|
1
|
Liu J, Jiang C, Ma X and Wang J:
Notoginsenoside Fc attenuates high glucose-induced vascular
endothelial cell injury via upregulation of PPAR-γ in diabetic
Sprague-Dawley rats. Vascul Pharmacol. 109:27–35. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Baumer Y, McCurdy S, Alcala M, Mehta N,
Lee BH, Ginsberg MH and Boisvert WA: CD98 regulates vascular smooth
muscle cell proliferation in atherosclerosis. Atherosclerosis.
256:105–114. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hassan MO: The role of circulating
endotoxaemia as a proinflammatory mediator of atherosclerosis in
chronic kidney disease patients. BMJ. 288:283–284. 2016.
|
|
4
|
Groh L, Keating ST, Joosten LAB, Netea MG
and Riksen NP: Monocyte and macrophage immunometabolism in
atherosclerosis. Semin Immunopathol. 40:203–214. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Chistiakov DA, Melnichenko AA, Myasoedova
VA, Grechko AV and Orekhov AN: Mechanisms of foam cell formation in
atherosclerosis. J Mol Med (Berl). 95:1153–1165. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lao KH, Zeng L and Xu Q: Endothelial and
smooth muscle cell transformation in atherosclerosis. Curr Opin
Lipidol. 26:449–456. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Francis GA, Allahverdian S, Cheroudi AC,
Abraham T and McManus BM: Response to letter regarding article,
“contribution of intimal smooth muscle cells to cholesterol
accumulation and macrophage-like cells in human atherosclerosis”.
Circulation. 131:e252015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Huang Y, Ma XY, Yang YB, Ren HT, Sun XH
and Wang LR: Identification and characterization of microRNAs and
their target genes from Nile tilapia (Oreochromis niloticus). Z
Natforsch C J Biosci. 71:215–223. 2016.
|
|
9
|
Xu X, Wang X, Fu B, Meng L and Lang B:
Differentially expressed genes and microRNAs in bladder carcinoma
cell line 5637 and T24 detected by RNA sequencing. Int J Clin Exp
Pathol. 8:12678–12687. 2015.PubMed/NCBI
|
|
10
|
Gao ZG, Chen QJ, Shao M, Qian YZ, Zhang
LF, Zhang YB and Xiong QX: Preliminary identification of key
miRNAs, signaling pathways, and genes associated with
Hirschsprung's disease by analysis of tissue microRNA expression
profiles. World J Pediatr. 13:489–495. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Brennan E, Wang B, McClelland A, Mohan M,
Marai M, Beuscart O, Derouiche S, Gray S, Pickering R, Tikellis C,
et al: Protective effect of let-7 miRNA family in regulating
inflammation in diabetes-associated atherosclerosis. Diabetes.
66:2266–2277. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Qun L, Wenda X, Weihong S, Jianyang M, Wei
C, Fangzhou L, Zhenyao X and Pingjin G: miRNA-27b modulates
endothelial cell angiogenesis by directly targeting Naa15 in
atherogenesis. Atherosclerosis. 254:184–192. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
de Ronde MWJ, Kok MGM, Moerland PD, Van
den Bossche J, Neele AE, Halliani A, van der Made I, de Winther
MPJ, Meijers JCM, Creemers EE, et al: High miR-124-3p expression
identifies smoking individuals susceptible to atherosclerosis.
Atherosclerosis. 263:377–384. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kim J, Inoue K, Ishii J, Vanti WB, Voronov
SV, Murchison E, Hannon G and Abeliovich A: A MicroRNA feedback
circuit in midbrain dopamine neurons. Science. 317:1220–1224. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Sanchez-Simon FM, Zhang XX, Loh HH, Law
P-Y and Rodriguez RE: Morphine regulates dopaminergic neuron
differentiation via miR-133b. Mol Pharmacol. 78:935–942. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yin H, Pasut A, Soleimani VD, Bentzinger
CF, Antoun G, Thorn S, Seale P, Fernando P, van Ijcken W, Grosveld
F, et al: MicroRNA-133 controls brown adipose determination in
skeletal muscle satellite cells by targeting Prdm16. Cell Metab.
17:210–224. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Li X, Wan X, Chen H, Yang S, Liu Y, Mo W,
Meng D, Du W, Huang Y, Wu H, et al: Identification of miR-133b and
RB1CC1 as independent predictors for biochemical recurrence and
potential therapeutic targets for prostate cancer. Clin Cancer Res.
20:2312–2325. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Li D, Xia L, Chen M, Lin C, Wu H, Zhang Y,
Pan S and Li X: miR-133b, a particular member of myomiRs, coming
into playing its unique pathological role in human cancer.
Oncotarget. 8:50193–50208. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
de Mena L, Coto E, Cardo LF, Díaz M,
Blázquez M, Ribacoba R, Salvador C, Pastor P, Samaranch L, Moris G,
et al: Analysis of the Micro-RNA-133 and PITX3 genes in Parkinson's
disease. Am J Med Genet B Neuropsychiatr Genet. 153B:1234–1239.
2010.PubMed/NCBI
|
|
20
|
Ferreira LRP, Frade AF, Santos RHB,
Teixeira PC, Baron MA, Navarro IC, Benvenuti LA, Fiorelli AI,
Bocchi EA, Stolf NA, et al: MicroRNAs miR-1, miR-133a, miR-133b,
miR-208a and miR-208b are dysregulated in Chronic Chagas disease
Cardiomyopathy. Int J Cardiol. 175:409–417. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Masè M, Grasso M, Avogaro L, Nicolussi
Giacomaz M, D'Amato E, Tessarolo F, Graffigna A, Denti MA and
Ravelli F: Upregulation of miR-133b and miR-328 in patients with
atrial dilatation: Implications for stretch-induced atrial
fibrillation. Front Physiol. 10:11332019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Huang B, Jiang X-C, Zhang T-Y, Hu YL,
Tabata Y, Chen Z, Pluchino S and Gao JQ: Peptide modified
mesenchymal stem cells as targeting delivery system transfected
with miR-133b for the treatment of cerebral ischemia. Int J Pharm.
531:90–100. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zheng CG, Chen BY, Sun RH, Mou XZ, Han F,
Li Q, Huang HJ, Liu JQ and Tu YX: miR-133b Downregulation Reduces
Vulnerable Plaque Formation in Mice with AS through Inhibiting
Macrophage Immune Responses. Mol Ther Nucleic Acids. 16:745–757.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhen Y, Liu J, Huang Y, Wang Y, Li W and
Wu J: miR-133b inhibits cell growth, migration, and invasion by
targeting MMP9 in non-small cell lung cancer. Oncol Res.
25:1109–1116. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Guo L, Bai H, Zou D, Hong T, Liu J, Huang
J, He P, Zhou Q and He J: The role of microRNA-133b and its target
gene FSCN1 in gastric cancer. J Exp Clin Cancer Res. 33:992014.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Cheng Y, Jia B, Wang Y and Wan S: miR-133b
acts as a tumor suppressor and negatively regulates ATP citrate
lyase via PPARγ in gastric cancer. Oncol Rep. 38:3220–3226. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wang X, Bu J, Liu X, Wang W, Mai W, Lv B,
Zou J, Mo X, Li X, Wang J, et al: miR-133b suppresses metastasis by
targeting HOXA9 in human colorectal cancer. Oncotarget.
8:63935–63948. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhou Y, Wu D, Tao J, Qu P, Zhou Z and Hou
J: MicroRNA-133 inhibits cell proliferation, migration and invasion
by targeting epidermal growth factor receptor and its downstream
effector proteins in bladder cancer. Scand J Urol. 47:423–432.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Li Y, Xiao L, Li J, Sun P, Shang L, Zhang
J, Zhao Q, Ouyang Y, Li L and Gong K: MicroRNA profiling of
diabetic atherosclerosis in a rat model. Eur J Med Res. 23:552018.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Fung E, Tang SM, Canner JP, Morishige K,
Arboleda-Velasquez JF, Cardoso AA, Carlesso N, Aster JC and Aikawa
M: Delta-like 4 induces notch signaling in macrophages:
Implications for inflammation. Circulation. 115:2948–2956. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Quillard T, Devallière J, Coupel S and
Charreau B: Inflammation dysregulates Notch signaling in
endothelial cells: Implication of Notch2 and Notch4 to endothelial
dysfunction. Biochem Pharmacol. 80:2032–2041. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Liu ZJ, Tan Y, Beecham GW, Seo DM, Tian R,
Li Y, Vazquez-Padron RI, Pericak-Vance M, Vance JM,
Goldschmidt-Clermont PJ, et al: Notch activation induces
endothelial cell senescence and pro-inflammatory response:
Implication of Notch signaling in atherosclerosis. Atherosclerosis.
225:296–303. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Liu Z, Tan Y, Tian R, Li Y, Beecham GW,
Seo DM, Vazquez-Padron RI, Pericak-Vance MA, Vance JM,
Goldschmidt-Clermont PJ, et al: Notch Signaling Is A Potential
Novel Target In Atherosclerosis. J Surg Res. 165:3262011.
View Article : Google Scholar
|
|
34
|
Davis-Knowlton J, Turner JE, Turner A,
Damian-Loring S, Hagler N, Henderson T, Emery IF, Bond K, Duarte
CW, Vary CPH, et al: Characterization of smooth muscle cells from
human atherosclerotic lesions and their responses to Notch
signaling. Lab Invest. 99:290–304. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wang Z, Wang Z, Wang T, Yuan J, Wang X and
Zhang Z: Inhibition of miR-34a-5p protected myocardial ischemia
reperfusion injury-induced apoptosis and reactive oxygen species
accumulation through regulation of Notch Receptor 1 signaling. Rev
Cardiovasc Med. 20:187–197. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lin D, Cui B, Ma J and Ren J: MiR-183-5p
protects rat hearts against myocardial ischemia/reperfusion injury
through targeting VDAC1. Biofactors. 46:83–93. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ou M, Zhang C, Chen J, Zhao S, Cui S and
Tu J: Overexpression of microRNA-340-5p inhibits pulmonary arterial
hypertension induced by acute pulmonary embolism by down-regulating
the expression of inflammatory factors interleukin-1β and
interleukin-6. Available at SSRN 3365060. 2019. View Article : Google Scholar
|
|
38
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2− ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kasiewicz LN and Whitehead KA: Silencing
TNFα with lipidoid nanoparticles downregulates both TNFα and MCP-1
in an in vitro co-culture model of diabetic foot ulcers. Acta
Biomater. 32:120–128. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Talora C, Campese AF, Bellavia D, Felli
MP, Vacca A, Gulino A and Screpanti I: Notch signaling and
diseases: An evolutionary journey from a simple beginning to
complex outcomes. Biochim Biophys Acta. 1782:489–497. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Geng YR, Zhang HL, Dong Y, Liu GY, Xie J
and Wang H: Relationship between intercellular adhesion molecule-1
and cerebral infarction. Progress in Modern Biomedicine.
22:4373–4375. 2010.(In Chinese).
|
|
42
|
Xu R, Yin X, Xu W, Jin L, Lu M and Wang Y:
Assessment of carotid plaque neovascularization by
contrast-enhanced ultrasound and high sensitivity C-reactive
protein test in patients with acute cerebral infarction: A
comparative study. Neurol Sci. 37:1107–1112. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang Y, Liu T, Huang P, Zhao H, Zhang R,
Ma B, Chen K, Huang F, Zhou X, Cui C, et al: A novel Golgi protein
(GOLPH2)-regulated oncolytic adenovirus exhibits potent antitumor
efficacy in hepatocellular carcinoma. Oncotarget. 6:13564–13578.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yang L, Hou J, Cui XH, Suo LN and Lv YW:
MiR-133b regulates the expression of CTGF in epithelial-mesenchymal
transition of ovarian cancer. Eur Rev Med Pharmacol Sci.
21:5602–5609. 2017.PubMed/NCBI
|
|
45
|
Trajkovski M, Ahmed K, Esau CC and Stoffel
M: MyomiR-133 regulates brown fat differentiation through Prdm16.
Nat Cell Biol. 14:1330–1335. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Dumitriu IE and Kaski JC: The role of
lymphocytes in the pathogenesis of atherosclerosis: Focus on CD4+ T
cell subsets. Inflammatory Response in Cardiovascular Surgery.
Gabriel EA and Gabriel SA: Springer; London: pp. 9–14. 2013,
View Article : Google Scholar
|
|
47
|
Qin M, Luo Y, Meng XB, Wang M, Wang HW,
Song SY, Ye JX, Pan RL, Yao F, Wu P, et al: Myricitrin attenuates
endothelial cell apoptosis to prevent atherosclerosis: An insight
into PI3K/Akt activation and STAT3 signaling pathways. Vascul
Pharmacol. 70:23–34. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Chhour P, Naha PC, O'Neill SM, Litt HI,
Reilly MP, Ferrari VA and Cormode DP: Labeling monocytes with gold
nanoparticles to track their recruitment in atherosclerosis with
computed tomography. Biomaterials. 87:93–103. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Fuhrman B, Koren L, Volkova N, Keidar S,
Hayek T and Aviram M: Atorvastatin therapy in hypercholesterolemic
patients suppresses cellular uptake of oxidized-LDL by
differentiating monocytes. Atherosclerosis. 164:179–185. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
He B, Zhou L, Shen LH, Ha LH, Pu J, Shao
Q, Wang L and Zeng JZ: RXR agonists inhibit PMA-induced
differentiation of monocytic THP-1 cells into macrophages.
Circulation. 118:S2772008.
|
|
51
|
Wang YS, Hsi E, Cheng HY, Hsu SH, Liao YC
and Juo SH: Let-7g suppresses both canonical and non-canonical
NF-κB pathways in macrophages leading to anti-atherosclerosis.
Oncotarget. 8:101026–101041. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ping S, Li Y, Liu S, Zhang Z, Wang J, Zhou
Y, Liu K, Huang J, Chen D, Wang J, et al: Simultaneous increases in
proliferation and apoptosis of vascular smooth muscle cells
accelerate diabetic mouse venous atherosclerosis. PLoS One.
10:e01413752015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lee GL, Wu JY, Tsai CS, Lin CY, Tsai YT,
Lin CS, Wang YF, Yet SF, Hsu YJ and Kuo CC: TLR4-activated
MAPK-IL-6 axis regulates vascular smooth muscle cell function. Int
J Mol Sci. 17:172016. View Article : Google Scholar
|
|
54
|
Liang Y, Gao H, Wang J, Wang Q, Zhao S,
Zhang J and Qiu J: Alleviative effect of grape seed
proanthocyanidin extract on small artery vascular remodeling in
spontaneous hypertensive rats via inhibition of collagen
hyperplasia. Mol Med Rep. 15:2643–2652. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yang L, Yaling H, Chenghui Y and Xiaoxiang
T: ASSA14-03-19 The change of cellular repressor of E1A-stimulated
genes during vascular remodelling in a mouse model of arterial
injury. Heart. 101 (Suppl 1):A14–A15. 2015. View Article : Google Scholar
|
|
56
|
Heijnen BF, Pelkmans LP, Danser AH,
Garrelds IM, Mullins JJ, De Mey JG, Struijker-Boudier HA and
Janssen BJ: Cardiac remodeling during and after renin-angiotensin
system stimulation in Cyp1a1-Ren2 transgenic rats. J Renin
Angiotensin Aldosterone Syst. 15:69–81. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Bodle JD, Feldmann E, Swartz RH, Rumboldt
Z, Brown T and Turan TN: High-resolution magnetic resonance
imaging: An emerging tool for evaluating intracranial arterial
disease. Stroke. 44:287–292. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lim TT, Liang DH, Botas J, Schroeder JS,
Oesterle SN and Yeung AC: Role of compensatory enlargement and
shrinkage in transplant coronary artery disease. Serial
intravascular ultrasound study. Circulation. 95:855–859. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hecht HS, Achenbach S, Kondo T and Narula
J: High-Risk Plaque Features on Coronary CT Angiography. JACC
Cardiovasc Imaging. 8:1336–1339. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Madrigal-Matute J, López-Franco O,
Blanco-Colio LM, Muñoz-García B, Ramos-Mozo P, Ortega L, Egido J
and Martín-Ventura JL: Heat shock protein 90 inhibitors attenuate
inflammatory responses in atherosclerosis. Cardiovasc Res.
86:330–337. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yang M, Deng C, Wu D, Zhong Z, Lv X, Huang
Z, Lian N, Liu K and Zhang Q: The role of mononuclear cell tissue
factor and inflammatory cytokines in patients with chronic
thromboembolic pulmonary hypertension. J Thromb Thrombolysis.
42:38–45. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Torisu H, Ono M, Kiryu H, Furue M, Ohmoto
Y, Nakayama J, Nishioka Y, Sone S and Kuwano M: Macrophage
infiltration correlates with tumor stage and angiogenesis in human
malignant melanoma: Possible involvement of TNFalpha and IL-1α. Int
J Cancer. 85:182–188. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Tay C, Liu YH, Hosseini H, Kanellakis P,
Cao A, Peter K, Tipping P, Bobik A, Toh BH and Kyaw T: B
cell-specific depletion of TNFα inhibits atherosclerosis
development and plaque vulnerability to rupture by reducing cell
death and inflammation. Cardiovasc Res. 111:385–397. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Voloshyna I, Seshadri S, Anwar K,
Littlefield MJ, Belilos E, Carsons SE and Reiss AB: Infliximab
reverses suppression of cholesterol efflux proteins by TNF-α: A
possible mechanism for modulation of atherogenesis. BioMed Res Int.
2014:3126472014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Gandhirajan RK, Staib PA, Minke K, Gehrke
I, Plickert G, Schlösser A, Schmitt EK, Hallek M and Kreuzer KA:
Small molecule inhibitors of Wnt/β-catenin/lef-1 signaling induces
apoptosis in chronic lymphocytic leukemia cells in vitro and in
vivo. Neoplasia. 12:326–335. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhang Z, Ma N, Zheng Y and Zhang L:
Association of serum immunoglobulin-G to Porphyromonas gingivalis
with acute cerebral infarction in the Chinese population. J Indian
Soc Periodontol. 19:628–632. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
He X, Li DR, Cui C and Wen LJ: Clinical
significance of serum MCP-1 and VE-cadherin levels in patients with
acute cerebral infarction. Eur Rev Med Pharmacol Sci. 21:804–808.
2017.PubMed/NCBI
|
|
68
|
Baeten JT and Lilly B: Differential
Regulation of NOTCH2 and NOTCH3 Contribute to Their Unique
Functions in Vascular Smooth Muscle Cells. J Biol Chem.
290:16226–16237. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Baeten JT and Lilly B: Notch Signaling in
Vascular Smooth Muscle Cells. Adv Pharmacol. 78:351–382. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Sweeney C, Morrow D, Birney YA, Coyle S,
Hennessy C, Scheller A, Cummins PM, Walls D, Redmond EM and Cahill
PA: Notch 1 and 3 receptor signaling modulates vascular smooth
muscle cell growth, apoptosis, and migration via a CBF-1/RBP-Jk
dependent pathway. FASEB J. 18:1421–1423. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhao-Jun L, Yurong T, Beecham GW, et al:
Notch activation induces endothelial cell senescence and
pro-inflammatory response: Implication of Notch signaling in
atherosclerosis. J Vasc Surg. 53:81S–82S. 2015.
|