Henly DC, Phillips JW and Berry MN: Suppression of glycolysis is associated with an increase in glucose cycling in hepatocytes from diabetic rats. J Biol Chem. 271:11268–11271. 1996. View Article : Google Scholar : PubMed/NCBI

33 

Torres TP, Catlin RL, Chan R, Fujimoto Y, Sasaki N, Printz RL, Newgard CB and Shiota M: Restoration of hepatic glucokinase expression corrects hepatic glucose flux and normalizes plasma glucose in zucker diabetic fatty rats. Diabetes. 58:78–86. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Vella A, Freeman JLR, Dunn I, Keller K, Buse JB and Valcarce C: Targeting hepatic glucokinase to treat diabetes with TTP399, a hepatoselective glucokinase activator. Sci Transl Med. 11:eaau34412019. View Article : Google Scholar : PubMed/NCBI

35 

Ferrer JC, Favre C, Gomis RR, Fernández-Novell JM, García-Rocha M, de la Iglesia N, Cid E and Guinovart JJ: Control of glycogen deposition. FEBS Lett. 546:127–132. 2003. View Article : Google Scholar : PubMed/NCBI

36 

Lin HV and Accili D: Hormonal regulation of hepatic glucose production in health and disease. Cell Metab. 14:9–19. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Petersen KF, Laurent D, Rothman DL, Cline GW and Shulman GI: Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans. J Clin Invest. 101:1203–1209. 1998. View Article : Google Scholar : PubMed/NCBI

38 

Soares AF, Viega FJ, Carvalho RA and Jones JG: Quantifying hepatic glycogen synthesis by direct and indirect pathways in rats under normal ad libitum feeding conditions. Magn Reson Med. 61:1–5. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Agius L, Peak M, Newgard CB, Gomez-Foix AM and Guinovart JJ: Evidence for a role of glucose-induced translocation of glucokinase in the control of hepatic glycogen synthesis. J Biol Chem. 271:30479–30486. 1996. View Article : Google Scholar : PubMed/NCBI

40 

Aiston S, Hampson L, Gómez-Foix AM, Guinovart JJ and Agius L: Hepatic glycogen synthesis is highly sensitive to phosphorylase activity: Evidence from metabolic control analysis. J Biol Chem. 276:23858–23866. 2001. View Article : Google Scholar : PubMed/NCBI

41 

Matschinsky FM and Magnuson MA: Glucokinase and Glycemic Diseases: From Basics to Novel Therapeutics. Karger; Basel: pp. 1–9. 2004

42 

Satyarengga M, Zubatov Y, Frances S, Narayanswami G and Galindo RJ: Glycogenic hepatopathy: A complication of uncontrolled diabetes. AACE Clin Case Rep. 3:e255–e259. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Chatila R and West AB: Hepatomegaly and abnormal liver tests due to glycogenosis in adults with diabetes. Medicine (Baltimore). 75:327–333. 1996. View Article : Google Scholar : PubMed/NCBI

44 

Julián MT, Alonso N, Ojanguren I, Pizarro E, Ballestar E and Puig-Domingo M: Hepatic glycogenosis: An underdiagnosed complication of diabetes mellitus? World J Diabetes. 6:321–325. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Hwang JH, Perseghin G, Rothman DL, Cline GW, Magnusson I, Petersen KF and Shulman GI: Impaired net hepatic glycogen synthesis in insulin-dependent diabetic subjects during mixed meal ingestion. A 13C nuclear magnetic resonance spectroscopy study. J Clin Invest. 95:783–787. 1995. View Article : Google Scholar : PubMed/NCBI

46 

Bischof MG, Krssak M, Krebs M, Bernroider E, Stingl H, Waldhäusl W and Roden M: Effects of short-term improvement of insulin treatment and glycemia on hepatic glycogen metabolism in type 1 diabetes. Diabetes. 50:392–398. 2001. View Article : Google Scholar : PubMed/NCBI

47 

Krssak M, Brehm A, Bernroider E, Anderwald C, Nowotny P, Dalla Man C, Cobelli C, Cline GW, Shulman GI, Waldhäusl W and Roden M: Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes. 53:3048–3056. 2004. View Article : Google Scholar : PubMed/NCBI

48 

Del Prato S, Bonadonna RC, Bonora E, Gulli G, Solini A, Shank M and DeFronzo RA: Characterization of cellular defects of insulin action in type 2 (non-insulin-dependent) diabetes mellitus. J Clin Invest. 91:484–494. 1993. View Article : Google Scholar : PubMed/NCBI

49 

Besford QA, Zeng XY, Ye JM and Gray-Weale A: Liver glycogen in type 2 diabetic mice is randomly branched as enlarged aggregates with blunted glucose release. Glycoconj J. 33:41–51. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Samuel VT and Shulman GI: The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. J Clin Invest. 126:12–22. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Henke BR and Sparks SM: Glycogen phosphorylase inhibitors. Mini Rev Med Chem. 6:845–857. 2006. View Article : Google Scholar : PubMed/NCBI

52 

Ha J, Guan KL and Kim J: AMPK and autophagy in glucose/glycogen metabolism. Mol Aspects Med. 46:46–62. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Madrigal-Matute J and Cuervo AM: Regulation of liver metabolism by autophagy. Gastroenterology. 150:328–339. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Ezaki J, Matsumoto N, Takeda-Ezaki M, Komatsu M, Takahashi K, Hiraoka Y, Taka H, Fujimura T, Takehana K, Yoshida M, et al: Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy. 7:727–736. 2011. View Article : Google Scholar : PubMed/NCBI

55 

Christiansen MP, Linfoot PA, Neese RA and Hellerstein MK: Effect of dietary energy restriction on glucose production and substrate utilization in type 2 diabetes. Diabetes. 49:1691–1699. 2000. View Article : Google Scholar : PubMed/NCBI

56 

Kishore P, Gabriely I, Cui MH, Di Vito J, Gajavelli S, Hwang JH and Shamoon H: Role of hepatic glycogen breakdown in defective counterregulation of hypoglycemia in intensively treated type 1 diabetes. Diabetes. 55:659–666. 2006. View Article : Google Scholar : PubMed/NCBI

57 

Ekberg K, Landau BR, Wajngot A, Chandramouli V, Efendic S, Brunengraber H and Wahren J: Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes. 48:292–298. 1999. View Article : Google Scholar : PubMed/NCBI

58 

Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, Inzucchi SE, Schumann WC, Petersen KF, Landau BR and Shulman GI: Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 49:2063–2069. 2000. View Article : Google Scholar : PubMed/NCBI

59 

Rizza RA: Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: Implications for therapy. Diabetes. 59:2697–2707. 2010. View Article : Google Scholar : PubMed/NCBI

60 

Sharabi K, Tavares CD, Rines AK and Puigserver P: Molecular pathophysiology of hepatic glucose production. Mol Aspects Med. 46:21–33. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Kehlenbrink S, Koppaka S, Martin M, Relwani R, Cui MH, Hwang JH, Li Y, Basu R, Hawkins M and Kishore P: Elevated NEFA levels impair glucose effectiveness by increasing net hepatic glycogenolysis. Diabetologia. 55:3021–3028. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Titchenell PM, Quinn WJ, Lu M, Chu Q, Lu W, Li C, Chen H, Monks BR, Chen J, Rabinowitz JD and Birnbaum MJ: Direct Hepatocyte insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production. Cell Metab. 23:1154–1166. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Hawkins M, Gabriely I, Wozniak R, Reddy K, Rossetti L and Shamoon H: Glycemic control determines hepatic and peripheral glucose effectiveness in type 2 diabetic subjects. Diabetes. 51:2179–2189. 2002. View Article : Google Scholar : PubMed/NCBI

64 

Magnusson I, Rothman DL, Katz LD, Shulman RG and Shulman GI: Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest. 90:1323–1327. 1992. View Article : Google Scholar : PubMed/NCBI

65 

Sharabi K, Lin H, Tavares CDJ, Dominy JE, Camporez JP, Perry RJ, Schilling R, Rines AK, Lee J, Hickey M, et al: Selective chemical inhibition of PGC-1α gluconeogenic activity ameliorates type 2 diabetes. Cell. 169:148–160.e15. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Perry RJ, Zhang XM, Zhang D, Kumashiro N, Camporez JP, Cline GW, Rothman DL and Shulman GI: Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat Med. 20:759–763. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Lee Y, Wang MY, Du XQ, Charron MJ and Unger RH: Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes. 60:391–397. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Petersen KF, Price TB and Bergeron R: Regulation of net hepatic glycogenolysis and gluconeogenesis during exercise: Impact of type 1 diabetes. J Clin Endocrinol Metab. 89:4656–4664. 2004. View Article : Google Scholar : PubMed/NCBI

69 

Hatting M, Tavares CDJ, Sharabi K, Rines AK and Puigserver P: Insulin regulation of gluconeogenesis. Ann NY Acad Sci. 1411:21–35. 2018. View Article : Google Scholar : PubMed/NCBI

70 

Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald MJ, et al: Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 510:542–546. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Sabet S, Condren ME, Boston AF, Doak LC and Chalmers LJ: Evolving pharmacotherapeutic strategies for type 1 diabetes mellitus. J Pediatr Pharmacol Ther. 23:351–361. 2018.PubMed/NCBI

72 

Abdulrazaq NB, Cho MM, Win NN, Zaman R and Rahman MT: Beneficial effects of ginger (Zingiber officinale) on carbohydrate metabolism in streptozotocin-induced diabetic rats. Br J Nutr. 108:1194–1201. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Gray LR, Tompkins SC and Taylor EB: Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci. 71:2577–2604. 2014. View Article : Google Scholar : PubMed/NCBI

74 

Cotter DG, Ercal B, Huang X, Leid JM, d'Avignon DA, Graham MJ, Dietzen DJ, Brunt EM, Patti GJ and Crawford PA: Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia. J Clin Invest. 124:5175–5190. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Kumashiro N, Beddow SA, Vatner DF, Majumdar SK, Cantley JL, Guebre-Egziabher F, Fat I, Guigni B, Jurczak MJ, Birkenfeld AL, et al: Targeting pyruvate carboxylase reduces gluconeogenesis and adiposity and improves insulin resistance. Diabetes. 62:2183–2194. 2013. View Article : Google Scholar : PubMed/NCBI

76 

Go Y, Jeong JY, Jeoung NH, Jeon JH, Park BY, Kang HJ, Ha CM, Choi YK, Lee SJ, Ham HJ, et al: Inhibition of pyruvate dehydrogenase kinase 2 protects against hepatic steatosis through modulation of tricarboxylic acid cycle anaplerosis and ketogenesis. Diabetes. 65:2876–2887. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Chen M, Zheng H, Xu M, Zhao L, Zhang Q, Song J, Zhao Z, Lu S, Weng Q, Wu X, et al: Changes in hepatic metabolic profile during the evolution of STZ-induced diabetic rats via an 1H NMR-based metabonomic investigation. Biosci Rep. Apr 23–2019.(Epub ahead of print). doi: 10.1042/BSR20181379.

78 

Sugden MC and Holness MJ: Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am J Physiol Endocrinol Metab. 284:E855–E862. 2003. View Article : Google Scholar : PubMed/NCBI

79 

Seidler NW: GAPDH and intermediary metabolism. Adv Exp Med Biol. 985:37–59. 2013. View Article : Google Scholar : PubMed/NCBI

80 

Hwang NR, Yim SH, Kim YM, Jeong J, Song EJ, Lee Y, Lee JH, Choi S and Lee KJ: Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions. Biochem J. 423:253–264. 2009. View Article : Google Scholar : PubMed/NCBI

81 

Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, Rivera K, Roper J, Chio II, Giannopoulou EG, Rago C, et al: Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science. 350:1391–1396. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Giacco F and Brownlee M: Oxidative stress and diabetic complications. Circ Res. 107:1058–1070. 2010. View Article : Google Scholar : PubMed/NCBI

83 

Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, Wu J and Brownlee M: Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA. 97:12222–12226. 2000. View Article : Google Scholar : PubMed/NCBI

84 

Wu J, Jin Z, Zheng H and Yan LJ: Sources and implications of NADH/NAD(+) redox imbalance in diabetes and its complications. Diabetes Metab Syndr Obes. 9:145–153. 2016.PubMed/NCBI

85 

Funk SD, Yurdagul A Jr and Orr AW: Hyperglycemia and endothelial dysfunction in atherosclerosis: Lessons from type 1 diabetes. Int J Vasc Med. 2012:5696542012.PubMed/NCBI

86 

Rask-Madsen C and King GL: Vascular complications of diabetes: Mechanisms of injury and protective factors. Cell Metab. 17:20–33. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Yan LJ: Pathogenesis of chronic hyperglycemia: From reductive stress to oxidative stress. J Diabetes Res. 2014:1379192014. View Article : Google Scholar : PubMed/NCBI

88 

Brownlee M: The pathobiology of diabetic complications: A unifying mechanism. Diabetes. 54:1615–1625. 2005. View Article : Google Scholar : PubMed/NCBI

89 

Ralser M, Wamelink MM, Kowald A, Gerisch B, Heeren G, Struys EA, Klipp E, Jakobs C, Breitenbach M, Lehrach H and Krobitsch S: Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol. 6:102007. View Article : Google Scholar : PubMed/NCBI

90 

Perry RJ, Kim T, Zhang XM, Lee HY, Pesta D, Popov VB, Zhang D, Rahimi Y, Jurczak MJ, Cline GW, et al: Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell Metab. 18:740–748. 2013. View Article : Google Scholar : PubMed/NCBI

91 

Wamelink MM, Struys EA and Jakobs C: The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: A review. J Inherit Metab Dis. 31:703–717. 2008. View Article : Google Scholar : PubMed/NCBI

92 

Riganti C, Gazzano E, Polimeni M, Aldieri E and Ghigo D: The pentose phosphate pathway: An antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med. 53:421–436. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Cabezas H, Raposo RR and Meléndez-Hevia E: Activity and metabolic roles of the pentose phosphate cycle in several rat tissues. Mol Cell Biochem. 201:57–63. 1999. View Article : Google Scholar : PubMed/NCBI

94 

Díaz-Flores M, Ibáñez-Hernández MA, Galván RE, Gutiérrez M, Durán-Reyes G, Medina-Navarro R, Pascoe-Lira D, Ortega-Camarillo C, Vilar-Rojas C, Cruz M and Baiza-Gutman LA: Glucose-6-phosphate dehydrogenase activity and NADPH/NADP+ ratio in liver and pancreas are dependent on the severity of hyperglycemia in rat. Life Sci. 78:2601–2607. 2006. View Article : Google Scholar : PubMed/NCBI

95 

Spaans SK, Weusthuis RA, van der Oost J and Kengen SW: NADPH-generating systems in bacteria and archaea. Front Microbiol. 6:7422015. View Article : Google Scholar : PubMed/NCBI

96 

Aragno M, Tamagno E, Gatto V, Brignardello E, Parola S, Danni O and Boccuzzi G: Dehydroepiandrosterone protects tissues of streptozotocin-treated rats against oxidative stress. Free Radic Biol Med. 26:1467–1474. 1999. View Article : Google Scholar : PubMed/NCBI

97 

Cédola N, Cabarrou A, Auciello N, Doria I, Ponce de León H and Baylon N: The liver in human diabetes. Concentration of some induced enzymes. Acta Diabetol Lat. 12:263–271. 1975. View Article : Google Scholar : PubMed/NCBI

98 

Gupte RS, Floyd BC, Kozicky M, George S, Ungvari ZI, Neito V, Wolin MS and Gupte SA: Synergistic activation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase by Src kinase elevates superoxide in type 2 diabetic, Zucker fa/fa, rat liver. Free Radic Biol Med. 47:219–228. 2009. View Article : Google Scholar : PubMed/NCBI

99 

Shepherd A and Cleary MP: Metabolic alterations after dehydroepiandrosterone treatment in Zucker rats. Am J Physiol. 246:E123–E128. 1984.PubMed/NCBI

100 

Dong K, Ni H, Wu M, Tang Z, Halim M and Shi D: ROS-mediated glucose metabolic reprogram induces insulin resistance in type 2 diabetes. Biochem Biophys Res Commun. 476:204–211. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Kolderup A and Svihus B: Fructose metabolism and relation to atherosclerosis, type 2 diabetes, and obesity. J Nutr Metab. 2015:8230812015. View Article : Google Scholar : PubMed/NCBI

102 

Lambert JE, Ramos-Roman MA, Browning JD and Parks EJ: Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology. 146:726–735. 2014. View Article : Google Scholar : PubMed/NCBI

103 

Softic S, Cohen DE and Kahn CR: Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig Dis Sci. 61:1282–1293. 2016. View Article : Google Scholar : PubMed/NCBI

104 

Barros BSV, Santos DC, Pizarro MH, del Melo LGN and Gomes MB: Type 1 diabetes and non-alcoholic fatty liver disease: When should we be concerned? A nationwide study in Brazil. Nutrients. 9:E8782017. View Article : Google Scholar : PubMed/NCBI

105 

Calzadilla Bertot L and Adams LA: The natural course of non-alcoholic fatty liver disease. Int J Mol Sci. 17:E7742016. View Article : Google Scholar : PubMed/NCBI

106 

Targher G, Bertolini L, Padovani R, Rodella S, Zoppini G, Pichiri I, Sorgato C, Zenari L and Bonora E: Prevalence of non-alcoholic fatty liver disease and its association with cardiovascular disease in patients with type 1 diabetes. J Hepatol. 53:713–718. 2010. View Article : Google Scholar : PubMed/NCBI

107 

Kummer S, Klee D, Kircheis G, Friedt M, Schaper J, Häussinger D, Mayatepek E and Meissner T: Screening for non-alcoholic fatty liver disease in children and adolescents with type 1 diabetes mellitus: A cross-sectional analysis. Eur J Pediatr. 176:529–536. 2017. View Article : Google Scholar : PubMed/NCBI

108 

Lăpădat AM, Jianu IR, Ungureanu BS, Florescu LM, Gheonea DI, Sovaila S and Gheonea IA: Non-invasive imaging techniques in assessing non-alcoholic fatty liver disease: A current status of available methods. J Med Life. 10:19–26. 2017. View Article : Google Scholar : PubMed/NCBI

109 

Guiu B, Petit JM, Loffroy R, Ben Salem D, Aho S, Masson D, Hillon P, Krause D and Cercueil JP; Quantification of liver fat content, : Comparison of triple-echo chemical shift gradient-echo imaging and in vivo proton MR spectroscopy. Radiology. 250:95–102. 2009. View Article : Google Scholar : PubMed/NCBI

110 

Petit JM, Pedro L, Guiu B, Duvillard L, Bouillet B, Jooste V, Habchi M, Crevisy E, Fourmont C, Buffier P, et al: Type 1 diabetes is not associated with an increased prevalence of hepatic steatosis. Diabet Med. 32:1648–1651. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Perseghin G, Lattuada G, De Cobelli F, Esposito A, Costantino F, Canu T, Scifo P, De Taddeo F, Maffi P, Secchi A, et al: Reduced intrahepatic fat content is associated with increased whole-body lipid oxidation in patients with type 1 diabetes. Diabetologia. 48:2615–2621. 2005. View Article : Google Scholar : PubMed/NCBI

112 

Cusi K, Sanyal AJ, Zhang S, Hartman ML, Bue-Valleskey JM, Hoogwerf BJ and Haupt A: Non-alcoholic fatty liver disease (NAFLD) prevalence and its metabolic associations in patients with type 1 diabetes and type 2 diabetes. Diabetes Obes Metab. 19:1630–1634. 2017. View Article : Google Scholar : PubMed/NCBI

113 

Regnell SE, Peterson P, Trinh L, Broberg P, Leander P, Lernmark Å, Månsson S and Elding Larsson H: Magnetic resonance imaging reveals altered distribution of hepatic fat in children with type 1 diabetes compared to controls. Metabolism. 64:872–878. 2015. View Article : Google Scholar : PubMed/NCBI

114 

Jiang S, Tang X, Wang K, Liang Y, Qian Y, Lu C and Cai L: Hepatic functional and pathological changes of type 1 diabetic mice in growing and maturation time. J Cell Mol Med. 23:5794–5807. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Torbenson M, Chen YY, Brunt E, Cummings OW, Gottfried M, Jakate S, Liu YC, Yeh MM and Ferrell L: Glycogenic hepatopathy: An underrecognized hepatic complication of diabetes mellitus. Am J Surg Pathol. 30:508–513. 2006. View Article : Google Scholar : PubMed/NCBI

116 

Kotronen A, Juurinen L, Tiikkainen M, Vehkavaara S and Yki-Järvinen H: Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes. Gastroenterology. 135:122–130. 2008. View Article : Google Scholar : PubMed/NCBI

117 

Titchenell PM, Lazar MA and Birnbaum MJ: Unraveling the regulation of hepatic metabolism by insulin. Trends Endocrinol Metab. 28:497–505. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Vatner DF, Majumdar SK, Kumashiro N, Petersen MC, Rahimi Y, Gattu AK, Bears M, Camporez JP, Cline GW, Jurczak MJ, et al: Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids. Proc Natl Acad Sci USA. 112:1143–1148. 2015. View Article : Google Scholar : PubMed/NCBI

119 

Osório J: Diabetes: Hepatic lipogenesis independent of insulin in type 2 diabetes mellitus-a paradox clarified. Nat Rev Endocrinol. 11:1302015. View Article : Google Scholar

120 

Alwahsh SM, Dwyer BJ, Forbes S, Thiel DH, Lewis PJ and Ramadori G: Insulin production and resistance in different models of diet-induced obesity and metabolic syndrome. Int J Mol Sci. 18(pii): E2852017. View Article : Google Scholar : PubMed/NCBI

121 

American Diabetes Association: Diagnosis and classification of diabetes mellitus. Diabetes Care. 35 (Suppl 1):S64–S71. 2012. View Article : Google Scholar : PubMed/NCBI

122 

Regnell SE and Lernmark Å: Hepatic steatosis in type 1 diabetes. Rev Diabet Stud. 8:454–467. 2011. View Article : Google Scholar : PubMed/NCBI

123 

Purnell JQ, Zinman B and Brunzell JD; DCCT/EDIC Research Group, : The effect of excess weight gain with intensive diabetes mellitus treatment on cardiovascular disease risk factors and atherosclerosis in type 1 diabetes mellitus: Results from the diabetes control and complications trial/epidemiology of diabetes interventions and complications study (DCCT/EDIC) study. Circulation. 127:180–187. 2013. View Article : Google Scholar : PubMed/NCBI

124 

Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM and Czaja MJ: Autophagy regulates lipid metabolism. Nature. 458:1131–1135. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Jiang S, Young JL, Wang K, Qian Y and Cai L: Diabetic‑induced alterations in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes mellitus (Review). Mol Med Rep 22: 603-611, 2020.
APA
Jiang, S., Young, J.L., Wang, K., Qian, Y., & Cai, L. (2020). Diabetic‑induced alterations in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes mellitus (Review). Molecular Medicine Reports, 22, 603-611. https://doi.org/10.3892/mmr.2020.11175
MLA
Jiang, S., Young, J. L., Wang, K., Qian, Y., Cai, L."Diabetic‑induced alterations in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes mellitus (Review)". Molecular Medicine Reports 22.2 (2020): 603-611.
Chicago
Jiang, S., Young, J. L., Wang, K., Qian, Y., Cai, L."Diabetic‑induced alterations in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes mellitus (Review)". Molecular Medicine Reports 22, no. 2 (2020): 603-611. https://doi.org/10.3892/mmr.2020.11175
Copy and paste a formatted citation
x
Spandidos Publications style
Jiang S, Young JL, Wang K, Qian Y and Cai L: Diabetic‑induced alterations in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes mellitus (Review). Mol Med Rep 22: 603-611, 2020.
APA
Jiang, S., Young, J.L., Wang, K., Qian, Y., & Cai, L. (2020). Diabetic‑induced alterations in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes mellitus (Review). Molecular Medicine Reports, 22, 603-611. https://doi.org/10.3892/mmr.2020.11175
MLA
Jiang, S., Young, J. L., Wang, K., Qian, Y., Cai, L."Diabetic‑induced alterations in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes mellitus (Review)". Molecular Medicine Reports 22.2 (2020): 603-611.
Chicago
Jiang, S., Young, J. L., Wang, K., Qian, Y., Cai, L."Diabetic‑induced alterations in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes mellitus (Review)". Molecular Medicine Reports 22, no. 2 (2020): 603-611. https://doi.org/10.3892/mmr.2020.11175
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team