|
1
|
Towle HC: Glucose as a regulator of
eukaryotic gene transcription. Trends Endocrinol Metab. 16:489–494.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Habegger KM, Heppner KM, Geary N, Bartness
TJ, DiMarchi R and Tschop MH: The metabolic actions of glucagon
revisited. Nat Rev Endocrinol. 6:689–697. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bhatt HB and Smith RJ: Fatty liver disease
in diabetes mellitus. Hepatobiliary Surg Nutr. 4:101–108.
2015.PubMed/NCBI
|
|
4
|
Sumida Y and Yoneda M: Glycogen
hepatopathy: An under-recognized hepatic complication of
uncontrolled type 1 diabetes mellitus. Intern Med. 57:1063–1064.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Moore MC, Coate KC, Winnick JJ, An Z and
Cherrington AD: Regulation of hepatic glucose uptake and storage in
vivo. Adv Nutr. 3:286–294. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Petersen MC, Vatner DF and Shulman GI:
Regulation of hepatic glucose metabolism in health and disease. Nat
Rev Endocrinol. 13:572–587. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Dorcely B, Katz K, Jagannathan R, Chiang
SS, Oluwadare B, Goldberg IJ and Bergman M: Novel biomarkers for
prediabetes, diabetes, and associated complications. Diabetes Metab
Syndr Obes. 10:345–361. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Rines AK, Sharabi K, Tavares CD and
Puigserver P: Targeting hepatic glucose metabolism in the treatment
of type 2 diabetes. Nat Rev Drug Discov. 15:786–804. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Rui L: Energy metabolism in the liver.
Compr Physiol. 4:177–197. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Girard J: Glucagon, a key factor in the
pathophysiology of type 2 diabetes. Biochimie. 143:33–36. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Mittendorfer B and Klein S: Absence of
leptin triggers type 1 diabetes. Nat Med. 20:705–706. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Unger RH and Orci L: Paracrinology of
islets and the paracrinopathy of diabetes. Proc Natl Acad Sci USA.
107:16009–16012. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wewer Albrechtsen NJ, Pedersen J,
Galsgaard KD, Winther-Sørensen M, Suppli MP, Janah L, Gromada J,
Vilstrup H, Knop FK and Holst JJ: The liver-α cell axis and type 2
diabetes. Endocr Rev. 40:1353–1366. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Bergman RN and Iyer MS: Indirect
Regulation of endogenous glucose production by insulin: The single
gateway hypothesis revisited. Diabetes. 66:1742–1747. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Pearson MJ, Unger RH and Holland WL:
Clinical trials, triumphs, and tribulations of glucagon receptor
antagonists. Diabetes Care. 39:1075–1077. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Basco D, Zhang Q, Salehi A, Tarasov A,
Dolci W, Herrera P, Spiliotis I, Berney X, Tarussio D, Rorsman P
and Thorens B: α-cell glucokinase suppresses glucose-regulated
glucagon secretion. Nat Commun. 9:5462018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Quesada I, Tuduri E, Ripoll C and Nadal A:
Physiology of the pancreatic alpha-cell and glucagon secretion:
Role in glucose homeostasis and diabetes. J Endocrinol. 199:5–19.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Liu S, Ammirati MJ, Song X, Knafels JD,
Zhang J, Greasley SE, Pfefferkorn JA and Qiu X: Insights into
mechanism of glucokinase activation: Observation of multiple
distinct protein conformations. J Biol Chem. 287:13598–13610. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Giordano S, Martocchia A, Toussan L,
Stefanelli M, Pastore F, Devito A, Risicato MG, Ruco L and Falaschi
P: Diagnosis of hepatic glycogenosis in poorly controlled type 1
diabetes mellitus. World J Diabetes. 5:882–888. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Barzilai N and Rossetti L: Role of
glucokinase and glucose-6-phosphatase in the acute and chronic
regulation of hepatic glucose fluxes by insulin. J Biol Chem.
268:25019–25025. 1993.PubMed/NCBI
|
|
21
|
Holste LC, Connolly CC, Moore MC, Neal DW
and Cherrington AD: Physiological changes in circulating glucagon
alter hepatic glucose disposition during portal glucose delivery.
Am J Physiol. 273:E488–E496. 1997.PubMed/NCBI
|
|
22
|
Ramnanan CJ, Edgerton DS, Kraft G and
Cherrington AD: Physiologic action of glucagon on liver glucose
metabolism. Diabetes Obes Metab. 13 (Suppl 1):S118–S125. 2011.
View Article : Google Scholar
|
|
23
|
Agius L: Glucokinase and molecular aspects
of liver glycogen metabolism. Biochem J. 414:1–18. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Iozzo P, Hallsten K, Oikonen V, Virtanen
KA, Kemppainen J, Solin O, Ferrannini E, Knuuti J and Nuutila P:
Insulin-mediated hepatic glucose uptake is impaired in type 2
diabetes: Evidence for a relationship with glycemic control. J Clin
Endocrinol Metab. 88:2055–2060. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Coate KC, Kraft G, Shiota M, Smith MS,
Farmer B, Neal DW, Williams P, Cherrington AD and Moore MC: Chronic
overeating impairs hepatic glucose uptake and disposition. Am J
Physiol Endocrinol Metab. 308:E860–E867. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Watanabe H, Inaba Y, Kimura K, Matsumoto
M, Kaneko S, Kasuga M and Inoue H: Sirt2 facilitates hepatic
glucose uptake by deacetylating glucokinase regulatory protein. Nat
Commun. 9:302018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
van Dijk TH, van der Sluijs FH, Wiegman
CH, Baller JF, Gustafson LA, Burger HJ, Herling AW, Kuipers F,
Meijer AJ and Reijngoud DJ: Acute inhibition of hepatic
glucose-6-phosphatase does not affect gluconeogenesis but directs
gluconeogenic flux toward glycogen in fasted rats. A
pharmacological study with the chlorogenic acid derivative S4048. J
Biol Chem. 276:25727–25735. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Foufelle F and Ferré P: New perspectives
in the regulation of hepatic glycolytic and lipogenic genes by
insulin and glucose: A role for the transcription factor sterol
regulatory element binding protein-1c. Biochem J. 366:377–391.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Clore JN, Stillman J and Sugerman H:
Glucose-6-phosphatase flux in vitro is increased in type 2
diabetes. Diabetes. 49:969–974. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Bandsma RH, Grefhorst A, van Dijk TH, van
der Sluijs FH, Hammer A, Reijngoud DJ and Kuipers F: Enhanced
glucose cycling and suppressed de novo synthesis of
glucose-6-phosphate result in a net unchanged hepatic glucose
output in ob/ob mice. Diabetologia. 47:2022–2031. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Rooney DP, Neely RD, Beatty O, Bell NP,
Sheridan B, Atkinson AB, Trimble ER and Bell PM: Contribution of
glucose/glucose 6-phosphate cycle activity to insulin resistance in
type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia.
36:106–112. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Henly DC, Phillips JW and Berry MN:
Suppression of glycolysis is associated with an increase in glucose
cycling in hepatocytes from diabetic rats. J Biol Chem.
271:11268–11271. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Torres TP, Catlin RL, Chan R, Fujimoto Y,
Sasaki N, Printz RL, Newgard CB and Shiota M: Restoration of
hepatic glucokinase expression corrects hepatic glucose flux and
normalizes plasma glucose in zucker diabetic fatty rats. Diabetes.
58:78–86. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Vella A, Freeman JLR, Dunn I, Keller K,
Buse JB and Valcarce C: Targeting hepatic glucokinase to treat
diabetes with TTP399, a hepatoselective glucokinase activator. Sci
Transl Med. 11:eaau34412019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ferrer JC, Favre C, Gomis RR,
Fernández-Novell JM, García-Rocha M, de la Iglesia N, Cid E and
Guinovart JJ: Control of glycogen deposition. FEBS Lett.
546:127–132. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lin HV and Accili D: Hormonal regulation
of hepatic glucose production in health and disease. Cell Metab.
14:9–19. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Petersen KF, Laurent D, Rothman DL, Cline
GW and Shulman GI: Mechanism by which glucose and insulin inhibit
net hepatic glycogenolysis in humans. J Clin Invest. 101:1203–1209.
1998. View
Article : Google Scholar : PubMed/NCBI
|
|
38
|
Soares AF, Viega FJ, Carvalho RA and Jones
JG: Quantifying hepatic glycogen synthesis by direct and indirect
pathways in rats under normal ad libitum feeding conditions. Magn
Reson Med. 61:1–5. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Agius L, Peak M, Newgard CB, Gomez-Foix AM
and Guinovart JJ: Evidence for a role of glucose-induced
translocation of glucokinase in the control of hepatic glycogen
synthesis. J Biol Chem. 271:30479–30486. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Aiston S, Hampson L, Gómez-Foix AM,
Guinovart JJ and Agius L: Hepatic glycogen synthesis is highly
sensitive to phosphorylase activity: Evidence from metabolic
control analysis. J Biol Chem. 276:23858–23866. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Matschinsky FM and Magnuson MA:
Glucokinase and Glycemic Diseases: From Basics to Novel
Therapeutics. Karger; Basel: pp. 1–9. 2004
|
|
42
|
Satyarengga M, Zubatov Y, Frances S,
Narayanswami G and Galindo RJ: Glycogenic hepatopathy: A
complication of uncontrolled diabetes. AACE Clin Case Rep.
3:e255–e259. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Chatila R and West AB: Hepatomegaly and
abnormal liver tests due to glycogenosis in adults with diabetes.
Medicine (Baltimore). 75:327–333. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Julián MT, Alonso N, Ojanguren I, Pizarro
E, Ballestar E and Puig-Domingo M: Hepatic glycogenosis: An
underdiagnosed complication of diabetes mellitus? World J Diabetes.
6:321–325. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hwang JH, Perseghin G, Rothman DL, Cline
GW, Magnusson I, Petersen KF and Shulman GI: Impaired net hepatic
glycogen synthesis in insulin-dependent diabetic subjects during
mixed meal ingestion. A 13C nuclear magnetic resonance spectroscopy
study. J Clin Invest. 95:783–787. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Bischof MG, Krssak M, Krebs M, Bernroider
E, Stingl H, Waldhäusl W and Roden M: Effects of short-term
improvement of insulin treatment and glycemia on hepatic glycogen
metabolism in type 1 diabetes. Diabetes. 50:392–398. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Krssak M, Brehm A, Bernroider E, Anderwald
C, Nowotny P, Dalla Man C, Cobelli C, Cline GW, Shulman GI,
Waldhäusl W and Roden M: Alterations in postprandial hepatic
glycogen metabolism in type 2 diabetes. Diabetes. 53:3048–3056.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Del Prato S, Bonadonna RC, Bonora E, Gulli
G, Solini A, Shank M and DeFronzo RA: Characterization of cellular
defects of insulin action in type 2 (non-insulin-dependent)
diabetes mellitus. J Clin Invest. 91:484–494. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Besford QA, Zeng XY, Ye JM and Gray-Weale
A: Liver glycogen in type 2 diabetic mice is randomly branched as
enlarged aggregates with blunted glucose release. Glycoconj J.
33:41–51. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Samuel VT and Shulman GI: The pathogenesis
of insulin resistance: Integrating signaling pathways and substrate
flux. J Clin Invest. 126:12–22. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Henke BR and Sparks SM: Glycogen
phosphorylase inhibitors. Mini Rev Med Chem. 6:845–857. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ha J, Guan KL and Kim J: AMPK and
autophagy in glucose/glycogen metabolism. Mol Aspects Med.
46:46–62. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Madrigal-Matute J and Cuervo AM:
Regulation of liver metabolism by autophagy. Gastroenterology.
150:328–339. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ezaki J, Matsumoto N, Takeda-Ezaki M,
Komatsu M, Takahashi K, Hiraoka Y, Taka H, Fujimura T, Takehana K,
Yoshida M, et al: Liver autophagy contributes to the maintenance of
blood glucose and amino acid levels. Autophagy. 7:727–736. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Christiansen MP, Linfoot PA, Neese RA and
Hellerstein MK: Effect of dietary energy restriction on glucose
production and substrate utilization in type 2 diabetes. Diabetes.
49:1691–1699. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kishore P, Gabriely I, Cui MH, Di Vito J,
Gajavelli S, Hwang JH and Shamoon H: Role of hepatic glycogen
breakdown in defective counterregulation of hypoglycemia in
intensively treated type 1 diabetes. Diabetes. 55:659–666. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ekberg K, Landau BR, Wajngot A,
Chandramouli V, Efendic S, Brunengraber H and Wahren J:
Contributions by kidney and liver to glucose production in the
postabsorptive state and after 60 h of fasting. Diabetes.
48:292–298. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Hundal RS, Krssak M, Dufour S, Laurent D,
Lebon V, Chandramouli V, Inzucchi SE, Schumann WC, Petersen KF,
Landau BR and Shulman GI: Mechanism by which metformin reduces
glucose production in type 2 diabetes. Diabetes. 49:2063–2069.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Rizza RA: Pathogenesis of fasting and
postprandial hyperglycemia in type 2 diabetes: Implications for
therapy. Diabetes. 59:2697–2707. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sharabi K, Tavares CD, Rines AK and
Puigserver P: Molecular pathophysiology of hepatic glucose
production. Mol Aspects Med. 46:21–33. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kehlenbrink S, Koppaka S, Martin M,
Relwani R, Cui MH, Hwang JH, Li Y, Basu R, Hawkins M and Kishore P:
Elevated NEFA levels impair glucose effectiveness by increasing net
hepatic glycogenolysis. Diabetologia. 55:3021–3028. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Titchenell PM, Quinn WJ, Lu M, Chu Q, Lu
W, Li C, Chen H, Monks BR, Chen J, Rabinowitz JD and Birnbaum MJ:
Direct Hepatocyte insulin signaling is required for lipogenesis but
is dispensable for the suppression of glucose production. Cell
Metab. 23:1154–1166. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Hawkins M, Gabriely I, Wozniak R, Reddy K,
Rossetti L and Shamoon H: Glycemic control determines hepatic and
peripheral glucose effectiveness in type 2 diabetic subjects.
Diabetes. 51:2179–2189. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Magnusson I, Rothman DL, Katz LD, Shulman
RG and Shulman GI: Increased rate of gluconeogenesis in type II
diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin
Invest. 90:1323–1327. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Sharabi K, Lin H, Tavares CDJ, Dominy JE,
Camporez JP, Perry RJ, Schilling R, Rines AK, Lee J, Hickey M, et
al: Selective chemical inhibition of PGC-1α gluconeogenic activity
ameliorates type 2 diabetes. Cell. 169:148–160.e15. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Perry RJ, Zhang XM, Zhang D, Kumashiro N,
Camporez JP, Cline GW, Rothman DL and Shulman GI: Leptin reverses
diabetes by suppression of the hypothalamic-pituitary-adrenal axis.
Nat Med. 20:759–763. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lee Y, Wang MY, Du XQ, Charron MJ and
Unger RH: Glucagon receptor knockout prevents insulin-deficient
type 1 diabetes in mice. Diabetes. 60:391–397. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Petersen KF, Price TB and Bergeron R:
Regulation of net hepatic glycogenolysis and gluconeogenesis during
exercise: Impact of type 1 diabetes. J Clin Endocrinol Metab.
89:4656–4664. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hatting M, Tavares CDJ, Sharabi K, Rines
AK and Puigserver P: Insulin regulation of gluconeogenesis. Ann NY
Acad Sci. 1411:21–35. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Madiraju AK, Erion DM, Rahimi Y, Zhang XM,
Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald
MJ, et al: Metformin suppresses gluconeogenesis by inhibiting
mitochondrial glycerophosphate dehydrogenase. Nature. 510:542–546.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Sabet S, Condren ME, Boston AF, Doak LC
and Chalmers LJ: Evolving pharmacotherapeutic strategies for type 1
diabetes mellitus. J Pediatr Pharmacol Ther. 23:351–361.
2018.PubMed/NCBI
|
|
72
|
Abdulrazaq NB, Cho MM, Win NN, Zaman R and
Rahman MT: Beneficial effects of ginger (Zingiber
officinale) on carbohydrate metabolism in
streptozotocin-induced diabetic rats. Br J Nutr. 108:1194–1201.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Gray LR, Tompkins SC and Taylor EB:
Regulation of pyruvate metabolism and human disease. Cell Mol Life
Sci. 71:2577–2604. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Cotter DG, Ercal B, Huang X, Leid JM,
d'Avignon DA, Graham MJ, Dietzen DJ, Brunt EM, Patti GJ and
Crawford PA: Ketogenesis prevents diet-induced fatty liver injury
and hyperglycemia. J Clin Invest. 124:5175–5190. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kumashiro N, Beddow SA, Vatner DF,
Majumdar SK, Cantley JL, Guebre-Egziabher F, Fat I, Guigni B,
Jurczak MJ, Birkenfeld AL, et al: Targeting pyruvate carboxylase
reduces gluconeogenesis and adiposity and improves insulin
resistance. Diabetes. 62:2183–2194. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Go Y, Jeong JY, Jeoung NH, Jeon JH, Park
BY, Kang HJ, Ha CM, Choi YK, Lee SJ, Ham HJ, et al: Inhibition of
pyruvate dehydrogenase kinase 2 protects against hepatic steatosis
through modulation of tricarboxylic acid cycle anaplerosis and
ketogenesis. Diabetes. 65:2876–2887. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chen M, Zheng H, Xu M, Zhao L, Zhang Q,
Song J, Zhao Z, Lu S, Weng Q, Wu X, et al: Changes in hepatic
metabolic profile during the evolution of STZ-induced diabetic rats
via an 1H NMR-based metabonomic investigation. Biosci
Rep. Apr 23–2019.(Epub ahead of print). doi:
10.1042/BSR20181379.
|
|
78
|
Sugden MC and Holness MJ: Recent advances
in mechanisms regulating glucose oxidation at the level of the
pyruvate dehydrogenase complex by PDKs. Am J Physiol Endocrinol
Metab. 284:E855–E862. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Seidler NW: GAPDH and intermediary
metabolism. Adv Exp Med Biol. 985:37–59. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Hwang NR, Yim SH, Kim YM, Jeong J, Song
EJ, Lee Y, Lee JH, Choi S and Lee KJ: Oxidative modifications of
glyceraldehyde-3-phosphate dehydrogenase play a key role in its
multiple cellular functions. Biochem J. 423:253–264. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Yun J, Mullarky E, Lu C, Bosch KN,
Kavalier A, Rivera K, Roper J, Chio II, Giannopoulou EG, Rago C, et
al: Vitamin C selectively kills KRAS and BRAF mutant colorectal
cancer cells by targeting GAPDH. Science. 350:1391–1396. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Giacco F and Brownlee M: Oxidative stress
and diabetic complications. Circ Res. 107:1058–1070. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Du XL, Edelstein D, Rossetti L, Fantus IG,
Goldberg H, Ziyadeh F, Wu J and Brownlee M: Hyperglycemia-induced
mitochondrial superoxide overproduction activates the hexosamine
pathway and induces plasminogen activator inhibitor-1 expression by
increasing Sp1 glycosylation. Proc Natl Acad Sci USA.
97:12222–12226. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wu J, Jin Z, Zheng H and Yan LJ: Sources
and implications of NADH/NAD(+) redox imbalance in diabetes and its
complications. Diabetes Metab Syndr Obes. 9:145–153.
2016.PubMed/NCBI
|
|
85
|
Funk SD, Yurdagul A Jr and Orr AW:
Hyperglycemia and endothelial dysfunction in atherosclerosis:
Lessons from type 1 diabetes. Int J Vasc Med.
2012:5696542012.PubMed/NCBI
|
|
86
|
Rask-Madsen C and King GL: Vascular
complications of diabetes: Mechanisms of injury and protective
factors. Cell Metab. 17:20–33. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yan LJ: Pathogenesis of chronic
hyperglycemia: From reductive stress to oxidative stress. J
Diabetes Res. 2014:1379192014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Brownlee M: The pathobiology of diabetic
complications: A unifying mechanism. Diabetes. 54:1615–1625. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ralser M, Wamelink MM, Kowald A, Gerisch
B, Heeren G, Struys EA, Klipp E, Jakobs C, Breitenbach M, Lehrach H
and Krobitsch S: Dynamic rerouting of the carbohydrate flux is key
to counteracting oxidative stress. J Biol. 6:102007. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Perry RJ, Kim T, Zhang XM, Lee HY, Pesta
D, Popov VB, Zhang D, Rahimi Y, Jurczak MJ, Cline GW, et al:
Reversal of hypertriglyceridemia, fatty liver disease, and insulin
resistance by a liver-targeted mitochondrial uncoupler. Cell Metab.
18:740–748. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Wamelink MM, Struys EA and Jakobs C: The
biochemistry, metabolism and inherited defects of the pentose
phosphate pathway: A review. J Inherit Metab Dis. 31:703–717. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Riganti C, Gazzano E, Polimeni M, Aldieri
E and Ghigo D: The pentose phosphate pathway: An antioxidant
defense and a crossroad in tumor cell fate. Free Radic Biol Med.
53:421–436. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Cabezas H, Raposo RR and Meléndez-Hevia E:
Activity and metabolic roles of the pentose phosphate cycle in
several rat tissues. Mol Cell Biochem. 201:57–63. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Díaz-Flores M, Ibáñez-Hernández MA, Galván
RE, Gutiérrez M, Durán-Reyes G, Medina-Navarro R, Pascoe-Lira D,
Ortega-Camarillo C, Vilar-Rojas C, Cruz M and Baiza-Gutman LA:
Glucose-6-phosphate dehydrogenase activity and
NADPH/NADP+ ratio in liver and pancreas are dependent on
the severity of hyperglycemia in rat. Life Sci. 78:2601–2607. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Spaans SK, Weusthuis RA, van der Oost J
and Kengen SW: NADPH-generating systems in bacteria and archaea.
Front Microbiol. 6:7422015. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Aragno M, Tamagno E, Gatto V, Brignardello
E, Parola S, Danni O and Boccuzzi G: Dehydroepiandrosterone
protects tissues of streptozotocin-treated rats against oxidative
stress. Free Radic Biol Med. 26:1467–1474. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Cédola N, Cabarrou A, Auciello N, Doria I,
Ponce de León H and Baylon N: The liver in human diabetes.
Concentration of some induced enzymes. Acta Diabetol Lat.
12:263–271. 1975. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Gupte RS, Floyd BC, Kozicky M, George S,
Ungvari ZI, Neito V, Wolin MS and Gupte SA: Synergistic activation
of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase by Src
kinase elevates superoxide in type 2 diabetic, Zucker fa/fa, rat
liver. Free Radic Biol Med. 47:219–228. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Shepherd A and Cleary MP: Metabolic
alterations after dehydroepiandrosterone treatment in Zucker rats.
Am J Physiol. 246:E123–E128. 1984.PubMed/NCBI
|
|
100
|
Dong K, Ni H, Wu M, Tang Z, Halim M and
Shi D: ROS-mediated glucose metabolic reprogram induces insulin
resistance in type 2 diabetes. Biochem Biophys Res Commun.
476:204–211. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Kolderup A and Svihus B: Fructose
metabolism and relation to atherosclerosis, type 2 diabetes, and
obesity. J Nutr Metab. 2015:8230812015. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Lambert JE, Ramos-Roman MA, Browning JD
and Parks EJ: Increased de novo lipogenesis is a distinct
characteristic of individuals with nonalcoholic fatty liver
disease. Gastroenterology. 146:726–735. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Softic S, Cohen DE and Kahn CR: Role of
dietary fructose and hepatic de novo lipogenesis in fatty liver
disease. Dig Dis Sci. 61:1282–1293. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Barros BSV, Santos DC, Pizarro MH, del
Melo LGN and Gomes MB: Type 1 diabetes and non-alcoholic fatty
liver disease: When should we be concerned? A nationwide study in
Brazil. Nutrients. 9:E8782017. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Calzadilla Bertot L and Adams LA: The
natural course of non-alcoholic fatty liver disease. Int J Mol Sci.
17:E7742016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Targher G, Bertolini L, Padovani R,
Rodella S, Zoppini G, Pichiri I, Sorgato C, Zenari L and Bonora E:
Prevalence of non-alcoholic fatty liver disease and its association
with cardiovascular disease in patients with type 1 diabetes. J
Hepatol. 53:713–718. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Kummer S, Klee D, Kircheis G, Friedt M,
Schaper J, Häussinger D, Mayatepek E and Meissner T: Screening for
non-alcoholic fatty liver disease in children and adolescents with
type 1 diabetes mellitus: A cross-sectional analysis. Eur J
Pediatr. 176:529–536. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Lăpădat AM, Jianu IR, Ungureanu BS,
Florescu LM, Gheonea DI, Sovaila S and Gheonea IA: Non-invasive
imaging techniques in assessing non-alcoholic fatty liver disease:
A current status of available methods. J Med Life. 10:19–26. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Guiu B, Petit JM, Loffroy R, Ben Salem D,
Aho S, Masson D, Hillon P, Krause D and Cercueil JP; Quantification
of liver fat content, : Comparison of triple-echo chemical shift
gradient-echo imaging and in vivo proton MR spectroscopy.
Radiology. 250:95–102. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Petit JM, Pedro L, Guiu B, Duvillard L,
Bouillet B, Jooste V, Habchi M, Crevisy E, Fourmont C, Buffier P,
et al: Type 1 diabetes is not associated with an increased
prevalence of hepatic steatosis. Diabet Med. 32:1648–1651. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Perseghin G, Lattuada G, De Cobelli F,
Esposito A, Costantino F, Canu T, Scifo P, De Taddeo F, Maffi P,
Secchi A, et al: Reduced intrahepatic fat content is associated
with increased whole-body lipid oxidation in patients with type 1
diabetes. Diabetologia. 48:2615–2621. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Cusi K, Sanyal AJ, Zhang S, Hartman ML,
Bue-Valleskey JM, Hoogwerf BJ and Haupt A: Non-alcoholic fatty
liver disease (NAFLD) prevalence and its metabolic associations in
patients with type 1 diabetes and type 2 diabetes. Diabetes Obes
Metab. 19:1630–1634. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Regnell SE, Peterson P, Trinh L, Broberg
P, Leander P, Lernmark Å, Månsson S and Elding Larsson H: Magnetic
resonance imaging reveals altered distribution of hepatic fat in
children with type 1 diabetes compared to controls. Metabolism.
64:872–878. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Jiang S, Tang X, Wang K, Liang Y, Qian Y,
Lu C and Cai L: Hepatic functional and pathological changes of type
1 diabetic mice in growing and maturation time. J Cell Mol Med.
23:5794–5807. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Torbenson M, Chen YY, Brunt E, Cummings
OW, Gottfried M, Jakate S, Liu YC, Yeh MM and Ferrell L: Glycogenic
hepatopathy: An underrecognized hepatic complication of diabetes
mellitus. Am J Surg Pathol. 30:508–513. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Kotronen A, Juurinen L, Tiikkainen M,
Vehkavaara S and Yki-Järvinen H: Increased liver fat, impaired
insulin clearance, and hepatic and adipose tissue insulin
resistance in type 2 diabetes. Gastroenterology. 135:122–130. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Titchenell PM, Lazar MA and Birnbaum MJ:
Unraveling the regulation of hepatic metabolism by insulin. Trends
Endocrinol Metab. 28:497–505. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Vatner DF, Majumdar SK, Kumashiro N,
Petersen MC, Rahimi Y, Gattu AK, Bears M, Camporez JP, Cline GW,
Jurczak MJ, et al: Insulin-independent regulation of hepatic
triglyceride synthesis by fatty acids. Proc Natl Acad Sci USA.
112:1143–1148. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Osório J: Diabetes: Hepatic lipogenesis
independent of insulin in type 2 diabetes mellitus-a paradox
clarified. Nat Rev Endocrinol. 11:1302015. View Article : Google Scholar
|
|
120
|
Alwahsh SM, Dwyer BJ, Forbes S, Thiel DH,
Lewis PJ and Ramadori G: Insulin production and resistance in
different models of diet-induced obesity and metabolic syndrome.
Int J Mol Sci. 18(pii): E2852017. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
American Diabetes Association: Diagnosis
and classification of diabetes mellitus. Diabetes Care. 35 (Suppl
1):S64–S71. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Regnell SE and Lernmark Å: Hepatic
steatosis in type 1 diabetes. Rev Diabet Stud. 8:454–467. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Purnell JQ, Zinman B and Brunzell JD;
DCCT/EDIC Research Group, : The effect of excess weight gain with
intensive diabetes mellitus treatment on cardiovascular disease
risk factors and atherosclerosis in type 1 diabetes mellitus:
Results from the diabetes control and complications
trial/epidemiology of diabetes interventions and complications
study (DCCT/EDIC) study. Circulation. 127:180–187. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Singh R, Kaushik S, Wang Y, Xiang Y, Novak
I, Komatsu M, Tanaka K, Cuervo AM and Czaja MJ: Autophagy regulates
lipid metabolism. Nature. 458:1131–1135. 2009. View Article : Google Scholar : PubMed/NCBI
|