Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
October-2020 Volume 22 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2020 Volume 22 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data2.xlsx
Article Open Access

Integrative microRNA and mRNA expression profiling in acute aristolochic acid nephropathy in mice

  • Authors:
    • Ziqiang Zhu
    • Xinxing Xu
    • Fengying Wang
    • Yongrui Song
    • Yanping Zhu
    • Wei Quan
    • Xueli Zhang
    • Cheng Bi
    • Hongxin He
    • Shuang Li
    • Xiaozhong Li
  • View Affiliations / Copyright

    Affiliations: Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China, Department of Pediatrics, Sir Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China, Centre for Systems Biology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
    Copyright: © Zhu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3367-3377
    |
    Published online on: August 19, 2020
       https://doi.org/10.3892/mmr.2020.11444
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

In acute aristolochic acid nephropathy (AAN), aristolochic acid (AA) induces renal injury and tubulointerstitial fibrosis. However, the roles of microRNAs (miRNAs/miRs) and mRNAs involved in AAN are not clearly understood. The aim of the present study was to examine AA‑induced genome‑wide differentially expressed (DE) miRNAs and DE mRNAs using deep sequencing in mouse kidneys, and to analyze their regulatory networks. In the present self‑controlled study, mice were treated with 5 mg/kg/day AA for 5 days, following unilateral nephrectomy. AA‑induced renal injury and tubulointerstitial fibrosis were detected using hematoxylin and eosin staining and Masson's trichrome staining in the mouse kidneys. A total of 82 DE miRNAs and 4,605 DE mRNAs were identified between the AA‑treated group and the self‑control group. Of these DE miRNAs and mRNAs, some were validated using reverse transcription‑quantitative PCR. Expression levels of the profibrotic miR‑21, miR‑433 and miR‑132 families were significantly increased, whereas expression levels of the anti‑fibrotic miR‑122‑5p and let‑7a‑1‑3p were significantly decreased. Functions and signaling pathways associated with the DE miRNAs and mRNAs were analyzed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG). A total of 767 DE pairs (in opposing directions) of miRNAs and their mRNA targets were identified. Among these, regulatory networks of miRNAs and mRNAs were analyzed using KEGG to identify enriched signaling pathways and extracellular matrix‑associated pathways. In conclusion, the present study identified genome‑wide DE miRNAs and mRNAs in the kidneys of AA‑treated mice, as well as their regulatory pairs and signaling networks. The present results may improve the understanding of the role of DE miRNAs and their mRNA targets in the pathophysiology of acute AAN.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Schaneberg BT, Applequist WL and Khan IA: Determination of aristolochic acid I and II in North American species of Asarum and Aristolochia. Pharmazie. 57:3367–689. 2002.

2 

Michl J, Jennings HM, Kite GC, Ingrouille MJ, Simmonds MS and Heinrich M: Is aristolochic acid nephropathy a widespread problem in developing countries? A case study of Aristolochia indica L. in Bangladesh using an ethnobotanical-phytochemical approach. J Ethnopharmacol. 149:235–244. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Bara T Jr, Gurzu S, Sugimura H, Bara T, Beleaua MA and Jung I: A systematic review of the possible carcinogenic role of the aristolochic acid. Rom J Morphol Embryol. 58:41–44. 2017.PubMed/NCBI

4 

Michl J, Ingrouille MJ, Simmonds MSJ and Heinrich M: Naturally occurring aristolochic acid analogues and their toxicities. Nat Prod Rep. 31:676–693. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Yang L, Li X and Wang H: Possible mechanisms explaining the tendency towards interstitial fibrosis in aristolochic acid-induced acute tubular necrosis. Nephrol Dial Transplant. 22:445–456. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Jadot I, Decleves AE, Nortier J and Caron N: An integrated view of aristolochic acid nephropathy: Update of the literature. Int J Mol Sci. 18:2972017. View Article : Google Scholar

7 

Humphreys BD: Mechanisms of renal fibrosis. Annu Rev Physiol. 80:309–326. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Rockey DC, Bell PD and Hill JA: Fibrosis-a common pathway to organ injury and failure. N Engl J Med. 372:1138–1149. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Yeh YC, Wei WC, Wang YK, Lin SC, Sung JM and Tang MJ: Transforming growth factor-{beta}1 induces Smad3-dependent {beta}1 integrin gene expression in epithelial-to-mesenchymal transition during chronic tubulointerstitial fibrosis. Am J Pathol. 177:1743–1754. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Yang Y, Feng XJ, Liu XY, Wang LH and Zheng GP: The effect of transforming growth factor β(1) in the transition of bone marrow-derived macrophages into myofibroblasts during renal fibrosis. Zhonghua Nei Ke Za Zhi. 56:610–613. 2017.(In Chinese). PubMed/NCBI

11 

Gebert LFR and MacRae IJ: Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 20:21–37. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Bushati N and Cohen SM: MicroRNA functions. Annu Rev Cell Dev Biol. 23:175–205. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Chung AC and Lan HY: MicroRNAs in renal fibrosis. Front Physiol. 6:502015. View Article : Google Scholar : PubMed/NCBI

14 

Wang B and Ricardo S: Role of microRNA machinery in kidney fibrosis. Clin Exp Pharmacol Physiol. 41:543–550. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Tang C, Xie Y and Yan W: 1 AASRA: An anchor alignment-based small RNA. bioRxiv. 2017.(Epub ahead for print).

16 

Nawrocki EP and Eddy SR: Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 29:2933–2935. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Kim D, Langmead B and Salzberg SL: HISAT: A fast spliced aligner with low memory requirements. Nat Methods. 12:357–360. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Kruger J and Rehmsmeier M: RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 34((Web Server Issue)): W451–W454. 2006. View Article : Google Scholar : PubMed/NCBI

19 

John B, Enright AJ, Aravin A, Tuschl T, Sander C and Marks DS: Human microRNA targets. PLoS Biol. 2:e3632004. View Article : Google Scholar : PubMed/NCBI

20 

Mi H, Muruganujan A, Ebert D, Huang X and Thomas PD: PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47D:D419–D426. 2019. View Article : Google Scholar

21 

Kanehisa M, Furumichi M, Tanabe M, Sato Y and Morishima K: KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45D:D353–D361. 2017. View Article : Google Scholar

22 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Horowitz JC and Thannickal VJ: Mechanisms for the resolution of organ fibrosis. Physiology (Bethesda). 34:43–55. 2019.PubMed/NCBI

24 

Schafer S, Viswanathan S, Widjaja AA, Lim WW, Moreno-Moral A, DeLaughter DM, Ng B, Patone G, Chow K, Khin E, et al: IL-11 is a crucial determinant of cardiovascular fibrosis. Nature. 552:110–115. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Li Z, Qin T, Wang K, Hackenberg M, Yan J, Gao Y, Yu LR, Shi L, Su Z and Chen T: Integrated microRNA, mRNA, and protein expression profiling reveals microRNA regulatory networks in rat kidney treated with a carcinogenic dose of aristolochic acid. BMC Genomics. 16:3652015. View Article : Google Scholar : PubMed/NCBI

26 

Meng F, Li Z, Yan J, Manjanatha M, Shelton S, Yarborough S and Chen T: Tissue-specific microRNA responses in rats treated with mutagenic and carcinogenic doses of aristolochic acid. Mutagenesis. 29:357–365. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Li R, Chung AC, Dong Y, Yang W, Zhong X and Lan HY: The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-β/Smad3-Azin1 pathway. Kidney Int. 84:1129–1144. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Bijkerk R, de Bruin RG, van Solingen C, van Gils JM, Duijs JM, van der Veer EP, Rabelink TJ, Humphreys BD and van Zonneveld AJ: Silencing of microRNA-132 reduces renal fibrosis by selectively inhibiting myofibroblast proliferation. Kidney Int. 89:1268–1280. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Zhou SG, Zhang W, Ma HJ, Guo ZY and Xu Y: Silencing of lncRNA TCONS_00088786 reduces renal fibrosis through miR-132. Eur Rev Med Pharmacol Sci. 22:166–173. 2018.PubMed/NCBI

30 

Muralidharan J, Ramezani A, Hubal M, Knoblach S, Shrivastav S, Karandish S, Scott R, Maxwell N, Ozturk S, Beddhu S, et al: Extracellular microRNA signature in chronic kidney disease. Am J Physiol Renal Physiol. 312:F982–F991. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Liu Y: Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 7:684–696. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Gaugg MT, Engler A, Bregy L, Nussbaumer-Ochsner Y, Eiffert L, Bruderer T, Zenobi R, Sinues P and Kohler M: Molecular breath analysis supports altered amino acid metabolism in idiopathic pulmonary fibrosis. Respirology. 24:437–444. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Park JS, Choi HI, Kim DH, Kim CS, Bae EH, Ma SK and Kim SW: Alpha-lipoic acid attenuates p-cresyl sulfate-induced renal tubular injury through suppression of apoptosis and autophagy in human proximal tubular epithelial cells. Biomed Pharmacother. 112:1086792019. View Article : Google Scholar : PubMed/NCBI

34 

Dong Q, Jie Y, Ma J, Li C, Xin T and Yang D: Renal tubular cell death and inflammation response are regulated by the MAPK-ERK-CREB signaling pathway under hypoxia-reoxygenation injury. J Recept Signal Transduct Res. 39:383–391. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Kramann R: Hedgehog Gli signalling in kidney fibrosis. Nephrol Dial Transplant. 31:1989–1995. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Zhou D, Tan RJ and Liu Y: Sonic hedgehog signaling in kidney fibrosis: A master communicator. Sci China Life Sci. 59:920–929. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Fabian SL, Penchev RR, St-Jacques B, Rao AN, Sipila P, West KA, McMahon AP and Humphreys BD: Hedgehog-Gli pathway activation during kidney fibrosis. Am J Pathol. 180:1441–1453. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Kai Y, Yoneyama H, Koyama J, Hamada K, Kimura H and Matsushima K: Treatment with chondroitinase ABC alleviates bleomycin-induced pulmonary fibrosis. Med Mol Morphol. 40:128–140. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Vermeulen Z, Hervent AS, Dugaucquier L, Vandekerckhove L, Rombouts M, Beyens M, Schrijvers DM, De Meyer GRY, Maudsley S, De Keulenaer GW and Segers VFM: Inhibitory actions of the NRG-1/ErbB4 pathway in macrophages during tissue fibrosis in the heart, skin, and lung. Am J Physiol Heart Circ Physiol. 313:H934–H945. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Scheving LA, Zhang X, Threadgill DW and Russell WE: Hepatocyte ERBB3 and EGFR are required for maximal CCl4-induced liver fibrosis. Am J Physiol Gastrointest Liver Physiol. 311:G807–G816. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Essam RM, Ahmed LA, Abdelsalam RM and El-Khatib AS: Phosphodiestrase-1 and 4 inhibitors ameliorate liver fibrosis in rats: Modulation of cAMP/CREB/TLR4 inflammatory and fibrogenic pathways. Life Sci. 222:245–254. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Han K, Zhang Y and Yang Z: Cilostazol protects rats against alcohol-induced hepatic fibrosis via suppression of TGF-β1/CTGF activation and the cAMP/Epac1 pathway. Exp Ther Med. 17:2381–2388. 2019.PubMed/NCBI

43 

Kanai AJ, Konieczko EM, Bennett RG, Samuel CS and Royce SG: Relaxin and fibrosis: Emerging targets, challenges, and future directions. Mol Cell Endocrinol. 487:66–74. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Zheng G, Cai J, Chen X, Chen L, Ge W, Zhou X and Zhou H: Relaxin ameliorates renal fibrosis and expression of endothelial cell transition markers in rats of isoproterenol-induced heart failure. Biol Pharm Bull. 40:960–966. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Newbury LJ, Wang JH, Hung G, Hendry BM and Sharpe CC: Inhibition of Kirsten-Ras reduces fibrosis and protects against renal dysfunction in a mouse model of chronic folic acid nephropathy. Sci Rep. 9:140102019. View Article : Google Scholar : PubMed/NCBI

46 

Zhou G, Li J, Zeng T, Yang P and Li A: The regulation effect of WNT-RAS signaling in hypothalamic paraventricular nucleus on renal fibrosis. J Nephrol. 33:289–297. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Wang J, Zhu H, Huang L, Zhu X, Sha J, Li G, Ma G, Zhang W, Gu M and Guo Y: Nrf2 signaling attenuates epithelial-to-mesenchymal transition and renal interstitial fibrosis via PI3K/Akt signaling pathways. Exp Mol Pathol. 111:1042962019. View Article : Google Scholar : PubMed/NCBI

48 

Dou F, Liu Y, Liu L, Wang J, Sun T, Mu F, Guo Q, Guo C, Jia N, Liu W, et al: Aloe-Emodin ameliorates renal fibrosis via inhibiting PI3K/Akt/mTOR signaling pathway in vivo and in vitro. Rejuvenation Res. 22:218–229. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Sun L, Xu T, Chen Y, Qu W, Sun D, Song X, Yuan Q and Yao L: Pioglitazone attenuates kidney fibrosis via miR-21-5p modulation. Life Sci. 232:1166092019. View Article : Google Scholar : PubMed/NCBI

50 

Tian C, Wang Y, Chang H, Li J and La X: Spleen-kidney supplementing formula alleviates renal fibrosis in diabetic rats via TGF-β1-miR-21-PTEN signaling pathway. Evid Based Complement Alternat Med. 2018:38243572018. View Article : Google Scholar : PubMed/NCBI

51 

Tang CR, Luo SG, Lin X, Wang J and Liu Y: Silenced miR-21 inhibits renal interstitial fibrosis via targeting ERK1/2 signaling pathway in mice. Eur Rev Med Pharmacol Sci. 23 (3 Suppl):S110–S116. 2019.

52 

McClelland AD, Herman-Edelstein M, Komers R, Jha JC, Winbanks CE, Hagiwara S, Gregorevic P, Kantharidis P and Cooper ME: miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clin Sci (Lond). 129:1237–1249. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Wang J, Gao Y, Ma M, Li M, Zou D, Yang J, Zhu Z and Zhao X: Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice. Cell Biochem Biophys. 67:537–546. 2013. View Article : Google Scholar : PubMed/NCBI

54 

Zhong X, Chung AC, Chen HY, Meng XM and Lan HY: Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol. 22:1668–1681. 2011. View Article : Google Scholar : PubMed/NCBI

55 

Zhou H, Qiu ZZ, Yu ZH, Gao L, He JM, Zhang ZW and Zheng J: Paeonol reverses promoting effect of the HOTAIR/miR-124/Notch1 axis on renal interstitial fibrosis in a rat model. J Cell Physiol. 234:14351–14363. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Zhou H, Gao L, Yu ZH, Hong SJ, Zhang ZW and Qiu ZZ: lncRNA HOTAIR promotes renal interstitial fibrosis by regulating Notch1 pathway via the modulation of miR-124. Nephrology (Carlton). 24:472–480. 2019. View Article : Google Scholar : PubMed/NCBI

57 

Disayabutr S, Kim EK, Cha SI, Green G, Naikawadi RP, Jones KD, Golden JA, Schroeder A, Matthay MA, Kukreja J, et al: miR-34 miRNAs regulate cellular senescence in type II alveolar epithelial cells of patients with idiopathic pulmonary fibrosis. PLoS One. 11:e1583672016. View Article : Google Scholar

58 

Li WQ, Chen C, Xu MD, Guo J, Li YM, Xia QM, Liu HM, He J, Yu HY and Zhu L: The rno-miR-34 family is upregulated and targets ACSL1 in dimethylnitrosamine-induced hepatic fibrosis in rats. FEBS J. 278:1522–1532. 2011. View Article : Google Scholar : PubMed/NCBI

59 

Sun Y, Wang H, Li Y, Liu S, Chen J and Ying H: miR-24 and miR-122 negatively regulate the transforming growth Factor-β/smad signaling pathway in skeletal muscle fibrosis. Mol Ther Nucleic Acids. 11:528–537. 2018. View Article : Google Scholar : PubMed/NCBI

60 

Lou G, Yang Y, Liu F, Ye B, Chen Z, Zheng M and Liu Y: miR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis. J Cell Mol Med. 21:2963–2973. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Halasz T, Horvath G, Par G, Werling K, Kiss A, Schaff Z and Lendvai G: miR-122 negatively correlates with liver fibrosis as detected by histology and FibroScan. World J Gastroenterol. 21:7814–7823. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Li N, Wang LJ, Xu WL, Liu S and Yu JY: MicroRNA3795p suppresses renal fibrosis by regulating the LIN28/let7 axis in diabetic nephropathy. Int J Mol Med. 44:1619–1628. 2019.PubMed/NCBI

63 

Cevikbas F, Schaefer L, Uhlig P, Robenek H, Theilmeier G, Echtermeyer F and Bruckner P: Unilateral nephrectomy leads to up-regulation of syndecan-2- and TGF-beta-mediated glomerulosclerosis in syndecan-4 deficient male mice. Matrix Biol. 27:42–52. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Xia Y, Jin X, Yan J, Entman ML and Wang Y: CXCR6 plays a critical role in angiotensin II-induced renal injury and fibrosis. Arterioscler Thromb Vasc Biol. 34:1422–1428. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Uil M, Scantlebery AML, Butter LM, Larsen PWB, de Boer OJ, Leemans JC, Florquin S and Roelofs JJTH: Combining streptozotocin and unilateral nephrectomy is an effective method for inducing experimental diabetic nephropathy in the ‘resistant’ C57Bl/6J mouse strain. Sci Rep. 8:55422018. View Article : Google Scholar : PubMed/NCBI

66 

Esposito C, He CJ, Striker GE, Zalups RK and Striker LJ: Nature and severity of the glomerular response to nephron reduction is strain-dependent in mice. Am J Pathol. 154:891–897. 1999. View Article : Google Scholar : PubMed/NCBI

67 

Liu BC, Tang TT and Lv LL: How tubular epithelial cell injury contributes to renal fibrosis. Adv Exp Med Biol. 1165:233–252. 2019. View Article : Google Scholar : PubMed/NCBI

68 

Liu BC, Tang TT, Lv LL and Lan HY: Renal tubule injury: A driving force toward chronic kidney disease. Kidney Int. 93:568–579. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Youl ENH, Husson C, El Khattabi C, El Mere S, Decleves AE, Pochet S, Nortier J and Antoine MH: Characterization of cytotoxic effects of aristolochic acids on the vascular endothelium. Toxicol In Vitro. 65:1048112020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhu Z, Xu X, Wang F, Song Y, Zhu Y, Quan W, Zhang X, Bi C, He H, Li S, Li S, et al: Integrative microRNA and mRNA expression profiling in acute aristolochic acid nephropathy in mice. Mol Med Rep 22: 3367-3377, 2020.
APA
Zhu, Z., Xu, X., Wang, F., Song, Y., Zhu, Y., Quan, W. ... Li, X. (2020). Integrative microRNA and mRNA expression profiling in acute aristolochic acid nephropathy in mice. Molecular Medicine Reports, 22, 3367-3377. https://doi.org/10.3892/mmr.2020.11444
MLA
Zhu, Z., Xu, X., Wang, F., Song, Y., Zhu, Y., Quan, W., Zhang, X., Bi, C., He, H., Li, S., Li, X."Integrative microRNA and mRNA expression profiling in acute aristolochic acid nephropathy in mice". Molecular Medicine Reports 22.4 (2020): 3367-3377.
Chicago
Zhu, Z., Xu, X., Wang, F., Song, Y., Zhu, Y., Quan, W., Zhang, X., Bi, C., He, H., Li, S., Li, X."Integrative microRNA and mRNA expression profiling in acute aristolochic acid nephropathy in mice". Molecular Medicine Reports 22, no. 4 (2020): 3367-3377. https://doi.org/10.3892/mmr.2020.11444
Copy and paste a formatted citation
x
Spandidos Publications style
Zhu Z, Xu X, Wang F, Song Y, Zhu Y, Quan W, Zhang X, Bi C, He H, Li S, Li S, et al: Integrative microRNA and mRNA expression profiling in acute aristolochic acid nephropathy in mice. Mol Med Rep 22: 3367-3377, 2020.
APA
Zhu, Z., Xu, X., Wang, F., Song, Y., Zhu, Y., Quan, W. ... Li, X. (2020). Integrative microRNA and mRNA expression profiling in acute aristolochic acid nephropathy in mice. Molecular Medicine Reports, 22, 3367-3377. https://doi.org/10.3892/mmr.2020.11444
MLA
Zhu, Z., Xu, X., Wang, F., Song, Y., Zhu, Y., Quan, W., Zhang, X., Bi, C., He, H., Li, S., Li, X."Integrative microRNA and mRNA expression profiling in acute aristolochic acid nephropathy in mice". Molecular Medicine Reports 22.4 (2020): 3367-3377.
Chicago
Zhu, Z., Xu, X., Wang, F., Song, Y., Zhu, Y., Quan, W., Zhang, X., Bi, C., He, H., Li, S., Li, X."Integrative microRNA and mRNA expression profiling in acute aristolochic acid nephropathy in mice". Molecular Medicine Reports 22, no. 4 (2020): 3367-3377. https://doi.org/10.3892/mmr.2020.11444
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team