Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
September-2020 Volume 22 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2020 Volume 22 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Calcium inhibitor inhibits high glucose‑induced hypertrophy of H9C2 cells

  • Authors:
    • Xiaohong Xu
    • Luoyang Ruan
    • Xiaohua Tian
    • Fengjuan Pan
    • Cailan Yang
    • Guosheng Liu
  • View Affiliations / Copyright

    Affiliations: Department of Pediatrics, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, Guangdong 510800, P.R. China, Department of Anesthesiology, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, Guangdong 510800, P.R. China, Department of Pediatrics, Central Hospital of Guangdong Nongken, Zhanjiang, Guangdong 524002, P.R. China, Department of Pediatrics, The First Clinical Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
    Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1783-1792
    |
    Published online on: June 26, 2020
       https://doi.org/10.3892/mmr.2020.11275
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The aim of the present study was to explore whether the hypertrophy of H9C2 cardiomyocytes was induced by high glucose, to investigate whether the calcium channel inhibitor (Norvasc) could inhibit this process and to clarify the possible signaling pathways. The morphology of H9C2 cells was observed under an optical microscope, and the cell surface area was measured by Image Pro Plus 6.1 software. Furthermore, fluorescence spectrophotometry was used to detect intracellular calcium concentration ([Ca2+]i). ELISA was performed to detect calcineurin (CaN) activity; reverse transcription‑quantitative PCR and western blotting were performed to detect the mRNA and protein expression levels of CaN Aβ subunit (CnAβ), nuclear factor of activated T cells 3 (NFAT3) and β type myosin heavy chain (β‑MHC). Cell size was increased with the increase in glucose concentration of culture medium at 48 and 72 h, respectively, and decreased with the addition of Norvasc compared with those without Norvasc (P<0.05). There was no significant difference in cell size with the addition of Norvasc compared with cells cultured with 5 mM glucose (P>0.05). The average [Ca2+]i activity of single cells in the 48‑ and 72‑h culture groups treated with 50 mM glucose was significantly higher than cells treated with 5 mM glucose (P<0.05); and the fluorescent value of average [Ca2+]i activity of single cells was lower, following the addition of Norvasc than that without Norvasc (P<0.05). CaN activity in the 48‑ and 72‑h culture group treated with 50 mM glucose was markedly higher than that treated with 5 mM glucose, and the activity of CaN notably decreased with the addition of Norvasc compared with those without Norvasc. The mRNA and protein expression levels of CnAβ, NFAT3 and β‑MHC in the 48‑ and 72‑h culture groups treated with 50 mM glucose were all significantly higher than those treated with 5 mM glucose (P<0.05). The mRNA and protein expression of CnAβ, NFAT3 and β‑MHC cultured with 50 mM glucose were significantly decreased following the addition of Norvasc (P<0.05). Thus, the calcium channel inhibitor Norvasc may inhibit high glucose‑induced hypertrophy of H9C2 cardiomyocytes by inhibiting the Ca2+‑CaN‑NFAT3 signaling pathway.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

View References

1 

Chan JC, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon KH and Hu FB: Diabetes in Asia: Epidemiology, risk factors, and pathophysiology. JAMA. 301:2129–2140. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U and Shaw JE: Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 103:137–149. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Lamblin N, Fertin M, De Groote P and Bauters C: Cardiac remodeling and heart failure after a first anterior myocardial infarction in patients with diabetes mellitus. J Cardiovasc Med (Hagerstown). 13:353–359. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Tochiya M, Makino H, Tamanaha T, Matsuo M, Hishida A, Koezuka R, Ohata Y, Tomita T, Son C, Miyamoto Y, et al: Effect of tofogliflozin on cardiac and vascular endothelial function in patients with type 2 diabetes and heart diseases: A pilot study. J Diabetes Investig. 11:400–404. 2020. View Article : Google Scholar : PubMed/NCBI

5 

Sardu C, Barbieri M, Santamaria M, Giordano V, Sacra C, Paolisso P, Spirito A, Marfella R, Paolisso G and Rizzo MR: Multipolar pacing by cardiac resynchronization therapy with a defibrillators treatment in type 2 diabetes mellitus failing heart patients: Impact on responders rate, and clinical outcomes. Cardiovasc Diabetol. 16:752017. View Article : Google Scholar : PubMed/NCBI

6 

Kannel WB and McGee DL: Diabetes and cardiovascular disease: The Framingham study. JAMA. 241:2035–2038. 1979. View Article : Google Scholar : PubMed/NCBI

7 

Lind M, Bounias I, Olsson M, Gudbjörnsdottir S, Svensson AM and Rosengren A: Glycaemic control and incidence of heart failure in 20,985 patients with type 1 diabetes: An observational study. Lancet. 378:140–146. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Bayeva M, Sawicki KT and Ardehali H: Taking diabetes to heart-deregulation of myocardial lipid metabolism in diabetic cardiomyopathy. J Am Heart Assoc. 2:e4332013. View Article : Google Scholar

9 

Xu Y, Wang L, He J, Bi Y, Li M, Wang T, Wang L, Jiang Y, Dai M, Lu J, et al: Prevalence and control of diabetes in Chinese adults. JAMA. 310:948–959. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Kim HW, Ch YS, Lee HR, Park SY and Kim YH: Diabetic alterations in cardiac sarcoplasmic reticulum Ca2+-ATPase and phospholamban protein expression. Life Sci. 70:367–379. 2001. View Article : Google Scholar : PubMed/NCBI

11 

Cai L, Li W, Wang G, Guo L, Jiang Y and Kang YJ: Hyperglycemia-induced apoptosis in mouse myocardium: Mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes. 51:1938–1948. 2002. View Article : Google Scholar : PubMed/NCBI

12 

Way KJ, Isshiki K, Suzuma K, Yokota T, Zvagelsky D, Schoen FJ, Sandusky GE, Pechous PA, Vlahos CJ, Wakasaki H and King GL: Expression of connective tissue growth factor is increased in injured myocardium associated with protein kinase C beta2 activation and diabetes. Diabetes. 51:2709–2718. 2002. View Article : Google Scholar : PubMed/NCBI

13 

Candido R, Forbes JM, Thomas MC, Thallas V, Dean RG, Burns WC, Tikellis C, Ritchie RH, Twigg SM, Cooper ME and Burrell LM: A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res. 92:785–792. 2003. View Article : Google Scholar : PubMed/NCBI

14 

Catterall WA: Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol. 16:521–555. 2000. View Article : Google Scholar : PubMed/NCBI

15 

Dolphin AC: Voltage-gated calcium channels: Their discovery, function and importance as drug targets. Brain Neurosci Adv. 2:23982128187948052018. View Article : Google Scholar : PubMed/NCBI

16 

Klingbeil AU, Schneider M, Martus P, Messerli FH and Schmieder RE: A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension. Am J Med. 115:41–46. 2003. View Article : Google Scholar : PubMed/NCBI

17 

Fagard RH, Celis H, Thijs L and Wouters S: Regression of left ventricular mass by antihypertensive treatment: A meta-analysis of randomized comparative studies. Hypertension. 54:1084–1091. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Puscas L, Gilau L, Coltau M, Pasca R, Domuta G, Baican M and Hecht A: Calcium channel blockers reduce blood pressure in part by inhibiting vascular smooth muscle carbonic anhydrase I. Cardiovasc Drug Ther. 14:523–528. 2000. View Article : Google Scholar

19 

Bangalore S, Fakheri R, Toklu B and Messerli FH: Diabetes mellitus as a compelling indication for use of renin angiotensin system blockers: Systematic review and meta-analysis of randomized trials. BMJ. 352:i4382016. View Article : Google Scholar : PubMed/NCBI

20 

Packer M, O'Connor CM, Ghali JK, Pressler ML, Carson PE, Belkin RN, Miller AB, Neuberg GW, Frid D, Wertheimer JH, et al: Effect of amlodipine on morbidity and mortality in severe chronic heart failure. Prospective randomized amlodipine survival evaluation study group. N Engl J Med. 335:1107–1114. 1996. View Article : Google Scholar : PubMed/NCBI

21 

Lu J, Hao J, Du H, Xiao B, Li Y, Yang X and Cui W: Amlodipine and atorvastatin improved hypertensive cardiac remodeling through regulation of MMPs/TIMPs in SHR RATS. Cell Physiol Biochem. 39:47–60. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Nagasawa K, Takahashi K, Matsuura N, Takatsu M, Hattori T, Watanabe S, Harada E, Niinuma K, Murohara T and Nagata K: Comparative effects of valsartan in combination with cilnidipine or amlodipine on cardiac remodeling and diastolic dysfunction in Dahl salt-sensitive rats. Hypertens Res. 38:39–47. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Whittaker P, Zhang HP and Kloner RA: Biphasic survival response to amlodipine after myocardial infarction in rats: Association with cardiac vascular remodeling. Cardiovasc Pathol. 2:85–93. 2000. View Article : Google Scholar

24 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta CT) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Verkhratsky A and Fernyhough P: Mitochondrial malfunction and Ca2+ dyshomeostasis drive neuronal pathology in diabetes. Cell Calcium. 1:112–122. 2008. View Article : Google Scholar

26 

Jouven X, Lemaître RN, Rea TD, Sotoodehnia N, Empana JP and Siscovick DS: Diabetes, glucose level, and risk of sudden cardiac death. Eur Heart J. 26:2142–2147. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Yeung EH, Pankow JS, Astor BC, Powe NR, Saudek CD and Kao WH: Increased risk of type 2 diabetes from a family history of coronary heart disease and type 2 diabetes. Diabetes Care. 30:154–156. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW and Grishman A: New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 30:595–602. 1972. View Article : Google Scholar : PubMed/NCBI

29 

Bergner DW and Goldberger JJ: Diabetes mellitus and sudden cardiac death: What are the data? Cardiol J. 17:117–129. 2010.PubMed/NCBI

30 

Aharinejad S, Andrukhova O, Lucas T, Zuckermann A, Wieselthaler G, Wolner E and Grimm M: Programmed cell death in idiopathic dilated cardiomyopathy is mediated by suppression of the apoptosis inhibitor apollon. Ann Thorac Surg. 86:109–114. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Fang ZY, Schull-Meade R, Leano R, Mottram PM, Prins JB and Marwick TH: Screening for heart disease in diabetic subjects. Am Heart J. 149:349–354. 2005. View Article : Google Scholar : PubMed/NCBI

32 

Boyer JK, Thanigaraj S, Schechtman KB and Pérez JE: Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. Am J Cardiol. 93:870–875. 2004. View Article : Google Scholar : PubMed/NCBI

33 

Boudina S and Abel ED: Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord. 11:31–39. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Kanai M, Otsuka Y, Otsuka K, Sato M, Nishimura T, Mori Y, Kawaguchi M, Hatano E, Kodama Y, Matsumoto S, et al: A phase I study investigating the safety and pharmacokinetics of highly bioavailable curcumin (Theracurmin) in cancer patients. Cancer Chemother Pharmacol. 71:1521–1530. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Sasaki H, Sunagawa Y, Takahashi K, Imaizumi A, Fukuda H, Hashimoto T, Wada H, Katanasaka Y, Kakeya H, Fujita M, et al: Innovative preparation of curcumin for improved oral bioavailability. Biol Pharm Bull. 34:660–665. 2011. View Article : Google Scholar : PubMed/NCBI

36 

van Heerebeek L, Hamdani N, Handoko ML, Falcao-Pires I, Musters RJ, Kupreishvili K, Ijsselmuiden AJ, Schalkwijk CG, Bronzwaer JG, Diamant M, et al: Diastolic stiffness of the failing diabetic heart: Importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation. 117:43–51. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Gonzalez-Quesada C, Cavalera M, Biernacka A, Kong P, Lee DW, Saxena A, Frunza O, Dobaczewski M, Shinde A and Frangogiannis NG: Thrombospondin-1 induction in the diabetic myocardium stabilizes the cardiac matrix in addition to promoting vascular rarefaction through angiopoietin-2 upregulation. Circ Res. 113:1331–1344. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Li MD, Cheng WP, Shi MX, Ge TD, Zheng XL, Wu DY, Hu XY, Luo JC, Li FL and Li H: Role of tRNA selenocysteine 1 associated protein 1 in the proliferation and apoptosis of cardiomyocyte-like H9c2 cells. Mol Med Rep. 15:988–994. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Saito M, Sakiyama K, Shiota T and Ito M: Isoproterenol produces a rapid increase in sialidase activity in rat heart tissue and cardiomyocyte-derived H9c2 cells in culture. FEBS Lett. 542:105–108. 2003. View Article : Google Scholar : PubMed/NCBI

40 

Watkins SJ, Borthwick GM and Arthur HM: The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell Dev Biol Anim. 47:125–131. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Diedrichs H, Chi M, Boelck B, Mehlhorn U and Schwinger RH: Increased regulatory activity of the calcineurin/NFAT pathway in human heart failure. Eur J Heart Fail. 6:3–09. 2004. View Article : Google Scholar : PubMed/NCBI

42 

Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J, Grazette L, Michael A, Hajjar R, Force T and Molkentin JD: Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation. 103:670–677. 2001. View Article : Google Scholar : PubMed/NCBI

43 

Zhu SJ, Yang YJ, Yu LJ and Huang L: CaN-NFAT3 signal pathway: A crucial hinge relates Ca2+ signal with cardiomyocyte hypertrophy. Zhonghua Nei Ke Za Zhi. 43:19–21. 2004.(In Chinese). PubMed/NCBI

44 

Wilkins BJ, Dai YS, Bueno OF, Parsons SA, Xu J, Plank DM, Jones F, Kimball TR and Molkentin JD: Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res. 94:110–118. 2004. View Article : Google Scholar : PubMed/NCBI

45 

Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR and Olson EN: A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 93:215–228. 1998. View Article : Google Scholar : PubMed/NCBI

46 

Daskoulidou N, Zeng B, Berglund LM, Jiang H, Chen GL, Kotova O, Bhandari S, Ayoola J, Griffin S, Atkin SL, et al: High glucose enhances store-operated calcium entry by upregulating ORAI/STIM via calcineurin-NFAT signalling. J Mol Med (Berl). 93:511–521. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Somvanshi RK, Zou S, Qiu X and Kumar U: Somatostatin receptor-2 negatively regulates β-adrenergic receptor mediated Ca(2+) dependent signaling pathways in H9c2 cells. Biochim Biophys Acta. 1843:735–745. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Hsu SC, Chang YT and Chen CC: Early growth response 1 is an early signal inducing Cav3.2 T-type calcium channels during cardiac hypertrophy. Cardiovasc Res. 100:222–230. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Lee SD, Kuo WW, Lin DY, Chen TH, Kuo WH, Hsu HH, Chen JZ, Liu JY, Yeh YL and Huang CY: Role of calcineurin in Porphyromonas gingivalis-induced myocardial cell hypertrophy and apoptosis. J Biomed Sci. 13:251–260. 2006. View Article : Google Scholar : PubMed/NCBI

50 

Strack S, Wadzinski BE and Ebner FF: Localization of the calcium/calmodulin-dependent protein phosphatase, calcineurin, in the hindbrain and spinal cord of the rat. J Comp Neurol. 375:66–76. 1996. View Article : Google Scholar : PubMed/NCBI

51 

Smedler E and Uhlén P: Frequency decoding of calcium oscillations. Biochim Biophys Acta. 1840:964–969. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Fric J, Zelante T, Wong AY, Mertes A, Yu HB and Ricciardi-Castagnoli P: NFAT control of innate immunity. Blood. 120:1380–1389. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Sommerer C, Meuer S, Zeier M and Giese T: Calcineurin inhibitors and NFAT-regulated gene expression. Clin Chim Acta. 413:1379–1386. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Maguire O, Tornatore KM, O'loughlin KL, Venuto RC and Minderman H: Nuclear translocation of nuclear factor of activated T cells (NFAT) as a quantitative pharmacodynamic parameter for tacrolimus. Cytometry A. 83:1096–1104. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Hess P: Calcium channels in vertebrate cells. Annu Rev Neurosci. 13:337–356. 1990. View Article : Google Scholar : PubMed/NCBI

56 

Rampe D and Triggle DJ: New synthetic ligands for L-type voltage-gated calcium channels. Prog Drug Res. 40:191–238. 1993.PubMed/NCBI

57 

Katz AM: Calcium channel diversity in the cardiovascular system. J Am Coll Cardiol. 28:522–529. 1996. View Article : Google Scholar : PubMed/NCBI

58 

Triggle DJ: Calcium-channel antagonists: Mechanisms of action, vascular selectivities, and clinical relevance. Cleve Clin J Med. 59:617–627. 1992. View Article : Google Scholar : PubMed/NCBI

59 

Wild AR, Sinnen BL, Dittmer PJ, Kennedy MJ, Sather WA and Dell'Acqua ML: Synapse-to-nucleus communication through NFAT is mediated by L-type Ca2+ channel Ca2+ spike propagation to the Soma. Cell Rep. 26:3537–3550.e4. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Cohn JN, Ferrari R and Sharpe N: Cardiac remodeling-concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. Behalf of an international forum on cardiac remodeling. J Am Coll Cardiol. 35:569–582. 2000. View Article : Google Scholar : PubMed/NCBI

61 

Yamazaki T, Komuro I, Zou Y, Kudoh S, Shiojima I, Mizuno T, Hiroi Y, Nagai R and Yazaki Y: Efficient inhibition of the development of cardiac remodeling by a long-acting calcium antagonist amlodipine. Hypertension. 31:32–38. 1998. View Article : Google Scholar : PubMed/NCBI

62 

Sandmann S, Claas R, Cleutjens JP, Daemen MJ and Unger T: Calcium channel blockade limits cardiac remodeling and improves cardiac function in myocardial infarction-induced heart failure in rats. J Cardiovasc Pharmacol. 37:64–77. 2001. View Article : Google Scholar : PubMed/NCBI

63 

Lu JC, Cui W, Zhang HL, Liu F, Han M, Liu DM, Yin HN, Zhang K and Du J: Additive beneficial effects of amlodipine and atorvastatin in reversing advanced cardiac hypertrophy in elderly spontaneously hypertensive rats. Clin Exp Pharmacol Physiol. 36:1110–1119. 2009. View Article : Google Scholar : PubMed/NCBI

64 

Liao Y, Asakura M, Takashima S, Kato H, Asano Y, Shintani Y, Minamino T, Tomoike H, Hori M and Kitakaze M: Amlodipine ameliorates myocardial hypertrophy by inhibiting EGFR phosphorylation. Biochem Biophys Res Commun. 327:1083–1087. 2005. View Article : Google Scholar : PubMed/NCBI

65 

Yu GL, Liang XQ and Zheng JQ: Contrast of losartan, fosinopril and amlodipine on cardiomyocyte apoptosis and left ventricular remolding in hypertensive rats. Hunan Yi Ke Da Xue Xue Bao. 26:405–408. 2001.(In Chinese). PubMed/NCBI

66 

Meo M, Meste O, Signore S, Sorrentino A, Cannata A, Zhou Y, Matsuda A, Luciani M, Kannappan R, Goichberg P, et al: Reduction in Kv current enhances the temporal dispersion of the action potential in diabetic myocytes: Insights from a novel repolarization algorithm. J Am Heart Assoc. 5:e0030782016. View Article : Google Scholar : PubMed/NCBI

67 

Sung HH, Kam SC, Lee JH, Chae MR, Hong C, Ko M, Han DH, So I and Lee SW: Molecular and functional characterization of ORAI and STIM in human corporeal smooth muscle cells and effects of the transfer of their dominant-negative mutant genes into diabetic rats. J Urol. 187:1903–1910. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Liu CZ, Tan JX, Wang Y, Huang YG and Huang DL: L-type calcium channel blocker suppresses calcineurin signal pathway and development of right ventricular hypertrophy. J Formos Med Assoc. 104:798–803. 2005.PubMed/NCBI

69 

Zou Y, Yamazaki T, Nakagawa K, Yamada H, Iriguchi N, Toko H, Takano H, Akazawa H, Nagai R and Komuro I: Continuous blockade of L-type Ca2+ channels suppresses activation of calcineurin and development of cardiac hypertrophy in spontaneously hypertensive rats. Hypertens Res. 25:117–124. 2002. View Article : Google Scholar : PubMed/NCBI

70 

Bugyei-Twum A, Advani A, Advani SL, Zhang Y, Thai K, Kelly DJ and Connelly KA: High glucose induces Smad activation via the transcriptional coregulator p300 and contributes to cardiac fibrosis and hypertrophy. Cardiovasc Diabetol. 13:892014. View Article : Google Scholar : PubMed/NCBI

71 

Chen Y, Yuan J, Jiang G, Zhu J, Zou Y and Lv Q: Lercanidipine attenuates angiotensin II-induced cardiomyocyte hypertrophy by blocking calcineurin-NFAT3 and CaMKII-HDAC4 signaling. Mol Med Rep. 16:4545–4552. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Liu CJ, Cheng YC, Lee KW, Hsu HH, Chu CH, Tsai FJ, Tsai CH, Chu CY, Liu JY, Kuo WW and Huang CY: Lipopolysaccharide induces cellular hypertrophy through calcineurin/NFAT-3 signaling pathway in H9c2 myocardiac cells. Mol Cell Biochem. 313:167–178. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Xu X, Ruan L, Tian X, Pan F, Yang C and Liu G: Calcium inhibitor inhibits high glucose‑induced hypertrophy of H9C2 cells. Mol Med Rep 22: 1783-1792, 2020.
APA
Xu, X., Ruan, L., Tian, X., Pan, F., Yang, C., & Liu, G. (2020). Calcium inhibitor inhibits high glucose‑induced hypertrophy of H9C2 cells. Molecular Medicine Reports, 22, 1783-1792. https://doi.org/10.3892/mmr.2020.11275
MLA
Xu, X., Ruan, L., Tian, X., Pan, F., Yang, C., Liu, G."Calcium inhibitor inhibits high glucose‑induced hypertrophy of H9C2 cells". Molecular Medicine Reports 22.3 (2020): 1783-1792.
Chicago
Xu, X., Ruan, L., Tian, X., Pan, F., Yang, C., Liu, G."Calcium inhibitor inhibits high glucose‑induced hypertrophy of H9C2 cells". Molecular Medicine Reports 22, no. 3 (2020): 1783-1792. https://doi.org/10.3892/mmr.2020.11275
Copy and paste a formatted citation
x
Spandidos Publications style
Xu X, Ruan L, Tian X, Pan F, Yang C and Liu G: Calcium inhibitor inhibits high glucose‑induced hypertrophy of H9C2 cells. Mol Med Rep 22: 1783-1792, 2020.
APA
Xu, X., Ruan, L., Tian, X., Pan, F., Yang, C., & Liu, G. (2020). Calcium inhibitor inhibits high glucose‑induced hypertrophy of H9C2 cells. Molecular Medicine Reports, 22, 1783-1792. https://doi.org/10.3892/mmr.2020.11275
MLA
Xu, X., Ruan, L., Tian, X., Pan, F., Yang, C., Liu, G."Calcium inhibitor inhibits high glucose‑induced hypertrophy of H9C2 cells". Molecular Medicine Reports 22.3 (2020): 1783-1792.
Chicago
Xu, X., Ruan, L., Tian, X., Pan, F., Yang, C., Liu, G."Calcium inhibitor inhibits high glucose‑induced hypertrophy of H9C2 cells". Molecular Medicine Reports 22, no. 3 (2020): 1783-1792. https://doi.org/10.3892/mmr.2020.11275
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team