|
1
|
Falany CN, Johnson MR, Barnes S and Diasio
RB: Glycine and taurine conjugation of bile acids by a single
enzyme. Molecular cloning and expression of human liver bile acid
CoA:amino acid N-acyltransferase. J Biol Chem. 269:19375–19379.
1994.PubMed/NCBI
|
|
2
|
Lambert IH, Jensen JV and Pedersen PA:
mTOR ensures increased release and reduced uptake of the organic
osmolyte taurine under hypoosmotic conditions in mouse fibroblasts.
Am J Physiol Cell Physiol. 306:C1028–C1040. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Espe M and Holen E: Taurine attenuates
apoptosis in primary liver cells isolated from Atlantic salmon
(Salmo salar). Br J Nutr. 110:20–28. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Trenkner E: Possible role of glutamate
with taurine in neuron-glia interaction during cerebellar
development. Prog Clin Biol Res. 351:133–140. 1990.PubMed/NCBI
|
|
5
|
Schaffer SW, Azuma J and Madura JD:
Mechanisms underlying taurine-mediated alterations in membrane
function. Amino Acids. 8:231–246. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Tappaz ML: Taurine biosynthetic enzymes
and taurine transporter: Molecular identification and regulations.
Neurochem Res. 29:83–96. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Stipanuk MH: Role of the liver in
regulation of body cysteine and taurine levels: A brief review.
Neurochem Res. 29:105–110. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Palkovits M, Elekes I, Láng T and Patthy
A: Taurine levels in discrete brain nuclei of rats. J Neurochem.
47:1333–1335. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Stipanuk MH, Londono M, Lee JI, Hu M and
Yu AF: Enzymes and metabolites of cysteine metabolism in nonhepatic
tissues of rats show little response to changes in dietary protein
or sulfur amino acid levels. J Nutr. 132:3369–3378. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ueki I and Stipanuk MH: 3T3-L1 adipocytes
and rat adipose tissue have a high capacity for taurine synthesis
by the cysteine dioxygenase/cysteinesulfinate decarboxylase and
cysteamine dioxygenase pathways. J Nutr. 139:207–214. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ueki I and Stipanuk MH: Enzymes of the
taurine biosynthetic pathway are expressed in rat mammary gland. J
Nutr. 137:1887–1894. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Park E, Park SY, Wang C, Xu J, LaFauci G
and Schuller-Levis G: Cloning of murine cysteine sulfinic acid
decarboxylase and its mRNA expression in murine tissues. Biochim
Biophys Acta. 1574:403–406. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Marcinkiewicz J and Kontny E: Taurine and
inflammatory diseases. Amino Acids. 46:7–20. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Jerkins AA and Steele RD: Quantification
of cysteine sulfinic acid decarboxylase in male and female rats:
Effect of adrenalectomy and methionine. Arch Biochem Biophys.
294:534–538. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ueki I, Roman HB, Valli A, Fieselmann K,
Lam J, Peters R, Hirschberger LL and Stipanuk MH: Knockout of the
murine cysteine dioxygenase gene results in severe impairment in
ability to synthesize taurine and an increased catabolism of
cysteine to hydrogen sulfide. Am J Physiol Endocrinol Metab.
301:E668–E684. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Roman HB, Hirschberger LL, Krijt J, Valli
A, Kožich V and Stipanuk MH: The cysteine dioxgenase knockout
mouse: Altered cysteine metabolism in nonhepatic tissues leads to
excess H2S/HS(−) production and evidence of pancreatic and lung
toxicity. Antioxid Redox Signal. 19:1321–1336. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Sturman JA: Taurine in development. J
Nutr. 118:1169–1176. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Miyamoto Y, Tiruppathi C, Ganapathy V and
Leibach FH: Active transport of taurine in rabbit jejunal
brush-border membrane vesicles. Am J Physiol. 257:G65–G72.
1989.PubMed/NCBI
|
|
19
|
O'Flaherty L, Stapleton PP, Redmond HP and
Bouchier-Hayes DJ: Intestinal taurine transport: A review. Eur J
Clin Invest. 27:873–880. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Glass EN, Odle J and Baker DH: Urinary
taurine excretion as a function of taurine intake in adult cats. J
Nutr. 122:1135–1142. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Schuller-Levis G and Park E: Is taurine a
biomarker. Advances in Clinical Chemistry. 41:Elsevier. 1–21. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Anderson CMH, Howard A, Walters JRF,
Ganapathy V and Thwaites DT: Taurine uptake across the human
intestinal brush-border membrane is via two transporters:
H+-coupled PAT1 (SLC36A1) and Na+- and
Cl−-dependent TauT (SLC6A6): intestinal taurine
transport via PAT1 (SLC36A1) and TauT (SLC6A6). J Physiol.
587:731–744. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Voss JW, Pedersen SF, Christensen ST and
Lambert IH: Regulation of the expression and subcellular
localization of the taurine transporter TauT in mouse NIH3T3
fibroblasts. Eur J Biochem. 271:4646–4658. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Jensen A, Figueiredo-Larsen M, Holm R,
Broberg ML, Brodin B and Nielsen CU: PAT1 (SLC36A1) shows nuclear
localization and affects growth of smooth muscle cells from rats.
Am J Physiol Endocrinol Metab. 306:E65–E74. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Jong CJ, Ito T, Mozaffari M, Azuma J and
Schaffer S: Effect of β-alanine treatment on mitochondrial taurine
level and 5-taurinomethyluridine content. J Biomed Sci. 17 (Suppl
1):S252010. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ubuka T, Okada A and Nakamura H:
Production of hypotaurine from L-cysteinesulfinate by rat liver
mitochondria. Amino Acids. 35:53–58. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Suzuki T, Suzuki T, Wada T, Saigo K and
Watanabe K: Taurine as a constituent of mitochondrial tRNAs: New
insights into the functions of taurine and human mitochondrial
diseases. EMBO J. 21:6581–6589. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ögmundsdóttir MH, Heublein S, Kazi S,
Reynolds B, Visvalingam SM, Shaw MK and Goberdhan DCI:
Proton-assisted amino acid transporter PAT1 complexes with Rag
GTPases and activates TORC1 on late endosomal and lysosomal
membranes. PLoS One. 7:e366162012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Takeuchi K, Toyohara H and Sakaguchi M: A
hyperosmotic stress-induced mRNA of carp cell encodes
Na+- and Cl−-dependent high affinity taurine
transporter1 the sequence reported in this paper has been deposited
in the DDBJ/EMBL/GenBank database with accession no. AB006986.1.
Biochim Biophys Acta Biomembr. 1464:219–230. 2000. View Article : Google Scholar
|
|
30
|
Mollerup J and Lambert IH: Calyculin a
modulates the kinetic constants for the Na+-coupled
taurine transport in Ehrlich ascites tumour cells. Biochim Biophys
Acta Biomembr. 1371:335–344. 1998. View Article : Google Scholar
|
|
31
|
Sakai S, Tosaka T, Tasaka J, Hashiguchi T
and Yoshihama I: Taurine uptake by glial cells in the bullfrog
sympathetic ganglia. Neurochem Int. 14:193–198. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Han X, Patters AB, Jones DP, Zelikovic I
and Chesney RW: The taurine transporter: Mechanisms of regulation.
Acta Physiol (Oxf). 187:61–73. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Heller-Stilb B, van Roeyen C, Rascher K,
Hartwig HG, Huth A, Seeliger MW, Warskulat U and Häussinger D:
Disruption of the taurine transporter gene (taut) leads to retinal
degeneration in mice. FASEB J. 16:231–233. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Han X, Patters AB and Chesney RW:
Transcriptional repression of taurine transporter gene (TauT) by
p53 in renal cells. J Biol Chem. 277:39266–39273. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Lambert IH: Regulation of the cellular
content of the organic osmolyte taurine in mammalian cells.
Neurochem Res. 29:27–63. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Miyazaki T and Matsuzaki Y: Taurine and
liver diseases: A focus on the heterogeneous protective properties
of taurine. Amino Acids. 46:101–110. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hammarqvist F, Angsten G, Meurling S,
Andersson K and Wernerman J: Age-related changes of muscle and
plasma amino acids in healthy children. Amino Acids. 39:359–366.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Li Y, Hu Z, Chen B, Bu Q, Lu W, Deng Y,
Zhu R, Shao X, Hou J, Zhao J, et al: Taurine attenuates
methamphetamine-induced autophagy and apoptosis in PC12 cells
through mTOR signaling pathway. Toxicol Lett. 215:1–7. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Holecek M and Sispera L: Effects of
arginine supplementation on amino acid profiles in blood and
tissues in fed and overnight-fasted rats. Nutrients. 8:2062016.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Li Y, Li F, Wu L, Wei H, Liu Y, Li T, Tan
B, Kong X, Yao K, Chen S, et al: Effects of dietary protein
restriction on muscle fiber characteristics and mTORC1 pathway in
the skeletal muscle of growing-finishing pigs. J Anim Sci
Biotechnol. 7:472016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Holecek M and Kovarik M: Alterations in
protein metabolism and amino acid concentrations in rats fed by a
high-protein (casein-enriched) diet - effect of starvation. Food
Chem Toxicol. 49:3336–3342. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Chen X, Sebastian BM, Tang H, McMullen MM,
Axhemi A, Jacobsen DW and Nagy LE: Taurine supplementation prevents
ethanol-induced decrease in serum adiponectin and reduces hepatic
steatosis in rats. Hepatology. 49:1554–1562. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Mochizuki T, Satsu H, Nakano T and Shimizu
M: Regulation of the human taurine transporter by TNF-α and an
anti-inflammatory function of taurine in human intestinal Caco-2
cells. Biofactors. 21:141–144. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ishizuka K, Miyamoto Y, Satsu H, Sato R
and Shimizu M: Characteristics of lysophosphatidylcholine in its
inhibition of taurine uptake by human intestinal Caco-2 cells.
Biosci Biotechnol Biochem. 66:730–736. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Mochizuki T, Satsu H and Shimizu M:
Signaling pathways involved in tumor necrosis factor α-induced
upregulation of the taurine transporter in Caco-2 cells. FEBS Lett.
579:3069–3074. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Merheb M, Daher RT, Nasrallah M, Sabra R,
Ziyadeh FN and Barada K: Taurine intestinal absorption and renal
excretion test in diabetic patients: A pilot study. Diabetes Care.
30:2652–2654. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Han X, Budreau AM and Chesney RW: The
taurine transporter gene and its role in renal development. Amino
Acids. 19:499–507. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Chesney RW, Scriver CR and Mohyuddin F:
Localization of the membrane defect in transepithelial transport of
taurine by parallel studies in vivo and in vitro in hypertaurinuric
mice. J Clin Invest. 57:183–193. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Satsu H, Miyamoto Y and Shimizu M:
Hypertonicity stimulates taurine uptake and transporter gene
expression in Caco-2 cells. Biochim Biophys Acta. 1419:89–96. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Uchida S, Kwon HM, Yamauchi A, Preston AS,
Marumo F and Handler JS: Molecular cloning of the cDNA for an MDCK
cell Na(+)- and Cl(−)-dependent taurine transporter that is
regulated by hypertonicity. Proc Natl Acad Sci USA. 89:8230–8234.
1992. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Pramod AB, Foster J, Carvelli L and Henry
LK: SLC6 transporters: Structure, function, regulation, disease
association and therapeutics. Mol Aspects Med. 34:197–219. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kubo Y, Akanuma SI and Hosoya KI: Impact
of SLC6A transporters in physiological taurine transport at the
blood-retinal barrier and in the liver. Biol Pharm Bull.
39:1903–1911. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zelikovic I and Chesney RW: Sodium-coupled
amino acid transport in renal tubule. Kidney Int. 36:351–359. 1989.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Silbernagl S: The renal handling of amino
acids and oligopeptides. Physiol Rev. 68:911–1007. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zelikovic I and Chesney RW: Ionic
requirements for amino acid transport. Am J Kidney Dis. 14:313–316.
1989. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hoffmann EK and Lambert IH: Amino acid
transport and cell volume regulation in Ehrlich ascites tumour
cells. J Physiol. 338:613–625. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Han X, Budreau AM and Chesney RW:
Identification of promoter elements involved in adaptive regulation
of the taurine transporter gene: Role of cytosolic Ca2+
signaling. Adv Exp Med Biol. 483:535–544. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wójcik OP, Koenig KL, Zeleniuch-Jacquotte
A, Costa M and Chen Y: The potential protective effects of taurine
on coronary heart disease. Atherosclerosis. 208:19–25. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Jones DP, Miller LA and Chesney RW:
Polarity of taurine transport in cultured renal epithelial cell
lines: LLC-PK1 and MDCK. Am J Physiol. 265:F137–F145.
1993.PubMed/NCBI
|
|
60
|
Jones DP, Miller LA, Dowling C and Chesney
RW: Regulation of taurine transporter activity in LLC-PK1 cells:
Role of protein synthesis and protein kinase C activation. J Am Soc
Nephrol. 2:1021–1029. 1991.PubMed/NCBI
|
|
61
|
Jones DP, Miller LA and Chesney RW:
Adaptive regulation of taurine transport in two continuous renal
epithelial cell lines. Kidney Int. 38:219–226. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Jones DP, Miller LA, Budreau A and Chesney
RW: Characteristics of taurine transport in cultured renal
epithelial cell lines: asymmetric polarity of proximal and distal
cell lines. Adv Exp Med Biol. 315:405–411. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Handler JS and Kwon HM: Transcriptional
regulation by changes in tonicity. Kidney Int. 60:408–411. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ito T, Fujio Y, Schaffer SW and Azuma J:
Involvement of transcriptional factor TonEBP in the regulation of
the taurine transporter in the cardiomyocyte. Adv Exp Med Biol.
643:523–532. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ito T, Fujio Y, Hirata M, Takatani T,
Matsuda T, Muraoka S, Takahashi K and Azuma J: Expression of
taurine transporter is regulated through the TonE
(tonicity-responsive element)/TonEBP (TonE-binding protein) pathway
and contributes to cytoprotection in HepG2 cells. Biochem J.
382:177–182. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ortells MC, Morancho B, Drews-Elger K,
Viollet B, Laderoute KR, López-Rodríguez C and Aramburu J:
Transcriptional regulation of gene expression during osmotic stress
responses by the mammalian target of rapamycin. Nucleic Acids Res.
40:4368–4384. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Roos S, Kanai Y, Prasad PD, Powell TL and
Jansson T: Regulation of placental amino acid transporter activity
by mammalian target of rapamycin. Am J Physiol Cell Physiol.
296:C142–C150. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Han X and Chesney RW: The role of taurine
in renal disorders. Amino Acids. 43:2249–2263. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Han X, Yue J and Chesney RW: Functional
TauT protects against acute kidney injury. J Am Soc Nephrol.
20:1323–1332. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Matsell DG, Bennett T, Han X, Budreau AM
and Chesney RW: Regulation of the taurine transporter gene in the
S3 segment of the proximal tubule. Kidney Int. 52:748–754. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Shalby AB, Assaf N and Ahmed HH: Possible
mechanisms for N-acetyl cysteine and taurine in ameliorating acute
renal failure induced by cisplatin in rats. Toxicol Mech Methods.
21:538–546. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Han X: Targeting taurine transporter
(TauT) for cancer immunotherapy of p53 mutation mediated cancers -
molecular basis and preclinical implication. Adv Exp Med Biol.
1155:543–553. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hansen DB, Friis MB, Hoffmann EK and
Lambert IH: Downregulation of the taurine transporter TauT during
hypo-osmotic stress in NIH3T3 mouse fibroblasts. J Membr Biol.
245:77–87. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Mollerup J and Lambert IH: Phosphorylation
is involved in the regulation of the taurine influx via the
β-system in Ehrlich ascites tumor cells. J Membr Biol. 150:73–82.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Qian X, Vinnakota S, Edwards C and Sarkar
HK: Molecular characterization of taurine transport in bovine
aortic endothelial cells. Biochim Biophys Acta. 1509:324–334. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Jacobsen JH, Clement CA, Friis MB and
Lambert IH: Casein kinase 2 regulates the active uptake of the
organic osmolyte taurine in NIH3T3 mouse fibroblasts. Pflugers
Arch. 457:327–337. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Smith KE, Borden LA, Wang CH, Hartig PR,
Branchek TA and Weinshank RL: Cloning and expression of a high
affinity taurine transporter from rat brain. Mol Pharmacol.
42:563–569. 1992.PubMed/NCBI
|
|
78
|
Kang YS, Ohtsuki S, Takanaga H, Tomi M,
Hosoya K and Terasaki T: Regulation of taurine transport at the
blood-brain barrier by tumor necrosis factor-α, taurine and
hypertonicity. J Neurochem. 83:1188–1195. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Frank RN: Diabetic retinopathy. N Engl J
Med. 350:48–58. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Lorenzi M, Healy DP, Hawkins R, Printz JM
and Printz MP: Studies on the permeability of the blood-brain
barrier in experimental diabetes. Diabetologia. 29:58–62. 1986.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Schoch HJ, Fischer S and Marti HH:
Hypoxia-induced vascular endothelial growth factor expression
causes vascular leakage in the brain. Brain. 125:2549–2557. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Yeh WL, Lu DY, Lin CJ, Liou HC and Fu WM:
Inhibition of hypoxia-induced increase of blood-brain barrier
permeability by YC-1 through the antagonism of HIF-1α accumulation
and VEGF expression. Mol Pharmacol. 72:440–449. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Nicholson BP and Schachat AP: A review of
clinical trials of anti-VEGF agents for diabetic retinopathy.
Graefes Arch Clin Exp Ophthalmol. 248:915–930. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Poulaki V, Qin W, Joussen AM, Hurlbut P,
Wiegand SJ, Rudge J, Yancopoulos GD and Adamis AP: Acute intensive
insulin therapy exacerbates diabetic blood-retinal barrier
breakdown via hypoxia-inducible factor-1α and VEGF. J Clin Invest.
109:805–815. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Napoli Z, Seghieri G, Bianchi L, Anichini
R, De Bellis A, Campesi I, Carru C, Occhioni S, Zinellu A and
Franconi F: Taurine transporter gene expression in mononuclear
blood cells of type 1 diabetes patients. J Diabetes Res.
2016:73131622016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Bianchi L, Lari R, Anichini R, De Bellis
A, Berti A, Napoli Z, Seghieri G and Franconi F: Taurine
transporter gene expression in peripheral mononuclear blood cells
of type 2 diabetic patients. Amino Acids. 42:2267–2274. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Han X and Chesney RW: Knockdown of TauT
expression impairs human embryonic kidney 293 cell development. Adv
Exp Med Biol. 776:307–320. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Son HY, Kim H and Kwon YH: Taurine
prevents oxidative damage of high glucose-induced cataractogenesis
in isolated rat lenses. J Nutr Sci Vitaminol (Tokyo). 53:324–330.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Hou X, Wang Z, Ding F, He Y, Wang P, Liu
X, Xu F, Wang J and Yang Y: Taurine transporter regulates
adipogenic differentiation of human adipose-derived stem cells
through affecting Wnt/β-catenin signaling pathway. Int J Biol Sci.
15:1104–1112. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Tervaert TWC, Mooyaart AL, Amann K, Cohen
AH, Cook HT, Drachenberg CB, Ferrario F, Fogo AB, Haas M, de Heer
E, et al Renal Pathology Society, : Pathologic classification of
diabetic nephropathy. J Am Soc Nephrol. 21:556–563. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Lang PA, Warskulat U, Heller-Stilb B,
Huang DY, Grenz A, Myssina S, Duszenko M, Lang F, Häussinger D,
Vallon V, et al: Blunted apoptosis of erythrocytes from taurine
transporter deficient mice. Cell Physiol Biochem. 13:337–346. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Villumsen KR, Duelund L and Lambert IH:
Acute cholesterol depletion leads to net loss of the organic
osmolyte taurine in Ehrlich Lettré tumor cells. Amino Acids.
39:1521–1536. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Lambert IH, Nielsen JH, Andersen HJ and
Ørtenblad N: Cellular model for induction of drip loss in meat. J
Agric Food Chem. 49:4876–4883. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Poulsen KA, Andersen EC, Hansen CF,
Klausen TK, Hougaard C, Lambert IH and Hoffmann EK: Deregulation of
apoptotic volume decrease and ionic movements in
multidrug-resistant tumor cells: Role of chloride channels. Am J
Physiol Cell Physiol. 298:C14–C25. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Lambert IH: Effect of arachidonic acid on
conductive Na, K and anion transport in Ehlrich ascites tumor cells
under isotonic and hypotonic conditions. Cell Physiol Biochem.
1:177–194. 1991. View Article : Google Scholar
|
|
96
|
Lambert IH: Effect of arachidonic acid,
fatty acids, prostaglandins, and leukotrienes on volume regulation
in Ehrlich ascites tumor cells. J Membr Biol. 98:207–221. 1987.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Lambert IH: Reactive oxygen species
regulate swelling-induced taurine efflux in NIH3T3 mouse
fibroblasts. J Membr Biol. 192:19–32. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Ito T, Kimura Y, Uozumi Y, Takai M,
Muraoka S, Matsuda T, Ueki K, Yoshiyama M, Ikawa M, Okabe M, et al:
Taurine depletion caused by knocking out the taurine transporter
gene leads to cardiomyopathy with cardiac atrophy. J Mol Cell
Cardiol. 44:927–937. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Izumi K, Kishita C, Nakagawa K, Huxtable
RJ, Shimizu T, Koja T and Fukuda T: Modification of the
antiepileptic actions of phenobarbital and phenytoin by the taurine
transport inhibitor, guanidinoethane sulfonate. Eur J Pharmacol.
110:219–224. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Schaffer SW, Shimada-Takaura K, Jong CJ,
Ito T and Takahashi K: Impaired energy metabolism of the taurine
deficient heart. Amino Acids. 48:549–558. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Choi D, Kim SJ, Kwon DY, Lee SY and Kim
YC: Taurine depletion by beta-alanine inhibits induction of
hepatotoxicity in mice treated acutely with carbon tetrachloride.
Adv Exp Med Biol. 643:305–311. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Warskulat U, Flögel U, Jacoby C, Hartwig
HG, Thewissen M, Merx MW, Molojavyi A, Heller-Stilb B, Schrader J
and Häussinger D: Taurine transporter knockout depletes muscle
taurine levels and results in severe skeletal muscle impairment but
leaves cardiac function uncompromised. FASEB J. 18:577–579. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Lötsch J, Hummel T, Warskulat U, Coste O,
Häussinger D, Geisslinger G and Tegeder I: Congenital taurine
deficiency in mice is associated with reduced sensitivity to
nociceptive chemical stimulation. Neuroscience. 259:63–70. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Ito T, Oishi S, Takai M, Kimura Y, Uozumi
Y, Fujio Y, Schaffer SW and Azuma J: Cardiac and skeletal muscle
abnormality in taurine transporter-knockout mice. J Biomed Sci. 17
(Suppl 1):S202010. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Kaesler S, Sobiesiak M, Kneilling M, Volz
T, Kempf WE, Lang PA, Lang KS, Wieder T, Heller-Stilb B, Warskulat
U, et al: Effective T-cell recall responses require the taurine
transporter Taut. Eur J Immunol. 42:831–841. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Warskulat U, Borsch E, Reinehr R,
Heller-Stilb B, Mönnighoff I, Buchczyk D, Donner M, Flögel U,
Kappert G, Soboll S, et al: Chronic liver disease is triggered by
taurine transporter knockout in the mouse. FASEB J. 20:574–576.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Warskulat U, Borsch E, Reinehr R,
Heller-Stilb B, Roth C, Witt M and Häussinger D: Taurine deficiency
and apoptosis: Findings from the taurine transporter knockout
mouse. Arch Biochem Biophys. 462:202–209. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Qvartskhava N, Jin CJ, Buschmann T,
Albrecht U, Bode JG, Monhasery N, Oenarto J, Bidmon HJ, Görg B and
Häussinger D: Taurine transporter (TauT) deficiency impairs ammonia
detoxification in mouse liver. Proc Natl Acad Sci USA.
116:6313–6318. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Ito T, Okazaki K, Nakajima D, Shibata D,
Murakami S and Schaffer S: Mass spectrometry-based metabolomics to
identify taurine-modified metabolites in heart. Amino Acids.
50:117–124. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Franchi-Gazzola R, Gaccioli F, Bevilacqua
E, Visigalli R, Dall'Asta V, Sala R, Varoqui H, Erickson JD,
Gazzola GC and Bussolati O: The synthesis of SNAT2 transporters is
required for the hypertonic stimulation of system a transport
activity. Biochim Biophys Acta Biomembr. 1667:157–166. 2004.
View Article : Google Scholar
|
|
111
|
Trama J, Go WY and Ho SN: The
osmoprotective function of the NFAT5 transcription factor in T cell
development and activation. J Immunol. 169:5477–5488. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Burg MB and Ferraris JD: Intracellular
organic osmolytes: Function and regulation. J Biol Chem.
283:7309–7313. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Schaffer SW, Jong CJ, Ito T and Azuma J:
Role of taurine in the pathologies of MELAS and MERRF. Amino Acids.
46:47–56. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Board PG, Moore KA and Smith JE:
Purification and properties of γ-glutamylcyclotransferase from
human erythrocytes. Biochem J. 173:427–431. 1978. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Krishnamurthy J, Torrice C, Ramsey MR,
Kovalev GI, Al-Regaiey K, Su L and Sharpless NE: Ink4a/Arf
expression is a biomarker of aging. J Clin Invest. 114:1299–1307.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Ito T, Yoshikawa N, Inui T, Miyazaki N,
Schaffer SW and Azuma J: Tissue depletion of taurine accelerates
skeletal muscle senescence and leads to early death in mice. PLoS
One. 9:e1074092014. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Back SH, Scheuner D, Han J, Song B, Ribick
M, Wang J, Gildersleeve RD, Pennathur S and Kaufman RJ: Translation
attenuation through eIF2α phosphorylation prevents oxidative stress
and maintains the differentiated state in β cells. Cell Metab.
10:13–26. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Harding HP, Novoa I, Zhang Y, Zeng H, Wek
R, Schapira M and Ron D: Regulated translation initiation controls
stress-induced gene expression in mammalian cells. Mol Cell.
6:1099–1108. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Araki K and Nagata K: Protein folding and
quality control in the ER. Cold Spring Harb Perspect Biol.
4:a015438. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Salminen A and Kaarniranta K: ER stress
and hormetic regulation of the aging process. Ageing Res Rev.
9:211–217. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Jong CJ, Ito T, Azuma J and Schaffer S:
Taurine depletion decreases GRP78 expression and downregulates
Perk-dependent activation of the unfolded protein response. Adv Exp
Med Biol. 803:571–579. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Ito T, Yamamoto N, Nakajima S and Schaffer
SW: Beta-catenin and SMAD3 are associated with skeletal muscle
aging in the taurine transporter knockout mouse. Adv Exp Med Biol
975 (Pt 1). 497–502. 2017. View Article : Google Scholar
|
|
123
|
Kirino Y, Yasukawa T, Ohta S, Akira S,
Ishihara K, Watanabe K and Suzuki T: Codon-specific translational
defect caused by a wobble modification deficiency in mutant tRNA
from a human mitochondrial disease. Proc Natl Acad Sci USA.
101:15070–15075. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Yasukawa T, Suzuki T, Ueda T, Ohta S and
Watanabe K: Modification defect at anticodon wobble nucleotide of
mitochondrial tRNAs(Leu)(UUR) with pathogenic mutations of
mitochondrial myopathy, encephalopathy, lactic acidosis, and
stroke-like episodes. J Biol Chem. 275:4251–4257. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Mozaffari MS, Tan BH, Lucia MA and
Schaffer SW: Effect of drug-induced taurine depletion on cardiac
contractility and metabolism. Biochem Pharmacol. 35:985–989. 1986.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Jong CJ, Azuma J and Schaffer S: Mechanism
underlying the antioxidant activity of taurine: Prevention of
mitochondrial oxidant production. Amino Acids. 42:2223–2232. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Vionnet N, Passa P and Froguel P:
Prevalence of mitochondrial gene mutations in families with
diabetes mellitus. Lancet. 342:1429–1430. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Maassen JA, 'T Hart LM, Van Essen E, Heine
RJ, Nijpels G, Jahangir Tafrechi RSJ, Raap AK, Janssen GMC and
Lemkes HHPJ: Mitochondrial diabetes: Molecular mechanisms and
clinical presentation. Diabetes. 53 (Suppl 1):S103–S109. 2004.
View Article : Google Scholar : PubMed/NCBI
|