Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
October-2020 Volume 22 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2020 Volume 22 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Protective effect of dimethyl fumarate on oxidative damage and signaling in cardiomyocytes

  • Authors:
    • Yuanyuan Kuang
    • Yinzhuang Zhang
    • Zhen Xiao
    • Lijun Xu
    • Ping Wang
    • Qilin Ma
  • View Affiliations / Copyright

    Affiliations: Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China, Department of Cardiovascular Medicine, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
    Copyright: © Kuang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2783-2790
    |
    Published online on: July 15, 2020
       https://doi.org/10.3892/mmr.2020.11342
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Myocardial ischemia/reperfusion (I/R) injury contributes to the pathogenesis of numerous diseases. Based on its antioxidant and anti‑inflammatory effects, dimethyl fumarate (DMF) has been reported to exert protective effects against I/R. However, to the best of our knowledge, its potential role as a myocardial protective agent in heart disease has received little attention. Previous studies have suggested that DMF may exert its protective effects by activating nuclear factor erythroid 2‑related factor 2 (Nrf2); however, the exact underlying mechanisms remain to be elucidated. The aim of the present study was to investigate the protective role of DMF in myocardial I/R injury, and to determine the role of Nrf2 in mediating the activity of DMF. H9c2 cells were incubated with DMF (20 µM) for 24 h before establishing the I/R model, and were then subjected to myocardial ischemia for 6 h, followed by reperfusion. Cell viability, lactate dehydrogenase levels, anti‑oxidant enzyme expression levels and anti‑apoptotic effects were evaluated, and AKT/Nrf2 pathway‑associated mechanisms were investigated. The results of the present study indicated that DMF may reduce myocardial I/R injury in a Nrf2‑dependent manner. DMF significantly improved cellular viability, suppressed the expression of apoptotic markers, decreased the production of reactive oxygen species and increased the expression of Nrf2‑regulated antioxidative genes. Notably, these beneficial DMF‑mediated effects were not observed in the control or I/R groups. In conclusion, the results of the present study suggested that DMF may exert protective effects against a myocardial I/R model, and further validated Nrf2 modulation as a primary mode of action. Thus suggesting that DMF may be a potential therapeutic agent for AKT/Nrf2 pathway activation in myocardial, and potentially systemic, diseases.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Yoon J, Seo H, Oh IH and Yoon SJ: The non-communicable disease burden in Korea: Findings from the 2012 Korean burden of disease study. J Korean Med Sci. 31 (Suppl 2):2783–S167. 2016. View Article : Google Scholar

2 

Yetgin T, Manintveld OC, Boersma E, Kappetein AP, van Geuns RJ, Zijlstra F, Duncker DJ and van der Giessen WJ: Remote ischemic conditioning in percutaneous coronary intervention and coronary artery bypass grafting. Circ J. 76:2392–2404. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Bompotis GC, Deftereos S, Angelidis C, Choidis E, Panagopoulou V, Kaoukis A, Vassilikos VP, Cleman MW and Giannopoulos G: Altered calcium handling in reperfusion injury. Med Chem. 12:114–130. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Ibáñez B, Heusch G, Ovize M and Van de Werf F: Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 65:1454–1471. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Binder A, Ali A, Chawla R, Aziz HA, Abbate A and Jovin IS: Myocardial protection from ischemia-reperfusion injury post coronary revascularization. Expert Rev Cardiovasc Ther. 13:1045–1057. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Kern KB, Hanna JM, Young HN, Ellingson CJ, White JJ, Heller B, Illindala U, Hsu CH and Zuercher M: Importance of both early reperfusion and therapeutic hypothermia in limiting myocardial infarct size post-cardiac arrest in a porcine model. JACC Cardiovasc Interv. 9:2403–2412. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Wang S, Zhang F, Zhao G, Cheng Y, Wu T, Wu B and Zhang YE: Mitochondrial PKC-ε deficiency promotes I/R-mediated myocardial injury via GSK3β-dependent mitochondrial permeability transition pore opening. J Cell Mol Med. 21:2009–2021. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Neri M, Riezzo I, Pascale N, Pomara C and Turillazzi E: Ischemia/reperfusion injury following acute myocardial infarction: A critical issue for clinicians and forensic pathologists. Mediators Inflamm. 2017:70183932017. View Article : Google Scholar : PubMed/NCBI

9 

Granger DN and Kvietys PR: Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 6:524–551. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Sanderson TH, Reynolds CA, Kumar R, Przyklenk K and Hüttemann M: Molecular mechanisms of ischemia-reperfusion injury in brain: Pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol. 47:9–23. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Sifuentes-Franco S, Pacheco-Moisés FP, Rodríguez-Carrizalez AD and Miranda-Díaz AG: The role of oxidative stress, mitochondrial function, and autophagy in diabetic polyneuropathy. J Diabetes Res. 2017:16730812017. View Article : Google Scholar : PubMed/NCBI

12 

Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA and Ganie SA: Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother. 74:101–110. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Sinha K, Das J, Pal PB and Sil PC: Oxidative stress: The mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. 87:1157–1180. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Boshra V and Atwa A: Effect of cerebrolysin on oxidative stress-induced apoptosis in an experimental rat model of myocardial ischemia. Physiol Int. 103:310–320. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Herr DJ, Aune SE and Menick DR: Induction and assessment of ischemia-reperfusion injury in Langendorff-perfused rat hearts. J Vis Exp. 101:e529082015.

16 

Heusch G and Gersh BJ: The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: A continual challenge. Eur Heart J. 38:774–784. 2017.PubMed/NCBI

17 

Takasu C, Vaziri ND, Li S, Robles L, Vo K, Takasu M, Pham C, Farzaneh SH, Shimada M, Stamos MJ, et al: Treatment with dimethyl fumarate ameliorates liver ischemia/reperfusion injury. World J Gastroenterol. 23:4508–4516. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Yao Y, Miao W, Liu Z, Han W, Shi K, Shen Y, Li H, Liu Q, Fu Y, Huang D, et al: Dimethyl fumarate and monomethyl fumarate promote post-ischemic recovery in mice. Transl Stroke Res. 7:535–547. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Li J, Ma J, Lacagnina MJ, Lorca S, Odem MA, Walters ET, Kavelaars A and Grace PM: Oral dimethyl fumarate reduces peripheral neuropathic pain in rodents via NFE2L2 antioxidant signaling. Anesthesiology,. 132:343–356. 2020. View Article : Google Scholar

20 

Ghadiri M, Rezk A, Li R, Evans A, Luessi F, Zipp F, Giacomini PS, Antel J and Bar-Or A: Dimethyl fumarate-induced lymphopenia in MS due to differential T-cell subset apoptosis. Neurol Neuroimmunol Neuroinflamm. 4:e3402017. View Article : Google Scholar : PubMed/NCBI

21 

Belcher JD, Chen C, Nguyen J, Zhang P, Abdulla F, Nguyen P, Killeen T, Xu P, O'Sullivan G, Nath KA, et al: Control of Oxidative Stress and Inflammation in Sickle Cell Disease with the Nrf2 Activator Dimethyl Fumarate. Antioxid Redox Signal. 26:748–762. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Sghaier R, Nury T, Leoni V, Caccia C, Pais De Barros JP, Cherif A, Vejux A, Moreau T, Limem K, et al: Dimethyl fumarate and monomethyl fumarate attenuate oxidative stress and mitochondrial alterations leading to oxiapoptophagy in 158N murine oligodendrocytes treated with 7β-hydroxycholesterol. J Steroid Biochem Mol Biol. 194:1054322019. View Article : Google Scholar : PubMed/NCBI

23 

Crowley LC, Marfell BJ, Scott AP and Waterhouse NJ: Quantitation of apoptosis and necrosis by Annexin V binding, propidium iodide uptake, and flow cytometry. Cold Spring Harb Protoc. 2016:953–957. 2016. View Article : Google Scholar

24 

Koç E, Çelik-Uzuner S, Uzuner U and Çakmak R: The detailed comparison of cell death detected by Annexin V-PI counterstain using fluorescence microscope, flow cytometry and automated cell counter in mammalian and microalgae cells. J Fluoresc. 28:1393–1404. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Dalen JE, Alpert JS, Goldberg RJ and Weinstein RS: The epidemic of the 20(th) century: Coronary heart disease. Am J Med. 127:807–812. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Chi HJ, Chen ML, Yang XC, Lin XM, Sun H, Zhao WS, Qi D, Dong JL and Cai J: Progress in therapies for myocardial ischemia reperfusion injury. Curr Drug Targets. 18:1712–1721. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Kleinbongard P, Skyschally A and Heusch G: Erratum to: Cardioprotection by remote ischemic conditioning and its signal transduction. Pflugers Arch. 469:8432017. View Article : Google Scholar : PubMed/NCBI

28 

Heusch G: Molecular basis of cardioprotection: Signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res. 116:674–699. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Bernink FJ, Timmers L, Beek AM, Diamant M, Roos ST, Van Rossum AC and Appelman Y: Progression in attenuating myocardial reperfusion injury: An overview. Int J Cardiol. 170:261–269. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Hausenloy DJ and Yellon DM: Myocardial ischemia-reperfusion injury: A neglected therapeutic target. J Clin Invest. 123:92–100. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Ndrepepa G, Colleran R and Kastrati A: Reperfusion injury in ST-segment elevation myocardial infarction: The final frontier. Coron Artery Dis. 28:253–262. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Frank A, Bonney M, Bonney S, Weitzel L, Koeppen M and Eckle T: Myocardial ischemia reperfusion injury: From basic science to clinical bedside. Semin Cardiothorac Vasc Anesth. 16:123–132. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Guo W, Liu X, Li J, Shen Y, Zhou Z, Wang M, Xie Y, Feng X, Wang L and Wu X: Prdx1 alleviates cardiomyocyte apoptosis through ROS-activated MAPK pathway during myocardial ischemia/reperfusion injury. Int J Biol Macromol. 112:608–615. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Huisman E, Papadimitropoulou K, Jarrett J, Bending M, Firth Z, Allen F and Adlard N: Systematic literature review and network meta-analysis in highly active relapsing-remitting multiple sclerosis and rapidly evolving severe multiple sclerosis. BMJ Open. 7:e0134302017. View Article : Google Scholar : PubMed/NCBI

35 

Akino N, Wada-Hiraike O, Terao H, Honjoh H, Isono W, Fu H, Hirano M, Miyamoto Y, Tanikawa M, Harada M, et al: Activation of Nrf2 might reduce oxidative stress in human granulosa cells. Mol Cell Endocrinol. 470:96–104. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Ohl K, Tenbrock K and Kipp M: Oxidative stress in multiple sclerosis: Central and peripheral mode of action. Exp Neurol. 277:58–67. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Chen Y, Wang H, Zhang Y, Wang Z, Liu S and Cui L: Pretreatment of ghrelin protects H9c2 cells against hypoxia/reoxygenation-induced cell death via PI3K/AKT and AMPK pathways. Artif Cells Nanomed Biotechnol. 47:2179–2187. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Fan L, Zhou W, Zhang L, Jiang D, Zhao Q and Liu L: Sitagliptin protects against hypoxia/reoxygenation (H/R)-induced cardiac microvascular endothelial cell injury. Am J Transl Res. 11:2099–2107. 2019.PubMed/NCBI

39 

Moe GW and Marín-García J: Role of cell death in the progression of heart failure. Heart Fail Rev. 21:157–167. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Qian W, Wang Z, Xu T and Li D: Anti-apoptotic effects and mechanisms of salvianolic acid A on cardiomyocytes in ischemia-reperfusion injury. Histol Histopathol. 34:223–231. 2019.PubMed/NCBI

41 

Lejay A, Fang F, John R, Van JA, Barr M, Thaveau F, Chakfe N, Geny B and Scholey JW: Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus. J Mol Cell Cardiol. 91:11–22. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Chen Y, Feng X, Hu X, Sha J, Li B, Zhang H and Fan H: Dexmedetomidine ameliorates acute stress-induced kidney injury by attenuating oxidative stress and apoptosis through inhibition of the ROS/JNK signaling pathway. Oxid Med Cell Longev. 2018:40353102018. View Article : Google Scholar : PubMed/NCBI

43 

Crowley LC and Waterhouse NJ: Detecting cleaved caspase-3 in apoptotic cells by flow cytometry. Cold Spring Harb Protoc. Nov 1–2016.(Epub ahead of print). View Article : Google Scholar

44 

Liu YF, Chu YY, Zhang XZ, Zhang M, Xie FG, Zhou M, Wen HH and Shu AH: TGFβ1 protects myocardium from apoptosis and oxidative damage after ischemia reperfusion. Eur Rev Med Pharmacol Sci. 21:1551–1558. 2017.PubMed/NCBI

45 

Cadenas S: ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med. 117:76–89. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Hall AR, Burke N, Dongworth RK, Kalkhoran SB, Dyson A, Vicencio JM, Dorn GW II, Yellon DM and Hausenloy DJ: Hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial infarction. Cell Death Dis. 7:e22382016. View Article : Google Scholar : PubMed/NCBI

47 

Carlström KE, Ewing E, Granqvist M, Gyllenberg A, Aeinehband S, Enoksson SL, Checa A, Badam TVS, Huang J, Gomez-Cabrero D, et al: Therapeutic efficacy of dimethyl fumarate in relapsing-remitting multiple sclerosis associates with ROS pathway in monocytes. Nat Commun. 10:30812019. View Article : Google Scholar : PubMed/NCBI

48 

Han G and Zhou Q: Dimethylfumarate induces cell cycle arrest and apoptosis via regulating intracellular redox systems in HeLa cells. In Vitro Cell Dev Biol Anim. 52:1034–1041. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Hu YR, Ma H, Zou ZY, He K, Xiao YB, Wang Y, Feng M, Ye XL and Li XG: Activation of Akt and JNK/Nrf2/NQO1 pathway contributes to the protective effect of coptisine against AAPH-induced oxidative stress. Biomed Pharmacother. 85:313–322. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Ci X, Zhou J, Lv H, Yu Q, Peng L and Hua S: Betulin exhibits anti-inflammatory activity in LPS-stimulated macrophages and endotoxin-shocked mice through an AMPK/AKT/Nrf2-dependent mechanism. Cell Death Dis. 18(8): e27982017. View Article : Google Scholar

51 

Wu PS, Ding HY, Yen JH, Chen SF, Lee KH and Wu MJ: Anti-inflammatory activity of 8-hydroxydaidzein in LPS-stimulated BV2 microglial cells via activation of Nrf2-antioxidant and attenuation of Akt/NF-κB-inflammatory signaling pathways, as well as inhibition of COX-2 activity. J Agric Food Chem. 66:5790–5801. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Bellezza I, Giambanco I, Minelli A and Donato R: Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res. 1865:721–733. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kuang Y, Zhang Y, Xiao Z, Xu L, Wang P and Ma Q: Protective effect of dimethyl fumarate on oxidative damage and signaling in cardiomyocytes. Mol Med Rep 22: 2783-2790, 2020.
APA
Kuang, Y., Zhang, Y., Xiao, Z., Xu, L., Wang, P., & Ma, Q. (2020). Protective effect of dimethyl fumarate on oxidative damage and signaling in cardiomyocytes. Molecular Medicine Reports, 22, 2783-2790. https://doi.org/10.3892/mmr.2020.11342
MLA
Kuang, Y., Zhang, Y., Xiao, Z., Xu, L., Wang, P., Ma, Q."Protective effect of dimethyl fumarate on oxidative damage and signaling in cardiomyocytes". Molecular Medicine Reports 22.4 (2020): 2783-2790.
Chicago
Kuang, Y., Zhang, Y., Xiao, Z., Xu, L., Wang, P., Ma, Q."Protective effect of dimethyl fumarate on oxidative damage and signaling in cardiomyocytes". Molecular Medicine Reports 22, no. 4 (2020): 2783-2790. https://doi.org/10.3892/mmr.2020.11342
Copy and paste a formatted citation
x
Spandidos Publications style
Kuang Y, Zhang Y, Xiao Z, Xu L, Wang P and Ma Q: Protective effect of dimethyl fumarate on oxidative damage and signaling in cardiomyocytes. Mol Med Rep 22: 2783-2790, 2020.
APA
Kuang, Y., Zhang, Y., Xiao, Z., Xu, L., Wang, P., & Ma, Q. (2020). Protective effect of dimethyl fumarate on oxidative damage and signaling in cardiomyocytes. Molecular Medicine Reports, 22, 2783-2790. https://doi.org/10.3892/mmr.2020.11342
MLA
Kuang, Y., Zhang, Y., Xiao, Z., Xu, L., Wang, P., Ma, Q."Protective effect of dimethyl fumarate on oxidative damage and signaling in cardiomyocytes". Molecular Medicine Reports 22.4 (2020): 2783-2790.
Chicago
Kuang, Y., Zhang, Y., Xiao, Z., Xu, L., Wang, P., Ma, Q."Protective effect of dimethyl fumarate on oxidative damage and signaling in cardiomyocytes". Molecular Medicine Reports 22, no. 4 (2020): 2783-2790. https://doi.org/10.3892/mmr.2020.11342
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team