|
1
|
Tham YC, Li X, Wong TY, Quigley HA, Aung T
and Cheng CY: Global prevalence of glaucoma and projections of
glaucoma burden through 2040: A systematic review and
meta-analysis. Ophthalmology. 121:2081–2090. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kwon YH, Fingert JH, Kuehn MH and Alward
WL: Primary open-angle glaucoma. N Engl J Med. 360:1113–1124. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Gordon MO, Beiser JA, Brandt JD, Heuer DK,
Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK II,
Wilson MR, et al: The Ocular Hypertension Treatment Study: Baseline
factors that predict the onset of primary open-angle glaucoma. Arch
Ophthalmol. 120:714–720, discussion 829–830. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Fan BJ, Leung YF, Wang N, Lam SC, Liu Y,
Tam OS and Pang CP: Genetic and environmental risk factors for
primary open-angle glaucoma. Chin Med J (Engl). 117:706–710.
2004.PubMed/NCBI
|
|
5
|
Wolfs RC, Klaver CC, Ramrattan RS, van
Duijn CM, Hofman A and de Jong PT: Genetic risk of primary
open-angle glaucoma. Population-based familial aggregation study.
Arch Ophthalmol. 116:1640–1645. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Stone EM, Fingert JH, Alward WL, Nguyen
TD, Polansky JR, Sunden SL, Nishimura D, Clark AF, Nystuen A,
Nichols BE, et al: Identification of a gene that causes primary
open angle glaucoma. Science. 275:668–670. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Rezaie T, Child A, Hitchings R, Brice G,
Miller L, Coca-Prados M, Héon E, Krupin T, Ritch R, Kreutzer D, et
al: Adult-onset primary open-angle glaucoma caused by mutations in
optineurin. Science. 295:1077–1079. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Monemi S, Spaeth G, DaSilva A, Popinchalk
S, Ilitchev E, Liebmann J, Ritch R, Héon E, Crick RP, Child A, et
al: Identification of a novel adult-onset primary open-angle
glaucoma (POAG) gene on 5q22.1. Hum Mol Genet. 14:725–733. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Pasutto F, Matsumoto T, Mardin CY, Sticht
H, Brandstätter JH, Michels-Rautenstrauss K, Weisschuh N, Gramer E,
Ramdas WD, van Koolwijk LM, et al: Heterozygous NTF4 mutations
impairing neurotrophin-4 signaling in patients with primary
open-angle glaucoma. Am J Hum Genet. 85:447–456. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Fingert JH: Primary open-angle glaucoma
genes. Eye (Lond). 25:587–595. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Charlesworth J, Kramer PL, Dyer T, Diego
V, Samples JR, Craig JE, Mackey DA, Hewitt AW, Blangero J and Wirtz
MK: The path to open-angle glaucoma gene discovery: Endophenotypic
status of intraocular pressure, cup-to-disc ratio, and central
corneal thickness. Invest Ophthalmol Vis Sci. 51:3509–3514. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Klein BE, Klein R and Lee KE: Heritability
of risk factors for primary open-angle glaucoma: The Beaver Dam Eye
Study. Invest Ophthalmol Vis Sci. 45:59–62. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Sanfilippo PG, Hewitt AW, Hammond CJ and
Mackey DA: The heritability of ocular traits. Surv Ophthalmol.
55:561–583. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Liu Y and Allingham RR: Major review:
Molecular genetics of primary open-angle glaucoma. Exp Eye Res.
160:62–84. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Liu Y and Allingham RR: Molecular genetics
in glaucoma. Exp Eye Res. 93:331–339. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Sheffield VC, Stone EM, Alward WL, Drack
AV, Johnson AT, Streb LM and Nichols BE: Genetic linkage of
familial open angle glaucoma to chromosome 1q21-q31. Nat Genet.
4:47–50. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Fingert JH, Héon E, Liebmann JM, Yamamoto
T, Craig JE, Rait J, Kawase K, Hoh ST, Buys YM, Dickinson J, et al:
Analysis of myocilin mutations in 1703 glaucoma patients from five
different populations. Hum Mol Genet. 8:899–905. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kaur K, Reddy AB, Mukhopadhyay A, Mandal
AK, Hasnain SE, Ray K, Thomas R, Balasubramanian D and Chakrabarti
S: Myocilin gene implicated in primary congenital glaucoma. Clin
Genet. 67:335–340. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Dismuke WM, Challa P, Navarro I, Stamer WD
and Liu Y: Human aqueous humor exosomes. Exp Eye Res. 132:73–77.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kaur K, Mandal AK and Chakrabarti S:
Primary congenital glaucoma and the involvement of CYP1B1. Middle
East Afr J Ophthalmol. 18:7–16. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Aung T, Rezaie T, Okada K, Viswanathan AC,
Child AH, Brice G, Bhattacharya SS, Lehmann OJ, Sarfarazi M and
Hitchings RA: Clinical features and course of patients with
glaucoma with the E50K mutation in the optineurin gene. Invest
Ophthalmol Vis Sci. 46:2816–2822. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Cirulli ET, Lasseigne BN, Petrovski S,
Sapp PC, Dion PA, Leblond CS, Couthouis J, Lu YF, Wang Q, Krueger
BJ, et al FALS Sequencing Consortium, : Exome sequencing in
amyotrophic lateral sclerosis identifies risk genes and pathways.
Science. 347:1436–1441. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Heo JM, Ordureau A, Paulo JA, Rinehart J
and Harper JW: The PINK1-PARKIN mitochondrial ubiquitylation
pathway drives a program of OPTN/NDP52 recruitment and TBK1
activation to promote mitophagy. Mol Cell. 60:7–20. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Slowicka K, Vereecke L and van Loo G:
Cellular functions of optineurin in health and disease. Trends
Immunol. 37:621–633. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Park BC, Tibudan M, Samaraweera M, Shen X
and Yue BYJT: Interaction between two glaucoma genes, optineurin
and myocilin. Genes Cells. 12:969–979. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Morton S, Hesson L, Peggie M and Cohen P:
Enhanced binding of TBK1 by an optineurin mutant that causes a
familial form of primary open angle glaucoma. FEBS Lett.
582:997–1002. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Liu Y, Garrett ME, Yaspan BL, Bailey JC,
Loomis SJ, Brilliant M, Budenz DL, Christen WG, Fingert JH,
Gaasterland D, et al: DNA copy number variants of known glaucoma
genes in relation to primary open-angle glaucoma. Invest Ophthalmol
Vis Sci. 55:8251–8258. 2014b. View Article : Google Scholar
|
|
28
|
Gijselinck I, Van Mossevelde S, van der
Zee J, Sieben A, Philtjens S, Heeman B, Engelborghs S, Vandenbulcke
M, De Baets G, Bäumer V, et al BELNEU Consortium, : Loss of TBK1 is
a frequent cause of frontotemporal dementia in a Belgian cohort.
Neurology. 85:2116–2125. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Matsumoto G, Shimogori T, Hattori N and
Nukina N: TBK1 controls autophagosomal engulfment of
polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation.
Hum Mol Genet. 24:4429–4442. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Janssen SF, Gorgels TG, Ramdas WD, Klaver
CC, van Duijn CM, Jansonius NM and Bergen AA: The vast complexity
of primary open angle glaucoma: Disease genes, risks, molecular
mechanisms and pathobiology. Prog Retin Eye Res. 37:31–67. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kramer PL, Samples JR, Monemi S, Sykes R,
Sarfarazi M and Wirtz MK: The role of the WDR36 gene on chromosome
5q22.1 in a large family with primary open-angle glaucoma mapped to
this region. Arch Ophthalmol. 124:1328–1331. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Gallenberger M, Meinel DM, Kroeber M,
Wegner M, Milkereit P, Bösl MR and Tamm ER: Lack of WDR36 leads to
preimplantation embryonic lethality in mice and delays the
formation of small subunit ribosomal RNA in human cells in vitro.
Hum Mol Genet. 20:422–435. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Murakami K, Meguro A, Ota M, Shiota T,
Nomura N, Kashiwagi K, Mabuchi F, Iijima H, Kawase K, Yamamoto T,
et al: Analysis of microsatellite polymorphisms within the GLC1F
locus in Japanese patients with normal tension glaucoma. Mol Vis.
16:462–466. 2010.PubMed/NCBI
|
|
34
|
Pasutto F, Keller KE, Weisschuh N, Sticht
H, Samples JR, Yang YF, Zenkel M, Schlötzer-Schrehardt U, Mardin
CY, Frezzotti P, et al: Variants in ASB10 are associated with
open-angle glaucoma. Hum Mol Genet. 21:1336–1349. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Macgregor S, Hewitt AW, Hysi PG, Ruddle
JB, Medland SE, Henders AK, Gordon SD, Andrew T, McEvoy B,
Sanfilippo PG, et al: Genome-wide association identifies ATOH7 as a
major gene determining human optic disc size. Hum Mol Genet.
19:2716–2724. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Venturini C, Nag A, Hysi PG, Wang JJ, Wong
TY, Healey PR, Mitchell P, Hammond CJ and Viswanathan AC; Wellcome
Trust Case Control Consortium 2 and BMES GWAS Group, : Clarifying
the role of ATOH7 in glaucoma endophenotypes. Br J Ophthalmol.
98:562–566. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Gu X, Reagan AM, McClellan ME and Elliott
MH: Caveolins and caveolae in ocular physiology and
pathophysiology. Prog Retin Eye Res. 56:84–106. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Chen F, Klein AP, Klein BE, Lee KE, Truitt
B, Klein R, Iyengar SK and Duggal P: Exome array analysis
identifies CAV1/CAV2 as a susceptibility locus for intraocular
pressure. Invest Ophthalmol Vis Sci. 56:544–551. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Aga M, Bradley JM, Wanchu R, Yang YF,
Acott TS and Keller KE: Differential effects of caveolin-1 and −2
knockdown on aqueous outflow and altered extracellular matrix
turnover in caveolin-silenced trabecular meshwork cells. Invest
Ophthalmol Vis Sci. 55:5497–5509. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kuo CY, Lin YC, Yang JJ and Yang VC:
Interaction abolishment between mutant caveolin-1(Δ62-100) and
ABCA1 reduces HDL-mediated cellular cholesterol efflux. Biochem
Biophys Res Commun. 414:337–343. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Bailey JN, Loomis SJ, Kang JH, Allingham
RR, Gharahkhani P, Khor CC, Burdon KP, Aschard H, Chasman DI, Igo
RP Jr, et al ANZRAG Consortium, : Genome-wide association analysis
identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for
primary open-angle glaucoma. Nat Genet. 48:189–194. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Burdon KP, Crawford A, Casson RJ, Hewitt
AW, Landers J, Danoy P, Mackey DA, Mitchell P, Healey PR and Craig
JE: Glaucoma risk alleles at CDKN2B-AS1 are associated with lower
intraocular pressure, normal-tension glaucoma, and advanced
glaucoma. Ophthalmology. 119:1539–1545. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Chen Y, Hughes G, Chen X, Qian S, Cao W,
Wang L, Wang M and Sun X: Genetic variants associated with
different risks for high tension glaucoma and normal tension
glaucoma in a Chinese population. Invest Ophthalmol Vis Sci.
56:2595–2600. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wiggs JL, Yaspan BL, Hauser MA, Kang JH,
Allingham RR, Olson LM, Abdrabou W, Fan BJ, Wang DY, Brodeur W, et
al: Common variants at 9p21 and 8q22 are associated with increased
susceptibility to optic nerve degeneration in glaucoma. PLoS Genet.
8:e10026542012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kathiresan S, Voight BF, Purcell S,
Musunuru K, Ardissino D, Mannucci PM, Anand S, Engert JC, Samani
NJ, Schunkert H, et al Wellcome Trust Case Control Consortium, :
Genome-wide association of early-onset myocardial infarction with
single nucleotide polymorphisms and copy number variants. Nat
Genet. 41:334–341. 2009. View
Article : Google Scholar : PubMed/NCBI
|
|
46
|
Burdon KP, Macgregor S, Hewitt AW, Sharma
S, Chidlow G, Mills RA, Danoy P, Casson R, Viswanathan AC, Liu JZ,
et al: Genome-wide association study identifies susceptibility loci
for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet.
43:574–578. 2011. View
Article : Google Scholar : PubMed/NCBI
|
|
47
|
Shiga Y, Nishiguchi KM, Kawai Y, Kojima K,
Sato K, Fujita K, Takahashi M, Omodaka K, Araie M, Kashiwagi K, et
al: Genetic analysis of Japanese primary open-angle glaucoma
patients and clinical characterization of risk alleles near
CDKN2B-AS1, SIX6 and GAS7. PLoS One. 12:e01866782017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Carnes MU, Liu YP, Allingham RR, Whigham
BT, Havens S, Garrett ME, Qiao C, Katsanis N, Wiggs JL, Pasquale
LR, et al NEIGHBORHOOD Consortium Investigators, : Discovery and
functional annotation of SIX6 variants in primary open-angle
glaucoma. PLoS Genet. 10:e10043722014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Iglesias AI, Springelkamp H, van der Linde
H, Severijnen LA, Amin N, Oostra B, Kockx CE, van den Hout MC, van
Ijcken WF, Hofman A, et al: Exome sequencing and functional
analyses suggest that SIX6 is a gene involved in an altered
proliferation-differentiation balance early in life and optic nerve
degeneration at old age. Hum Mol Genet. 23:1320–1332. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Burdon KP, Mitchell P, Lee A, Healey PR,
White AJ, Rochtchina E, Thomas PB, Wang JJ and Craig JE:
Association of open-angle glaucoma loci with incident glaucoma in
the Blue Mountains Eye study. Am J Ophthalmol. 159:31–36.e1. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kuo JZ, Zangwill LM, Medeiros FA, Liebmann
JM, Girkin CA, Hammel N, Rotter JI and Weinreb RN: Quantitative
trait locus analysis of SIX1-SIX6 with retinal nerve fiber layer
thickness in individuals of European descent. Am J Ophthalmol.
160:123–130.e1. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Skowronska-Krawczyk D, Zhao L, Zhu J,
Weinreb RN, Cao G, Luo J, Flagg K, Patel S, Wen C, Krupa M, et al:
P16INK4a Upregulation mediated by SIX6 defines retinal ganglion
cell pathogenesis in glaucoma. Mol Cell. 59:931–940. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Scheetz TE, Faga B, Ortega L, Roos BR,
Gordon MO, Kass MA, Wang K and Fingert JH: Glaucoma risk alleles in
the ocular hypertension treatment study. Ophthalmology.
123:2527–2536. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
van Koolwijk LM, Ramdas WD, Ikram MK,
Jansonius NM, Pasutto F, Hysi PG, Macgregor S, Janssen SF, Hewitt
AW, Viswanathan AC, et al DCCT/EDIC Research Group; Wellcome Trust
Case Control Consortium 2, : Common genetic determinants of
intraocular pressure and primary open-angle glaucoma. PLoS Genet.
8:e10026112012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Hysi PG, Cheng CY, Springelkamp H,
Macgregor S, Bailey JNC, Wojciechowski R, Vitart V, Nag A, Hewitt
AW, Höhn R, et al BMES GWAS Group; NEIGHBORHOOD Consortium;
Wellcome Trust Case Control Consortium 2, : Genome-wide analysis of
multi-ancestry cohorts identifies new loci influencing intraocular
pressure and susceptibility to glaucoma. Nat Genet. 46:1126–1130.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chen Y, Lin Y, Vithana EN, Jia L, Zuo X,
Wong TY, Chen LJ, Zhu X, Tam PO, Gong B, et al: Common variants
near ABCA1 and in PMM2 are associated with primary open-angle
glaucoma. Nat Genet. 46:1115–1119. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Gharahkhani P, Burdon KP, Fogarty R,
Sharma S, Hewitt AW, Martin S, Law MH, Cremin K, Bailey JNC, Loomis
SJ, et al Wellcome Trust Case Control Consortium 2, NEIGHBORHOOD
consortium, : Common variants near ABCA1, AFAP1 and GMDS confer
risk of primary open-angle glaucoma. Nat Genet. 46:1120–1125. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Springelkamp H, Iglesias AI,
Cuellar-Partida G, Amin N, Burdon KP, van Leeuwen EM, Gharahkhani
P, Mishra A, van der Lee SJ, Hewitt AW, et al: ARHGEF12 influences
the risk of glaucoma by increasing intraocular pressure. Hum Mol
Genet. 24:2689–2699. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lessey-Morillon EC, Osborne LD,
Monaghan-Benson E, Guilluy C, O'Brien ET, Superfine R and Burridge
K: The RhoA guanine nucleotide exchange factor, LARG, mediates
ICAM-1-dependent mechanotransduction in endothelial cells to
stimulate transendothelial migration. J Immunol. 192:3390–3398.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Okuhira K, Fitzgerald ML, Tamehiro N,
Ohoka N, Suzuki K, Sawada J, Naito M and Nishimaki-Mogami T:
Binding of PDZ-RhoGEF to ATP-binding cassette transporter A1
(ABCA1) induces cholesterol efflux through RhoA activation and
prevention of transporter degradation. J Biol Chem.
285:16369–16377. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Chen Y, Cai J and Jones DP: Mitochondrial
thioredoxin in regulation of oxidant-induced cell death. FEBS Lett.
580:6596–6602. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Caprioli J, Munemasa Y, Kwong JM and Piri
N: Overexpression of thioredoxins 1 and 2 increases retinal
ganglion cell survival after pharmacologically induced oxidative
stress, optic nerve transection, and in experimental glaucoma.
Trans Am Ophthalmol Soc. 107:161–165. 2009.PubMed/NCBI
|
|
63
|
Orr HT: Cell biology of spinocerebellar
ataxia. J Cell Biol. 197:167–177. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lattante S, Millecamps S, Stevanin G,
Rivaud-Péchoux S, Moigneu C, Camuzat A, Da Barroca S, Mundwiller E,
Couarch P, Salachas F, et al French Research Network on FTD and
FTD-ALS, : Contribution of ATXN2 intermediary polyQ expansions in a
spectrum of neurodegenerative disorders. Neurology. 83:990–995.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ju YT, Chang ACY, She BR, Tsaur ML, Hwang
HM, Chao CCK, Cohen SN and Lin-Chao S: gas7: A gene expressed
preferentially in growth-arrested fibroblasts and terminally
differentiated Purkinje neurons affects neurite formation. Proc
Natl Acad Sci USA. 95:11423–11428. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wenger DA, Rafi MA, Luzi P, Datto J and
Costantino-Ceccarini E: Krabbe disease: Genetic aspects and
progress toward therapy. Mol Genet Metab. 70:1–9. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Liu Y, Gibson J, Wheeler J, Kwee LC,
Santiago-Turla CM, Akafo SK, Lichter PR, Gaasterland DE, Moroi SE,
Challa P, et al: GALC deletions increase the risk of primary
open-angle glaucoma: The role of Mendelian variants in complex
disease. PLoS One. 6:e271342011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Williams SE, Carmichael TR, Allingham RR,
Hauser M and Ramsay M: The genetics of POAG in black South
Africans: A candidate gene association study. Sci Rep. 5:83782015.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Vishal M, Sharma A, Kaurani L, Alfano G,
Mookherjee S, Narta K, Agrawal J, Bhattacharya I, Roychoudhury S,
Ray J, et al: Genetic association and stress mediated
down-regulation in trabecular meshwork implicates MPP7 as a novel
candidate gene in primary open angle glaucoma. BMC Med Genomics.
9:152016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Acharya M, Mookherjee S, Bhattacharjee A,
Thakur SK, Bandyopadhyay AK, Sen A, Chakrabarti S and Ray K:
Evaluation of the OPTC gene in primary open angle glaucoma:
functional significance of a silent change. BMC Mol Biol. 8:212007.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Lu Y, Vitart V, Burdon KP, Khor CC,
Bykhovskaya Y, Mirshahi A, Hewitt AW, Koehn D, Hysi PG, Ramdas WD,
et al NEIGHBOR Consortium, : Genome-wide association analyses
identify multiple loci associated with central corneal thickness
and keratoconus. Nat Genet. 45:155–163. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Chua J, Tham YC, Liao J, Zheng Y, Aung T,
Wong TY and Cheng CY: Ethnic differences of intraocular pressure
and central corneal thickness: The Singapore Epidemiology of Eye
Diseases study. Ophthalmology. 121:2013–2022. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ramdas WD, van Koolwijk LME, Ikram MK,
Jansonius NM, de Jong PTVM, Bergen AAB, Isaacs A, Amin N, Aulchenko
YS, Wolfs RC, et al: A genome-wide association study of optic disc
parameters. PLoS Genet. 6:e10009782010. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Springelkamp H, Höhn R, Mishra A, Hysi PG,
Khor CC, Loomis SJ, Bailey JN, Gibson J, Thorleifsson G, Janssen
SF, et al Blue Mountains Eye Study-GWAS group; NEIGHBORHOOD
Consortium; Wellcome Trust Case Control Consortium 2 (WTCCC2), :
Meta-analysis of genome-wide association studies identifies novel
loci that influence cupping and the glaucomatous process. Nat
Commun. 5:48832014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Springelkamp H, Iglesias AI, Mishra A,
Höhn R, Wojciechowski R, Khawaja AP, Nag A, Wang YX, Wang JJ,
Cuellar-Partida G, et al NEIGHBORHOOD Consortium, : New insights
into the genetics of primary open-angle glaucoma based on
meta-analyses of intraocular pressure and optic disc
characteristics. Hum Mol Genet. 26:438–453. 2017.PubMed/NCBI
|
|
76
|
Axenovich T, Zorkoltseva I, Belonogova N,
van Koolwijk LM, Borodin P, Kirichenko A, Babenko V, Ramdas WD,
Amin N, Despriet DD, et al: Linkage and association analyses of
glaucoma related traits in a large pedigree from a Dutch
genetically isolated population. J Med Genet. 48:802–809. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Khawaja AP and Viswanathan AC: Are we
ready for genetic testing for primary open-angle glaucoma? Eye
(Lond). 32:877–883. 2018. View Article : Google Scholar : PubMed/NCBI
|