Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
August-2020 Volume 22 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2020 Volume 22 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

MicroRNA‑133b aggravates atherosclerosis by activating the Notch signaling pathway

  • Authors:
    • Baizhi Han
    • Tao Li
    • Shiliang Zheng
  • View Affiliations / Copyright

    Affiliations: Department of General Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China, Department of the Third Encephalopathy, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong 261041, P.R. China
  • Pages: 1621-1630
    |
    Published online on: June 11, 2020
       https://doi.org/10.3892/mmr.2020.11222
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The aim of the present study was to investigate the effect of miR‑133b on atherosclerosis (AS). A mouse model of AS (AS group) was established, and serum levels of total cholesterol, triglyceride, high‑density lipoprotein cholesterol and low‑density lipoprotein (LDL) cholesterol were detected. The thoracic aorta tissues were subjected to hematoxylin and eosin staining for pathological examination. Mice were intravenously injected with microRNA (miR)‑133b mimics (the miR‑133b mimic + AS group) and miR‑133b mimics negative control (the miR‑133b NC + AS group). Normal mice were named the Sham group. Vascular reconstruction parameters, the Collagen/Vascular Area Ratio (CA/CVA) and serum inflammatory factors of mice in each group were detected. mRNA expression was measured by reverse transcription‑quantitative PCR and protein expression was determined by western blot analysis. An in vitro model of AS was induced in vascular smooth muscle cells (VSMCs) using oxidized (ox)‑LDL. CCK‑8 and wound healing assays were used to detect cell proliferation and migration. Compared with the Sham group, mice of the AS group, the AS + miR‑133b NC group and the AS + miR‑133b mimic group had higher intima thickness (IT), tumor necrosis factor (TNF)‑α and monocyte chemoattractant protein (MCP)‑1 levels, as well as increased Notch1 and Jagged1 expression; and they had lower medial thickness (MT), CA/CVA ratio and Notch3 expression (all P<0.05). In addition, miR‑133b mimic promoted the proliferation and migration, upregulated Notch1 and Jagged1, and downregulated Notch3 in ox‑LDL‑induced VSMCs. Taken together, miR‑133b aggravates AS by activating the Notch signaling pathway, which could serve as a potential target for the treatment of AS.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Liu J, Jiang C, Ma X and Wang J: Notoginsenoside Fc attenuates high glucose-induced vascular endothelial cell injury via upregulation of PPAR-γ in diabetic Sprague-Dawley rats. Vascul Pharmacol. 109:27–35. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Baumer Y, McCurdy S, Alcala M, Mehta N, Lee BH, Ginsberg MH and Boisvert WA: CD98 regulates vascular smooth muscle cell proliferation in atherosclerosis. Atherosclerosis. 256:105–114. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Hassan MO: The role of circulating endotoxaemia as a proinflammatory mediator of atherosclerosis in chronic kidney disease patients. BMJ. 288:283–284. 2016.

4 

Groh L, Keating ST, Joosten LAB, Netea MG and Riksen NP: Monocyte and macrophage immunometabolism in atherosclerosis. Semin Immunopathol. 40:203–214. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV and Orekhov AN: Mechanisms of foam cell formation in atherosclerosis. J Mol Med (Berl). 95:1153–1165. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Lao KH, Zeng L and Xu Q: Endothelial and smooth muscle cell transformation in atherosclerosis. Curr Opin Lipidol. 26:449–456. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Francis GA, Allahverdian S, Cheroudi AC, Abraham T and McManus BM: Response to letter regarding article, “contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis”. Circulation. 131:e252015. View Article : Google Scholar : PubMed/NCBI

8 

Huang Y, Ma XY, Yang YB, Ren HT, Sun XH and Wang LR: Identification and characterization of microRNAs and their target genes from Nile tilapia (Oreochromis niloticus). Z Natforsch C J Biosci. 71:215–223. 2016.

9 

Xu X, Wang X, Fu B, Meng L and Lang B: Differentially expressed genes and microRNAs in bladder carcinoma cell line 5637 and T24 detected by RNA sequencing. Int J Clin Exp Pathol. 8:12678–12687. 2015.PubMed/NCBI

10 

Gao ZG, Chen QJ, Shao M, Qian YZ, Zhang LF, Zhang YB and Xiong QX: Preliminary identification of key miRNAs, signaling pathways, and genes associated with Hirschsprung's disease by analysis of tissue microRNA expression profiles. World J Pediatr. 13:489–495. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Brennan E, Wang B, McClelland A, Mohan M, Marai M, Beuscart O, Derouiche S, Gray S, Pickering R, Tikellis C, et al: Protective effect of let-7 miRNA family in regulating inflammation in diabetes-associated atherosclerosis. Diabetes. 66:2266–2277. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Qun L, Wenda X, Weihong S, Jianyang M, Wei C, Fangzhou L, Zhenyao X and Pingjin G: miRNA-27b modulates endothelial cell angiogenesis by directly targeting Naa15 in atherogenesis. Atherosclerosis. 254:184–192. 2016. View Article : Google Scholar : PubMed/NCBI

13 

de Ronde MWJ, Kok MGM, Moerland PD, Van den Bossche J, Neele AE, Halliani A, van der Made I, de Winther MPJ, Meijers JCM, Creemers EE, et al: High miR-124-3p expression identifies smoking individuals susceptible to atherosclerosis. Atherosclerosis. 263:377–384. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G and Abeliovich A: A MicroRNA feedback circuit in midbrain dopamine neurons. Science. 317:1220–1224. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Sanchez-Simon FM, Zhang XX, Loh HH, Law P-Y and Rodriguez RE: Morphine regulates dopaminergic neuron differentiation via miR-133b. Mol Pharmacol. 78:935–942. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Yin H, Pasut A, Soleimani VD, Bentzinger CF, Antoun G, Thorn S, Seale P, Fernando P, van Ijcken W, Grosveld F, et al: MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metab. 17:210–224. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Li X, Wan X, Chen H, Yang S, Liu Y, Mo W, Meng D, Du W, Huang Y, Wu H, et al: Identification of miR-133b and RB1CC1 as independent predictors for biochemical recurrence and potential therapeutic targets for prostate cancer. Clin Cancer Res. 20:2312–2325. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Li D, Xia L, Chen M, Lin C, Wu H, Zhang Y, Pan S and Li X: miR-133b, a particular member of myomiRs, coming into playing its unique pathological role in human cancer. Oncotarget. 8:50193–50208. 2017. View Article : Google Scholar : PubMed/NCBI

19 

de Mena L, Coto E, Cardo LF, Díaz M, Blázquez M, Ribacoba R, Salvador C, Pastor P, Samaranch L, Moris G, et al: Analysis of the Micro-RNA-133 and PITX3 genes in Parkinson's disease. Am J Med Genet B Neuropsychiatr Genet. 153B:1234–1239. 2010.PubMed/NCBI

20 

Ferreira LRP, Frade AF, Santos RHB, Teixeira PC, Baron MA, Navarro IC, Benvenuti LA, Fiorelli AI, Bocchi EA, Stolf NA, et al: MicroRNAs miR-1, miR-133a, miR-133b, miR-208a and miR-208b are dysregulated in Chronic Chagas disease Cardiomyopathy. Int J Cardiol. 175:409–417. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Masè M, Grasso M, Avogaro L, Nicolussi Giacomaz M, D'Amato E, Tessarolo F, Graffigna A, Denti MA and Ravelli F: Upregulation of miR-133b and miR-328 in patients with atrial dilatation: Implications for stretch-induced atrial fibrillation. Front Physiol. 10:11332019. View Article : Google Scholar : PubMed/NCBI

22 

Huang B, Jiang X-C, Zhang T-Y, Hu YL, Tabata Y, Chen Z, Pluchino S and Gao JQ: Peptide modified mesenchymal stem cells as targeting delivery system transfected with miR-133b for the treatment of cerebral ischemia. Int J Pharm. 531:90–100. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Zheng CG, Chen BY, Sun RH, Mou XZ, Han F, Li Q, Huang HJ, Liu JQ and Tu YX: miR-133b Downregulation Reduces Vulnerable Plaque Formation in Mice with AS through Inhibiting Macrophage Immune Responses. Mol Ther Nucleic Acids. 16:745–757. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Zhen Y, Liu J, Huang Y, Wang Y, Li W and Wu J: miR-133b inhibits cell growth, migration, and invasion by targeting MMP9 in non-small cell lung cancer. Oncol Res. 25:1109–1116. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Guo L, Bai H, Zou D, Hong T, Liu J, Huang J, He P, Zhou Q and He J: The role of microRNA-133b and its target gene FSCN1 in gastric cancer. J Exp Clin Cancer Res. 33:992014. View Article : Google Scholar : PubMed/NCBI

26 

Cheng Y, Jia B, Wang Y and Wan S: miR-133b acts as a tumor suppressor and negatively regulates ATP citrate lyase via PPARγ in gastric cancer. Oncol Rep. 38:3220–3226. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Wang X, Bu J, Liu X, Wang W, Mai W, Lv B, Zou J, Mo X, Li X, Wang J, et al: miR-133b suppresses metastasis by targeting HOXA9 in human colorectal cancer. Oncotarget. 8:63935–63948. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Zhou Y, Wu D, Tao J, Qu P, Zhou Z and Hou J: MicroRNA-133 inhibits cell proliferation, migration and invasion by targeting epidermal growth factor receptor and its downstream effector proteins in bladder cancer. Scand J Urol. 47:423–432. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Li Y, Xiao L, Li J, Sun P, Shang L, Zhang J, Zhao Q, Ouyang Y, Li L and Gong K: MicroRNA profiling of diabetic atherosclerosis in a rat model. Eur J Med Res. 23:552018. View Article : Google Scholar : PubMed/NCBI

30 

Fung E, Tang SM, Canner JP, Morishige K, Arboleda-Velasquez JF, Cardoso AA, Carlesso N, Aster JC and Aikawa M: Delta-like 4 induces notch signaling in macrophages: Implications for inflammation. Circulation. 115:2948–2956. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Quillard T, Devallière J, Coupel S and Charreau B: Inflammation dysregulates Notch signaling in endothelial cells: Implication of Notch2 and Notch4 to endothelial dysfunction. Biochem Pharmacol. 80:2032–2041. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Liu ZJ, Tan Y, Beecham GW, Seo DM, Tian R, Li Y, Vazquez-Padron RI, Pericak-Vance M, Vance JM, Goldschmidt-Clermont PJ, et al: Notch activation induces endothelial cell senescence and pro-inflammatory response: Implication of Notch signaling in atherosclerosis. Atherosclerosis. 225:296–303. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Liu Z, Tan Y, Tian R, Li Y, Beecham GW, Seo DM, Vazquez-Padron RI, Pericak-Vance MA, Vance JM, Goldschmidt-Clermont PJ, et al: Notch Signaling Is A Potential Novel Target In Atherosclerosis. J Surg Res. 165:3262011. View Article : Google Scholar

34 

Davis-Knowlton J, Turner JE, Turner A, Damian-Loring S, Hagler N, Henderson T, Emery IF, Bond K, Duarte CW, Vary CPH, et al: Characterization of smooth muscle cells from human atherosclerotic lesions and their responses to Notch signaling. Lab Invest. 99:290–304. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Wang Z, Wang Z, Wang T, Yuan J, Wang X and Zhang Z: Inhibition of miR-34a-5p protected myocardial ischemia reperfusion injury-induced apoptosis and reactive oxygen species accumulation through regulation of Notch Receptor 1 signaling. Rev Cardiovasc Med. 20:187–197. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Lin D, Cui B, Ma J and Ren J: MiR-183-5p protects rat hearts against myocardial ischemia/reperfusion injury through targeting VDAC1. Biofactors. 46:83–93. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Ou M, Zhang C, Chen J, Zhao S, Cui S and Tu J: Overexpression of microRNA-340-5p inhibits pulmonary arterial hypertension induced by acute pulmonary embolism by down-regulating the expression of inflammatory factors interleukin-1β and interleukin-6. Available at SSRN 3365060. 2019. View Article : Google Scholar

38 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

39 

Kasiewicz LN and Whitehead KA: Silencing TNFα with lipidoid nanoparticles downregulates both TNFα and MCP-1 in an in vitro co-culture model of diabetic foot ulcers. Acta Biomater. 32:120–128. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Talora C, Campese AF, Bellavia D, Felli MP, Vacca A, Gulino A and Screpanti I: Notch signaling and diseases: An evolutionary journey from a simple beginning to complex outcomes. Biochim Biophys Acta. 1782:489–497. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Geng YR, Zhang HL, Dong Y, Liu GY, Xie J and Wang H: Relationship between intercellular adhesion molecule-1 and cerebral infarction. Progress in Modern Biomedicine. 22:4373–4375. 2010.(In Chinese).

42 

Xu R, Yin X, Xu W, Jin L, Lu M and Wang Y: Assessment of carotid plaque neovascularization by contrast-enhanced ultrasound and high sensitivity C-reactive protein test in patients with acute cerebral infarction: A comparative study. Neurol Sci. 37:1107–1112. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Wang Y, Liu T, Huang P, Zhao H, Zhang R, Ma B, Chen K, Huang F, Zhou X, Cui C, et al: A novel Golgi protein (GOLPH2)-regulated oncolytic adenovirus exhibits potent antitumor efficacy in hepatocellular carcinoma. Oncotarget. 6:13564–13578. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Yang L, Hou J, Cui XH, Suo LN and Lv YW: MiR-133b regulates the expression of CTGF in epithelial-mesenchymal transition of ovarian cancer. Eur Rev Med Pharmacol Sci. 21:5602–5609. 2017.PubMed/NCBI

45 

Trajkovski M, Ahmed K, Esau CC and Stoffel M: MyomiR-133 regulates brown fat differentiation through Prdm16. Nat Cell Biol. 14:1330–1335. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Dumitriu IE and Kaski JC: The role of lymphocytes in the pathogenesis of atherosclerosis: Focus on CD4+ T cell subsets. Inflammatory Response in Cardiovascular Surgery. Gabriel EA and Gabriel SA: Springer; London: pp. 9–14. 2013, View Article : Google Scholar

47 

Qin M, Luo Y, Meng XB, Wang M, Wang HW, Song SY, Ye JX, Pan RL, Yao F, Wu P, et al: Myricitrin attenuates endothelial cell apoptosis to prevent atherosclerosis: An insight into PI3K/Akt activation and STAT3 signaling pathways. Vascul Pharmacol. 70:23–34. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Chhour P, Naha PC, O'Neill SM, Litt HI, Reilly MP, Ferrari VA and Cormode DP: Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography. Biomaterials. 87:93–103. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Fuhrman B, Koren L, Volkova N, Keidar S, Hayek T and Aviram M: Atorvastatin therapy in hypercholesterolemic patients suppresses cellular uptake of oxidized-LDL by differentiating monocytes. Atherosclerosis. 164:179–185. 2002. View Article : Google Scholar : PubMed/NCBI

50 

He B, Zhou L, Shen LH, Ha LH, Pu J, Shao Q, Wang L and Zeng JZ: RXR agonists inhibit PMA-induced differentiation of monocytic THP-1 cells into macrophages. Circulation. 118:S2772008.

51 

Wang YS, Hsi E, Cheng HY, Hsu SH, Liao YC and Juo SH: Let-7g suppresses both canonical and non-canonical NF-κB pathways in macrophages leading to anti-atherosclerosis. Oncotarget. 8:101026–101041. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Ping S, Li Y, Liu S, Zhang Z, Wang J, Zhou Y, Liu K, Huang J, Chen D, Wang J, et al: Simultaneous increases in proliferation and apoptosis of vascular smooth muscle cells accelerate diabetic mouse venous atherosclerosis. PLoS One. 10:e01413752015. View Article : Google Scholar : PubMed/NCBI

53 

Lee GL, Wu JY, Tsai CS, Lin CY, Tsai YT, Lin CS, Wang YF, Yet SF, Hsu YJ and Kuo CC: TLR4-activated MAPK-IL-6 axis regulates vascular smooth muscle cell function. Int J Mol Sci. 17:172016. View Article : Google Scholar

54 

Liang Y, Gao H, Wang J, Wang Q, Zhao S, Zhang J and Qiu J: Alleviative effect of grape seed proanthocyanidin extract on small artery vascular remodeling in spontaneous hypertensive rats via inhibition of collagen hyperplasia. Mol Med Rep. 15:2643–2652. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Yang L, Yaling H, Chenghui Y and Xiaoxiang T: ASSA14-03-19 The change of cellular repressor of E1A-stimulated genes during vascular remodelling in a mouse model of arterial injury. Heart. 101 (Suppl 1):A14–A15. 2015. View Article : Google Scholar

56 

Heijnen BF, Pelkmans LP, Danser AH, Garrelds IM, Mullins JJ, De Mey JG, Struijker-Boudier HA and Janssen BJ: Cardiac remodeling during and after renin-angiotensin system stimulation in Cyp1a1-Ren2 transgenic rats. J Renin Angiotensin Aldosterone Syst. 15:69–81. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Bodle JD, Feldmann E, Swartz RH, Rumboldt Z, Brown T and Turan TN: High-resolution magnetic resonance imaging: An emerging tool for evaluating intracranial arterial disease. Stroke. 44:287–292. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Lim TT, Liang DH, Botas J, Schroeder JS, Oesterle SN and Yeung AC: Role of compensatory enlargement and shrinkage in transplant coronary artery disease. Serial intravascular ultrasound study. Circulation. 95:855–859. 1997. View Article : Google Scholar : PubMed/NCBI

59 

Hecht HS, Achenbach S, Kondo T and Narula J: High-Risk Plaque Features on Coronary CT Angiography. JACC Cardiovasc Imaging. 8:1336–1339. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Madrigal-Matute J, López-Franco O, Blanco-Colio LM, Muñoz-García B, Ramos-Mozo P, Ortega L, Egido J and Martín-Ventura JL: Heat shock protein 90 inhibitors attenuate inflammatory responses in atherosclerosis. Cardiovasc Res. 86:330–337. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Yang M, Deng C, Wu D, Zhong Z, Lv X, Huang Z, Lian N, Liu K and Zhang Q: The role of mononuclear cell tissue factor and inflammatory cytokines in patients with chronic thromboembolic pulmonary hypertension. J Thromb Thrombolysis. 42:38–45. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Torisu H, Ono M, Kiryu H, Furue M, Ohmoto Y, Nakayama J, Nishioka Y, Sone S and Kuwano M: Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: Possible involvement of TNFalpha and IL-1α. Int J Cancer. 85:182–188. 2000. View Article : Google Scholar : PubMed/NCBI

63 

Tay C, Liu YH, Hosseini H, Kanellakis P, Cao A, Peter K, Tipping P, Bobik A, Toh BH and Kyaw T: B cell-specific depletion of TNFα inhibits atherosclerosis development and plaque vulnerability to rupture by reducing cell death and inflammation. Cardiovasc Res. 111:385–397. 2016. View Article : Google Scholar : PubMed/NCBI

64 

Voloshyna I, Seshadri S, Anwar K, Littlefield MJ, Belilos E, Carsons SE and Reiss AB: Infliximab reverses suppression of cholesterol efflux proteins by TNF-α: A possible mechanism for modulation of atherogenesis. BioMed Res Int. 2014:3126472014. View Article : Google Scholar : PubMed/NCBI

65 

Gandhirajan RK, Staib PA, Minke K, Gehrke I, Plickert G, Schlösser A, Schmitt EK, Hallek M and Kreuzer KA: Small molecule inhibitors of Wnt/β-catenin/lef-1 signaling induces apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo. Neoplasia. 12:326–335. 2010. View Article : Google Scholar : PubMed/NCBI

66 

Zhang Z, Ma N, Zheng Y and Zhang L: Association of serum immunoglobulin-G to Porphyromonas gingivalis with acute cerebral infarction in the Chinese population. J Indian Soc Periodontol. 19:628–632. 2015. View Article : Google Scholar : PubMed/NCBI

67 

He X, Li DR, Cui C and Wen LJ: Clinical significance of serum MCP-1 and VE-cadherin levels in patients with acute cerebral infarction. Eur Rev Med Pharmacol Sci. 21:804–808. 2017.PubMed/NCBI

68 

Baeten JT and Lilly B: Differential Regulation of NOTCH2 and NOTCH3 Contribute to Their Unique Functions in Vascular Smooth Muscle Cells. J Biol Chem. 290:16226–16237. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Baeten JT and Lilly B: Notch Signaling in Vascular Smooth Muscle Cells. Adv Pharmacol. 78:351–382. 2017. View Article : Google Scholar : PubMed/NCBI

70 

Sweeney C, Morrow D, Birney YA, Coyle S, Hennessy C, Scheller A, Cummins PM, Walls D, Redmond EM and Cahill PA: Notch 1 and 3 receptor signaling modulates vascular smooth muscle cell growth, apoptosis, and migration via a CBF-1/RBP-Jk dependent pathway. FASEB J. 18:1421–1423. 2004. View Article : Google Scholar : PubMed/NCBI

71 

Zhao-Jun L, Yurong T, Beecham GW, et al: Notch activation induces endothelial cell senescence and pro-inflammatory response: Implication of Notch signaling in atherosclerosis. J Vasc Surg. 53:81S–82S. 2015.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Han B, Li T and Zheng S: MicroRNA‑133b aggravates atherosclerosis by activating the Notch signaling pathway. Mol Med Rep 22: 1621-1630, 2020.
APA
Han, B., Li, T., & Zheng, S. (2020). MicroRNA‑133b aggravates atherosclerosis by activating the Notch signaling pathway. Molecular Medicine Reports, 22, 1621-1630. https://doi.org/10.3892/mmr.2020.11222
MLA
Han, B., Li, T., Zheng, S."MicroRNA‑133b aggravates atherosclerosis by activating the Notch signaling pathway". Molecular Medicine Reports 22.2 (2020): 1621-1630.
Chicago
Han, B., Li, T., Zheng, S."MicroRNA‑133b aggravates atherosclerosis by activating the Notch signaling pathway". Molecular Medicine Reports 22, no. 2 (2020): 1621-1630. https://doi.org/10.3892/mmr.2020.11222
Copy and paste a formatted citation
x
Spandidos Publications style
Han B, Li T and Zheng S: MicroRNA‑133b aggravates atherosclerosis by activating the Notch signaling pathway. Mol Med Rep 22: 1621-1630, 2020.
APA
Han, B., Li, T., & Zheng, S. (2020). MicroRNA‑133b aggravates atherosclerosis by activating the Notch signaling pathway. Molecular Medicine Reports, 22, 1621-1630. https://doi.org/10.3892/mmr.2020.11222
MLA
Han, B., Li, T., Zheng, S."MicroRNA‑133b aggravates atherosclerosis by activating the Notch signaling pathway". Molecular Medicine Reports 22.2 (2020): 1621-1630.
Chicago
Han, B., Li, T., Zheng, S."MicroRNA‑133b aggravates atherosclerosis by activating the Notch signaling pathway". Molecular Medicine Reports 22, no. 2 (2020): 1621-1630. https://doi.org/10.3892/mmr.2020.11222
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team