Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
August-2020 Volume 22 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2020 Volume 22 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Molecular mechanism of gossypol mediating CCL2 and IL‑8 attenuation in triple‑negative breast cancer cells

  • Authors:
    • Samia S. Messeha
    • Najla O. Zarmouh
    • Patricia Mendonca
    • Carolyn Cotton
    • Karam F.A. Soliman
  • View Affiliations / Copyright

    Affiliations: Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
    Copyright: © Messeha et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1213-1226
    |
    Published online on: June 15, 2020
       https://doi.org/10.3892/mmr.2020.11240
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Chronic inflammation associated with cancer is characterized by the production of different types of chemokines and cytokines. In cancer, numerous signaling pathways upregulate the expression levels of several cytokines and evolve cells to the neoplastic state. Therefore, targeting these signaling pathways through the inhibition of distinctive gene expression is a primary target for cancer therapy. The present study investigated the anticancer effects of the natural polyphenol gossypol (GOSS) in triple‑negative breast cancer (TNBC) cells, the most aggressive breast cancer type with poor prognosis. GOSS effects were examined in two TNBC cell lines: MDA‑MB‑231 (MM‑231) and MDA‑MB‑468 (MM‑468), representing Caucasian Americans (CA) and African Americans (AA), respectively. The obtained IC50s revealed no significant difference between the two cell lines' response to the compound. However, the use of microarray assays for cytokine determination indicated the ability of GOSS to attenuate the expression levels of cancer‑related cytokines in the two cell lines. Although GOSS did not alter CCL2 expression in MM‑468 cells, it was able to cause 30% inhibition in TNF‑α‑stimulated MM‑231 cells. Additionally, IL‑8 was not altered by GOSS treatment in MM‑231 cells, while its expression was inhibited by 60% in TNF‑α‑activated MM‑468 cells. ELISA assays supported the microarray data and indicated that CCL2 expression was inhibited by 40% in MM‑231 cells, and IL‑8 expression was inhibited by 50% in MM‑468 cells. Furthermore, in MM‑231 cells, GOSS inhibited CCL2 release via the repression of IKBKE, CCL2 and MAPK1 gene expression. Additionally, in MM‑468 cells, the compound downregulated the release of IL‑8 through repressing IL‑8, MAPK1, MAPK3, CCDC88A, STAT3 and PIK3CD gene expression. In conclusion, the data obtained in the present study indicate that the polyphenol compound GOSS may provide a valuable tool in TNBC therapy.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Coussens LM and Werb Z: Inflammation and cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI

2 

Aggarwal BB: Nuclear factor-kappaB: The enemy within. Cancer Cell. 6:203–208. 2004. View Article : Google Scholar : PubMed/NCBI

3 

Balkwill F and Mantovani A: Inflammation and cancer: Back to virchow? Lancet. 357:539–545. 2001. View Article : Google Scholar : PubMed/NCBI

4 

Kuper H, Adami HO and Trichopoulos D: Infections as a major preventable cause of human cancer. J Intern Med. 248:171–183. 2000. View Article : Google Scholar : PubMed/NCBI

5 

Balkwill F: TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev. 25:409–416. 2006. View Article : Google Scholar : PubMed/NCBI

6 

Fang WB, Yao M, Brummer G, Acevedo D, Alhakamy N, Berkland C and Cheng N: Targeted gene silencing of CCL2 inhibits triple negative breast cancer progression by blocking cancer stem cell renewal and M2 macrophage recruitment. Oncotarget. 7:49349–49367. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, et al: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 98:10869–10874. 2001. View Article : Google Scholar : PubMed/NCBI

8 

Niemeier LA, Dabbs DJ, Beriwal S, Striebel JM and Bhargava R: Androgen receptor in breast cancer: Expression in estrogen receptor-positive tumors and in estrogen receptor-negative tumors with apocrine differentiation. Mod Pathol. 23:205–212. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Anders CK and Carey LA: Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer. 2 (Suppl 2):S73–S81. 2009. View Article : Google Scholar

10 

Albain KS, Unger JM, Crowley JJ, Coltman CA Jr and Hershman DL: Racial disparities in cancer survival among randomized clinical trials patients of the Southwest oncology group. J Natl Cancer Inst. 101:984–992. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Beaumont T and Leadbeater M: Treatment and care of patients with metastatic breast cancer. Nurs Stand. 25:49–56. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Fernandez Y, Cueva J, Palomo AG, Ramos M, de Juan A, Calvo L, García-Mata J, García-Teijido P, Peláez I and García-Estévez L: Novel therapeutic approaches to the treatment of metastatic breast cancer. Cancer Treat Rev. 36:33–42. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Liu P, Kumar IS, Brown S, Kannappan V, Tawari PE, Tang JZ, Jiang W, Armesilla AL, Darling JL and Wang W: Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells. Br J Cancer. 109:1876–1885. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Craig DW, O'Shaughnessy JA, Kiefer JA, Aldrich J, Sinari S, Moses TM, Wong S, Dinh J, Christoforides A, Blum JL, et al: Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities. Mol Cancer Ther. 12:104–116. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Allavena P, Garlanda C, Borrello MG, Sica A and Mantovani A: Pathways connecting inflammation and cancer. Curr Opin Genet Dev. 18:3–10. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Candido J and Hagemann T: Cancer-related inflammation. J Clin Immunol. 33 (Suppl 1):S79–S84. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Saji H, Koike M, Yamori T, Saji S, Seiki M, Matsushima K and Toi M: Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer. 92:1085–1091. 2001. View Article : Google Scholar : PubMed/NCBI

18 

Bieche I, Chavey C, Andrieu C, Busson M, Vacher S, Corre LL, Guinebretière JM, Burlinchon S, Lidereau R and Lazennec G: CXC chemokines located in the 4q21 region are up-regulated in breast cancer. Endocr Relat Cancer. 14:1039–1052. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Fang WB, Jokar I, Zou A, Lambert D, Dendukuri P and Cheng N: CCL2/CCR2 chemokine signaling coordinates survival and motility of breast cancer cells through Smad3 protein- and p42/44 mitogen-activated protein kinase (MAPK)-dependent mechanisms. J Biol Chem. 287:36593–36608. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Perrot-Applanat M, Vacher S, Toullec A, Pelaez I, Velasco G, Cormier F, El Sheikh Saad H, Lidereau R, Baud V and Bièche I: Similar NF-kB gene signatures in TNF-α treated human endothelial cells and breast tumor biopsies. PLoS One. 6:e215892011. View Article : Google Scholar : PubMed/NCBI

21 

Leek RD, Landers R, Fox SB, Ng F, Harris AL and Lewis CE: Association of tumour necrosis factor alpha and its receptors with thymidine phosphorylase expression in invasive breast carcinoma. Br J Cancer. 77:2246–2251. 1998. View Article : Google Scholar : PubMed/NCBI

22 

Wang N, Liang H and Zen K: Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol. 5:6142014. View Article : Google Scholar : PubMed/NCBI

23 

Yin Y, Chen X and Shu Y: Gene expression of the invasive phenotype of TNF-alpha-treated MCF-7 cells. Biomed Pharmacother. 63:421–428. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Voss V, Senft C, Lang V, Ronellenfitsch MW, Steinbach JP, Seifert V and Kögel D: The pan-Bcl-2 inhibitor (−)-gossypol triggers autophagic cell death in malignant glioma. Mol Cancer Res. 8:1002–1016. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Bromberg J: Stat proteins and oncogenesis. J Clin Invest. 109:1139–1142. 2002. View Article : Google Scholar : PubMed/NCBI

26 

Dreesen O and Brivanlou AH: Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev. 3:7–17. 2007. View Article : Google Scholar : PubMed/NCBI

27 

Zubair A and Frieri M: Role of nuclear factor-kB in breast and colorectal cancer. Curr Allergy Asthma Rep. 13:44–49. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Zhong S, Leong J, Ye W, Xu P, Lin SH, Liu JY and Lin YC: (−)-Gossypol-enriched cottonseed oil inhibits proliferation and adipogenesis of human breast pre-adipocytes. Anticancer Res. 33:949–955. 2013.PubMed/NCBI

29 

Cao H, Sethumadhavan K and Bland JM: Isolation of cottonseed extracts that affect human cancer cell growth. Sci Rep. 8:104582018. View Article : Google Scholar : PubMed/NCBI

30 

He Z, Zhang H and Olk DC: Chemical composition of defatted cottonseed and soy meal products. PLoS One. 10:e01299332015. View Article : Google Scholar : PubMed/NCBI

31 

Sharifi-Rad M, Fokou PVT, Sharopov F, Martorell M, Ademiluyi AO, Rajkovic J, Salehi B, Martins N, Iriti M and Sharifi-Rad J: Antiulcer agents: From plant extracts to phytochemicals in healing promotion. Molecules. 23:17512018. View Article : Google Scholar

32 

Wang X, Howell CP, Chen F, Yin J and Jiang Y: Gossypol-a polyphenolic compound from cotton plant. Adv Food Nutr Res. 58:215–263. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Zhang M, Liu H, Guo R, Ling Y, Wu X, Li B, Roller PP, Wang S and Yang D: Molecular mechanism of gossypol-induced cell growth inhibition and cell death of HT-29 human colon carcinoma cells. Biochem Pharmacol. 66:93–103. 2003. View Article : Google Scholar : PubMed/NCBI

34 

Pang X, Wu Y, Wu Y, Lu B, Chen J, Wang J, Yi Z, Qu W and Liu M: (−)-Gossypol suppresses the growth of human prostate cancer xenografts via modulating VEGF signaling-mediated angiogenesis. Mol Cancer Ther. 10:795–805. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Flack MR, Pyle RG, Mullen NM, Lorenzo B, Wu YW, Knazek RA, Nisula BC and Reidenberg MM: Oral gossypol in the treatment of metastatic adrenal cancer. J Clin Endocrinol Metab. 76:1019–1024. 1993. View Article : Google Scholar : PubMed/NCBI

36 

Moon DO, Kim MO, Lee JD and Kim GY: Gossypol suppresses NF-kappaB activity and NF-kappaB-related gene expression in human leukemia U937 cells. Cancer Lett. 264:192–200. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Benvenuto M, Mattera R, Masuelli L, Taffera G, Andracchio O, Tresoldi I, Lido P, Giganti MG, Godos J, Modesti A and Bei R: (±)-Gossypol induces apoptosis and autophagy in head and neck carcinoma cell lines and inhibits the growth of transplanted salivary gland cancer cells in BALB/c mice. Int J Food Sci Nutr. 68:298–312. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Moon DO, Choi YH, Moon SK, Kim WJ and Kim GY: Gossypol decreases tumor necrosis factor-α-induced intercellular adhesion molecule-1 expression via suppression of NF-κB activity. Food Chem Toxicol. 49:999–1005. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Gilbert NE, O'Reilly JE, Chang CJ, Lin YC and Brueggemeier RW: Antiproliferative activity of gossypol and gossypolone on human breast cancer cells. Life Sci. 57:61–67. 1995. View Article : Google Scholar : PubMed/NCBI

40 

Hu YF, Chang CJ, Brueggemeier RW and Lin YC: Gossypol inhibits basal and estrogen-stimulated DNA synthesis in human breast carcinoma cells. Life Sci. 53:PL433–PL438. 1993. View Article : Google Scholar : PubMed/NCBI

41 

Chou TC: Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 70:440–446. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Yoshida R, Niki M, Jyotaki M, Sanematsu K, Shigemura N and Ninomiya Y: Modulation of sweet responses of taste receptor cells. Semin Cell Dev Biol. 24:226–231. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Cheng W, Zhao YQ, Li YM and Yang DJ: Effects of gossypol acetate on apoptosis in primary cultured cells from patients with lymphoid leukemia and its synergy with dexamethasone. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 20:229–234. 2012.(In Chinese). PubMed/NCBI

44 

Baoleri X, Dong C, Zhou Y, Zhang Z, Lu X, Xie P and Li Y: Combination of L-gossypol and low-concentration doxorubicin induces apoptosis in human synovial sarcoma cells. Mol Med Rep. 12:5924–5932. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Karaca B, Atmaca H, Uzunoglu S, Karabulut B, Sanli UA and Uslu R: Enhancement of taxane-induced cytotoxicity and apoptosis by gossypol in human breast cancer cell line MCF-7. J BUON. 14:479–485. 2009.PubMed/NCBI

46 

Zhao GX, Xu LH, Pan H, Lin QR, Huang MY, Cai JY, Ouyang DY and He XH: The BH3-mimetic gossypol and noncytotoxic doses of valproic acid induce apoptosis by suppressing cyclin-A2/Akt/FOXO3a signaling. Oncotarget. 6:38952–38966. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Tate CR, Rhodes LV, Segar HC, Driver JL, Pounder FN, Burow ME and Collins-Burow BM: Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res. 14:R792012. View Article : Google Scholar : PubMed/NCBI

48 

Sato N, Beitz JG, Kato J, Yamamoto M, Clark JW, Calabresi P, Raymond A and Frackelton Jr AR: Platelet-derived growth factor indirectly stimulates angiogenesis in vitro. Am J Pathol. 142:1119–1130. 1993.PubMed/NCBI

49 

Messeha SS, Zarmouh NO, Mendonca P, Alwagdani H, Kolta MG and Soliman KFA: The inhibitory effects of plumbagin on the NF-kB pathway and CCL2 release in racially different triple-negative breast cancer cells. PLoS One. 13:e02011162018. View Article : Google Scholar : PubMed/NCBI

50 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

51 

Yamamoto H, Omelchenko I, Shi X and Nuttall AL: The influence of NF-kappaB signal-transduction pathways on the murine inner ear by acoustic overstimulation. J Neurosci Res. 87:1832–1840. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Gallelli L, Falcone D, Cannataro R, Perri M, Serra R, Pelaia G, Maselli R, Savino R, Spaziano G and D'Agostino B: Theophylline action on primary human bronchial epithelial cells under proinflammatory stimuli and steroidal drugs: A therapeutic rationale approach. Drug Des Dev Ther. 11:265–272. 2017. View Article : Google Scholar

53 

Barba-Barajas M, Hernandez-Flores G, Lerma-Diaz JM, Ortiz-Lazareno PC, Domínguez-Rodríguez JR, Barba-Barajas L, de Celis R, Jave-Suarez LF, Aguilar-Lemarroy AC, Guevara-Barraza MG and Bravo-Cuellar A: Gossypol induced apoptosis of polymorphonuclear leukocytes and monocytes: Involvement of mitochondrial pathway and reactive oxygen species. Immunopharmacol Immunotoxicol. 31:320–330. 2009. View Article : Google Scholar : PubMed/NCBI

54 

Anderson GM, Nakada MT and DeWitte M: Tumor necrosis factor-alpha in the pathogenesis and treatment of cancer. Curr Opin Pharmacol. 4:314–320. 2004. View Article : Google Scholar : PubMed/NCBI

55 

Ma Y, Ren Y, Dai ZJ, Wu CJ, Ji YH and Xu J: IL-6, IL-8 and TNF-α levels correlate with disease stage in breast cancer patients. Adv Clin Exp Med. 26:421–426. 2017. View Article : Google Scholar : PubMed/NCBI

56 

John M, Au BT, Jose PJ, Lim S, Saunders M, Barnes PJ, Mitchell JA, Belvisi MG and Chung KF: Expression and release of interleukin-8 by human airway smooth muscle cells: Inhibition by Th-2 cytokines and corticosteroids. Am J Respir Cell Mol Biol. 18:84–90. 1998. View Article : Google Scholar : PubMed/NCBI

57 

Grund EM, Kagan D, Tran CA, Zeitvogel A, Starzinski-Powitz A, Nataraja S and Palmer SS: Tumor necrosis factor-alpha regulates inflammatory and mesenchymal responses via mitogen-activated protein kinase kinase, p38, and nuclear factor kappaB in human endometriotic epithelial cells. Mol Pharmacol. 73:1394–1404. 2008. View Article : Google Scholar : PubMed/NCBI

58 

An J, Xue Y, Long M, Zhang G, Zhang J and Su H: Targeting CCR2 with its antagonist suppresses viability, motility and invasion by downregulating MMP-9 expression in non-small cell lung cancer cells. Oncotarget. 8:39230–39240. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Strieter RM, Wiggins R, Phan SH, Wharram BL, Showell HJ, Remick DC, Chensue SW and Kunkel SL: Monocyte chemotactic protein gene expression by cytokine-treated human fibroblasts and endothelial cells. Biochem Biophys Res Commun. 162:694–700. 1989. View Article : Google Scholar : PubMed/NCBI

60 

Sticherling M, Hetzel F, Schroder JM and Christophers E: Time- and stimulus-dependent secretion of NAP-1/IL-8 by human fibroblasts and endothelial cells. J Invest Dermatol. 101:573–576. 1993. View Article : Google Scholar : PubMed/NCBI

61 

Zachariae CO, Anderson AO, Thompson HL, Appella E, Mantovani A, Oppenheim JJ and Matsushima K: Properties of monocyte chemotactic and activating factor (MCAF) purified from a human fibrosarcoma cell line. J Exp Med. 171:2177–2182. 1990. View Article : Google Scholar : PubMed/NCBI

62 

Krupa A, Fol M, Dziadek BR, Kepka E, Wojciechowska D, Brzostek A, Torzewska A, Dziadek J, Baughman RP, Griffith D and Kurdowska AK: Binding of CXCL8/IL-8 to mycobacterium tuberculosis modulates the innate immune response. Mediators Inflamm. 2015:1247622015. View Article : Google Scholar : PubMed/NCBI

63 

Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, Koike M, Inadera H and Matsushima K: Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res. 6:3282–3289. 2000.PubMed/NCBI

64 

Matsushima K, Larsen CG, DuBois GC and Oppenheim JJ: Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J Exp Med. 169:1485–1490. 1989. View Article : Google Scholar : PubMed/NCBI

65 

Espinoza-Sanchez NA, Chimal-Ramirez GK, Mantilla A and Fuentes-Panana EM: IL-1β, IL-8, and matrix metalloproteinases-1,-2, and −10 are enriched upon monocyte-breast cancer cell cocultivation in a matrigel-based three-dimensional system. Front Immunol. 8:2052017. View Article : Google Scholar : PubMed/NCBI

66 

Nam JS, Kang MJ, Suchar AM, Shimamura T, Kohn EA, Michalowska AM, Jordan VC, Hirohashi S and Wakefield LM: Chemokine (C-C motif) ligand 2 mediates the prometastatic effect of dysadherin in human breast cancer cells. Cancer Res. 66:7176–7184. 2006. View Article : Google Scholar : PubMed/NCBI

67 

Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA and Pollard JW: CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 475:222–225. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Tsuyada A, Chow A, Wu J, Somlo G, Chu P, Loera S, Luu T, Li XA, Wu X, Ye W, et al: CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res. 72:2768–2779. 2012. View Article : Google Scholar : PubMed/NCBI

69 

Koury J, Zhong L and Hao J: Targeting signaling pathways in cancer stem cells for cancer treatment. Stem Cells Int. 2017:29258692017. View Article : Google Scholar : PubMed/NCBI

70 

Pires BR, DE Amorim ÍS, Souza LD, Rodrigues JA and Mencalha AL: Targeting cellular signaling pathways in breast cancer stem cells and its implication for cancer treatment. Anticancer Res. 36:5681–5691. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Huth HW, Santos DM, Gravina HD, Resende JM, Goes AM, de Lima ME and Ropert C: Upregulation of p38 pathway accelerates proliferation and migration of MDA-MB-231 breast cancer cells. Oncol Rep. 37:2497–2505. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Peters RT, Liao SM and Maniatis T: IKKepsilon is part of a novel PMA-inducible IkappaB kinase complex. Mol Cell. 5:513–522. 2000. View Article : Google Scholar : PubMed/NCBI

73 

Bauer D, Redmon N, Mazzio E and Soliman KF: Apigenin inhibits TNFα/IL-1α-induced CCL2 release through IKBK-epsilon signaling in MDA-MB-231 human breast cancer cells. PLoS One. 12:e01755582017. View Article : Google Scholar : PubMed/NCBI

74 

Williams V, Grosset AA, Zamorano Cuervo N, St-Pierre Y, Sylvestre MP, Gaboury L and Grandvaux N: Detection of IKKepsilon by immunohistochemistry in primary breast cancer: Association with EGFR expression and absence of lymph node metastasis. BMC Cancer. 17:3562017. View Article : Google Scholar : PubMed/NCBI

75 

Guo JP, Shu SK, Esposito NN, Coppola D, Koomen JM and Cheng JQ: IKK phosphorylation of estrogen receptor α Ser-167 and contribution to tamoxifen resistance in breast cancer. J Biol Chem. 291:228572016. View Article : Google Scholar : PubMed/NCBI

76 

Berishaj M, Gao SP, Ahmed S, Leslie K, Al-Ahmadie H, Gerald WL, Bornmann W and Bromberg JF: Stat3 is tyrosine-phosphorylated through the interleukin-6/glycoprotein 130/Janus kinase pathway in breast cancer. Breast Cancer Res. 9:R322007. View Article : Google Scholar : PubMed/NCBI

77 

Li L and Shaw PE: Autocrine-mediated activation of STAT3 correlates with cell proliferation in breast carcinoma lines. J Biol Chem. 277:17397–17405. 2002. View Article : Google Scholar : PubMed/NCBI

78 

Walker SR, Nelson EA, Zou L, Chaudhury M, Signoretti S, Richardson A and Frank DA: Reciprocal effects of STAT5 and STAT3 in breast cancer. Mol Cancer Res. 7:966–976. 2009. View Article : Google Scholar : PubMed/NCBI

79 

Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, Bloushtain-Qimron N, Kim JJ, Choudhury SA, Maruyama R, et al: The JAK2/STAT3 signaling pathway is required for growth of CD44(+)CD24(−) stem cell-like breast cancer cells in human tumors. J Clin Invest. 121:2723–2735. 2011. View Article : Google Scholar : PubMed/NCBI

80 

House CD, Grajales V, Ozaki M, Jordan E, Wubneh H, Kimble DC, James JM, Kim MK and Annunziata CM: IΚΚε cooperates with either MEK or non-canonical NF-kB driving growth of triple-negative breast cancer cells in different contexts. BMC Cancer. 18:5952018. View Article : Google Scholar : PubMed/NCBI

81 

Boehm JS, Zhao JJ, Yao J, Kim SY, Firestein R, Dunn IF, Sjostrom SK, Garraway LA, Weremowicz S, Richardson AL, et al: Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell. 129:1065–1079. 2007. View Article : Google Scholar : PubMed/NCBI

82 

Hutti JE, Shen RR, Abbott DW, Zhou AY, Sprott KM, Asara JM, Hahn WC and Cantley LC: Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKKepsilon promotes cell transformation. Mol Cell. 34:461–472. 2009. View Article : Google Scholar : PubMed/NCBI

83 

Barbie TU, Alexe G, Aref AR, Li S, Zhu Z, Zhang X, Imamura Y, Thai TC, Huang Y, Bowden M, et al: Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth. J Clin Invest. 124:5411–5423. 2014. View Article : Google Scholar : PubMed/NCBI

84 

Qin B and Cheng K: Silencing of the IKKε gene by siRNA inhibits invasiveness and growth of breast cancer cells. Breast Cancer Res. 12:R742010. View Article : Google Scholar : PubMed/NCBI

85 

Bartholomeusz C, Gonzalez-Angulo AM, Liu P, Hayashi N, Lluch A, Ferrer-Lozano J and Hortobágyi GN: High ERK protein expression levels correlate with shorter survival in triple-negative breast cancer patients. Oncologist. 17:766–774. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Seddighzadeh M, Zhou JN, Kronenwett U, Shoshan MC, Auer G, Sten-Linder M, Wiman B and Linder S: ERK signalling in metastatic human MDA-MB-231 breast carcinoma cells is adapted to obtain high urokinase expression and rapid cell proliferation. Clin Exp Metastasis. 17:649–654. 1999. View Article : Google Scholar : PubMed/NCBI

87 

Kyriakis JM and Avruch J: Mammalian MAPK signal transduction pathways activated by stress and inflammation: A 10-year update. Physiol Rev. 92:689–737. 2012. View Article : Google Scholar : PubMed/NCBI

88 

Cargnello M and Roux PP: Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 75:50–83. 2011. View Article : Google Scholar : PubMed/NCBI

89 

Samatar AA and Poulikakos PI: Targeting RAS-ERK signalling in cancer: Promises and challenges. Nat Rev Drug Discov. 13:928–942. 2014. View Article : Google Scholar : PubMed/NCBI

90 

Wen S, Hou Y, Fu L, Xi L, Yang D, Zhao M, Qin Y, Sun K, Teng Y and Liu M: Cancer-associated fibroblast (CAF)-derived IL32 promotes breast cancer cell invasion and metastasis via integrin β3-p38 MAPK signalling. Cancer Lett. 442:320–332. 2019. View Article : Google Scholar : PubMed/NCBI

91 

Liu Q, Li A, Tian Y, Wu JD, Liu Y, Li T, Chen Y, Han X and Wu K: The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev. 31:61–71. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Benoy IH, Salgado R, Van Dam P, Geboers K, Van Marck E, Scharpé S, Vermeulen PB and Dirix LY: Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin Cancer Res. 10:7157–7162. 2004. View Article : Google Scholar : PubMed/NCBI

93 

Guo Y, Zang Y, Lv L, Cai F, Qian T, Zhang G and Feng Q: IL8 promotes proliferation and inhibition of apoptosis via STAT3/AKT/NFkB pathway in prostate cancer. Mol Med Rep. 16:9035–9042. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Snoussi K, Mahfoudh W, Bouaouina N, Ahmed SB, Helal AN and Chouchane L: Genetic variation in IL-8 associated with increased risk and poor prognosis of breast carcinoma. Hum Immunol. 67:13–21. 2006. View Article : Google Scholar : PubMed/NCBI

95 

Zuccari DA, Leonel C, Castro R, Gelaleti GB, Jardim BV, Moscheta MG, Regiani VR, Ferreira LC, Lopes JR, Neto Dde S and Esteves JL: An immunohistochemical study of interleukin-8 (IL-8) in breast cancer. Acta Histochem. 114:571–576. 2012. View Article : Google Scholar : PubMed/NCBI

96 

Kim S, Jeon M, Lee JE and Nam SJ: MEK activity controls IL-8 expression in tamoxifen-resistant MCF-7 breast cancer cells. Oncol Rep. 35:2398–2404. 2016. View Article : Google Scholar : PubMed/NCBI

97 

Kim S, You D, Jeong Y, Yu J, Kim SW, Nam SJ and Lee JE: Berberine down-regulates IL-8 expression through inhibition of the EGFR/MEK/ERK pathway in triple-negative breast cancer cells. Phytomedicine. 50:43–49. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Yao C, Lin Y, Chua MS, Ye CS, Bi J, Li W, Zhu YF and Wang SM: Interleukin-8 modulates growth and invasiveness of estrogen receptor-negative breast cancer cells. Int J Cancer. 121:1949–1957. 2007. View Article : Google Scholar : PubMed/NCBI

99 

Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H, Maier K, De Angelis AA, Marassi FM and Opella SJ: Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature. 491:779–783. 2012. View Article : Google Scholar : PubMed/NCBI

100 

Singh JK, Simoes BM, Clarke RB and Bundred NJ: Targeting IL-8 signalling to inhibit breast cancer stem cell activity. Expert Opin Ther Targets. 17:1235–1241. 2013. View Article : Google Scholar : PubMed/NCBI

101 

Singh JK, Simoes BM, Howell SJ, Farnie G and Clarke RB: Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells. Breast Cancer Res. 15:2102013. View Article : Google Scholar : PubMed/NCBI

102 

Alfaro C, Teijeira A, Onate C, Pérez G, Sanmamed MF, Andueza MP, Alignani D, Labiano S, Azpilikueta A, Rodriguez-Paulete A, et al: Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs). Clin Cancer Res. 22:3924–3936. 2016. View Article : Google Scholar : PubMed/NCBI

103 

Elliott CL, Allport VC, Loudon JA, Wu GD and Bennett PR: Nuclear factor-kappa B is essential for up-regulation of interleukin-8 expression in human amnion and cervical epithelial cells. Mol Hum Reprod. 7:787–790. 2001. View Article : Google Scholar : PubMed/NCBI

104 

Wang L, Tang C, Cao H, Li K, Pang X, Zhong L, Dang W, Tang H, Huang Y, Wei L, et al: Activation of IL-8 via PI3K/Akt-dependent pathway is involved in leptin-mediated epithelial-mesenchymal transition in human breast cancer cells. Cancer Biol Ther. 16:1220–1230. 2015. View Article : Google Scholar : PubMed/NCBI

105 

Lian S, Xia Y, Ung TT, Khoi PN, Yoon HJ, Kim NH, Kim KK and Jung YD: Carbon monoxide releasing molecule-2 ameliorates IL-1β-induced IL-8 in human gastric cancer cells. Toxicology 361–362. 24–38. 2016. View Article : Google Scholar

106 

Singh RK, Gutman M, Radinsky R, Bucana CD and Fidler IJ: Expression of interleukin 8 correlates with the metastatic potential of human melanoma cells in nude mice. Cancer Res. 54:3242–3247. 1994.PubMed/NCBI

107 

Fernando RI, Hamilton DH, Dominguez C, David JM, McCampbell KK and Palena C: IL-8 signaling is involved in resistance of lung carcinoma cells to erlotinib. Oncotarget. 7:42031–42044. 2016. View Article : Google Scholar : PubMed/NCBI

108 

Jiang P, Enomoto A, Jijiwa M, Kato T, Hasegawa T, Ishida M, Sato T, Asai N, Murakumo Y and Takahashi M: An actin-binding protein girdin regulates the motility of breast cancer cells. Cancer Res. 68:1310–1318. 2008. View Article : Google Scholar : PubMed/NCBI

109 

Lin C, Ear J, Pavlova Y, Mittal Y, Kufareva I, Ghassemian M, Abagyan R, Garcia-Marcos M and Ghosh P: Tyrosine phosphorylation of the Gα-interacting protein GIV promotes activation of phosphoinositide 3-kinase during cell migration. Sci Signal. 4:ra642011. View Article : Google Scholar : PubMed/NCBI

110 

Ni W, Fang Y, Tong L, Tong Z, Yi F, Qiu J, Wang R and Tong X: Girdin regulates the migration and invasion of glioma cells via the PI3K-Akt signaling pathway. Mol Med Rep. 12:5086–5092. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Romashkova JA and Makarov SS: NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature. 401:86–90. 1999. View Article : Google Scholar : PubMed/NCBI

112 

Jiang BH and Liu LZ: PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim Biophys Acta. 1784:150–158. 2008. View Article : Google Scholar : PubMed/NCBI

113 

Abraham RT: Chemokine to the rescue: Interleukin-8 mediates resistance to PI3K-pathway-targeted therapy in breast cancer. Cancer Cell. 22:703–705. 2012. View Article : Google Scholar : PubMed/NCBI

114 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

115 

Darnell JE: Validating Stat3 in cancer therapy. Nat Med. 11:595–596. 2005. View Article : Google Scholar : PubMed/NCBI

116 

Subramaniam A, Shanmugam MK, Perumal E, Li F, Nachiyappan A, Dai X, Swamy SN, Ahn KS, Kumar AP, Tan BKH, et al: Potential role of signal transducer and activator of transcription (STAT)3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma. Biochim Biophys Acta. 1835:46–60. 2013.PubMed/NCBI

117 

Rajendran P, Li F, Shanmugam MK, Kannaiyan R, Goh JN, Wong KF, Wang W, Khin E, Tergaonkar V, Kumar AP, et al: Celastrol suppresses growth and induces apoptosis of human hepatocellular carcinoma through the modulation of STAT3/JAK2 signaling cascade in vitro and in vivo. Cancer Prev Res (Phila). 5:631–643. 2012. View Article : Google Scholar : PubMed/NCBI

118 

Samson ME, Porter NG, Hurley DM, Adams SA and Eberth JM: Disparities in breast cancer incidence, mortality, and quality of care among African American and European American women in South Carolina. South Med J. 109:24–30. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Messeha SS, Zarmouh NO, Mendonca P, Cotton C and Soliman KF: Molecular mechanism of gossypol mediating CCL2 and IL‑8 attenuation in triple‑negative breast cancer cells. Mol Med Rep 22: 1213-1226, 2020.
APA
Messeha, S.S., Zarmouh, N.O., Mendonca, P., Cotton, C., & Soliman, K.F. (2020). Molecular mechanism of gossypol mediating CCL2 and IL‑8 attenuation in triple‑negative breast cancer cells. Molecular Medicine Reports, 22, 1213-1226. https://doi.org/10.3892/mmr.2020.11240
MLA
Messeha, S. S., Zarmouh, N. O., Mendonca, P., Cotton, C., Soliman, K. F."Molecular mechanism of gossypol mediating CCL2 and IL‑8 attenuation in triple‑negative breast cancer cells". Molecular Medicine Reports 22.2 (2020): 1213-1226.
Chicago
Messeha, S. S., Zarmouh, N. O., Mendonca, P., Cotton, C., Soliman, K. F."Molecular mechanism of gossypol mediating CCL2 and IL‑8 attenuation in triple‑negative breast cancer cells". Molecular Medicine Reports 22, no. 2 (2020): 1213-1226. https://doi.org/10.3892/mmr.2020.11240
Copy and paste a formatted citation
x
Spandidos Publications style
Messeha SS, Zarmouh NO, Mendonca P, Cotton C and Soliman KF: Molecular mechanism of gossypol mediating CCL2 and IL‑8 attenuation in triple‑negative breast cancer cells. Mol Med Rep 22: 1213-1226, 2020.
APA
Messeha, S.S., Zarmouh, N.O., Mendonca, P., Cotton, C., & Soliman, K.F. (2020). Molecular mechanism of gossypol mediating CCL2 and IL‑8 attenuation in triple‑negative breast cancer cells. Molecular Medicine Reports, 22, 1213-1226. https://doi.org/10.3892/mmr.2020.11240
MLA
Messeha, S. S., Zarmouh, N. O., Mendonca, P., Cotton, C., Soliman, K. F."Molecular mechanism of gossypol mediating CCL2 and IL‑8 attenuation in triple‑negative breast cancer cells". Molecular Medicine Reports 22.2 (2020): 1213-1226.
Chicago
Messeha, S. S., Zarmouh, N. O., Mendonca, P., Cotton, C., Soliman, K. F."Molecular mechanism of gossypol mediating CCL2 and IL‑8 attenuation in triple‑negative breast cancer cells". Molecular Medicine Reports 22, no. 2 (2020): 1213-1226. https://doi.org/10.3892/mmr.2020.11240
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team