Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2020 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2020 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Uncovering potential differentially expressed miRNAs and targeted mRNAs in myocardial infarction based on integrating analysis

  • Authors:
    • Shiai Wang
    • Na Cao
  • View Affiliations / Copyright

    Affiliations: Department of Cardiology, Jinan Jigang Hospital, Jinan, Shandong 250000, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 4383-4395
    |
    Published online on: September 17, 2020
       https://doi.org/10.3892/mmr.2020.11517
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Myocardial infarction (MI) is one of the leading causes of death globally. The aim of the present study was to find valuable microRNAs (miRNAs/miRs) and target mRNAs in order to contribute to our understanding of the pathology of MI. miRNA and mRNA data were downloaded for differential expression analysis. Then, a regulatory network between miRNAs and mRNAs was established, followed by function annotation of target mRNAs. Thirdly, prognosis and diagnostic analysis of differentially methylated target mRNAs were performed. Finally, an in vitro experiment was used to validate the expression of selected miRNAs and target mRNAs. A total of 19 differentially expressed miRNAs and 1,007 differentially expressed mRNAs were identified. Several regulatory interaction pairs between miRNA and mRNAs were identified, such as hsa‑miR‑142‑2p‑long‑chain‑fatty‑acid‑CoA ligase 1 (ACSL1), hsa‑miR‑15a‑3p‑nicotinamide phosphoribosyltransferase (NAMPT), hsa‑miR‑33b‑5p‑regulator of G‑protein signaling 2 (RGS2), hsa‑miR‑17‑3p‑Jun dimerization protein 2 (JDP2), hsa‑miR‑24‑1‑5p‑aquaporin‑9 (AQP9) and hsa‑miR‑34a‑5p‑STAT1/AKT3. Of note, it was demonstrated that ACSL1, NAMPT, RGS2, JDP2, AQP9, STAT1 and AKT3 had diagnostic and prognostic values for patients with MI. In addition, STAT1 was involved in the ‘chemokine signaling pathway’ and ‘Jak‑STAT signaling pathway’. AKT3 was involved in both the ‘MAPK signaling pathway’ and ‘T cell receptor signaling pathway’. Reverse transcription‑quantitative PCR validation of hsa‑miR‑142‑3p, hsa‑miR‑15a‑3p, hsa‑miR‑33b‑5p, ACSL1, NAMPT, RGS2 and JDP2 expression was consistent with the bioinformatics analysis. In conclusion, the identified miRNAs and mRNAs may be involved in the pathology of MI.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

View References

1 

Bainey KR, Fresco C, Zheng Y, Halvorsen S, Carvalho A, Ostojic M, Goldstein P, Gershlick AH, Westerhout CM, Van de Werf F, et al: Implications of ischaemic area at risk and mode of reperfusion in ST-elevation myocardial infarction. Heart. 102:527–533. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Goto Y, Masaki I, Yamada A, Uno M, Nakamori S, Nagata M, Ichikawa Y, Kitagawa K, Ito M and Sakuma H: Native T1 mapping allows for the accurate detection of the segments with chronic myocardial infarction in patients with known or suspected coronary artery disease. J Cardiovasc Magn Reson. 18:P702016. View Article : Google Scholar

3 

Orlic D, Ostojic M, Beleslin B, Milasinovic D, Tesic M, Borovic M, Vukcevic V, Stojkovic S, Nedeljkovic M and Stankovic G: The randomized physiologic assessment of thrombus aspiration in patients with acute ST-segment elevation myocardial infarction trial (PATA STEMI): Study rationale and design. J Interv Cardiol. 27:341–347. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Furtado MB, Costa MW and Rosenthal NA: The cardiac fibroblast: Origin, identity and role in homeostasis and disease. Differentiation. 92:93–101. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Kurose H and Mangmool S: Myofibroblasts and inflammatory cells as players of cardiac fibrosis. Arch Pharm Res. 39:1100–1113. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Gao M, Yin D, Chen J and Qu X: Activating the interleukin-6-Gp130-STAT3 pathway ameliorates ventricular electrical stability in myocardial infarction rats by modulating neurotransmitters in the paraventricular nucleus. BMC Cardiovasc Disord. 20:602020. View Article : Google Scholar : PubMed/NCBI

7 

Ouweneel DM, Eriksen E, Sjauw KD, van Dongen IM, Hirsch A, Packer EJ, Vis MM, Wykrzykowska JJ, Koch KT, Baan J, et al: Percutaneous mechanical circulatory support versus intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol. 69:278–287. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Rodríguez-Jiménez AE, Cruz-Inerarity H, Negrín-Valdés T, Fardales-Rodríguez R and Chávez-González E: Corrected QT-Interval Dispersion: An Electrocardiographic Tool to Predict Recurrence of Myocardial Infarction. MEDICC Rev. 21:22–25. 2019.PubMed/NCBI

9 

Frangogiannis NG, Smith CW and Entman ML: The inflammatory response in myocardial infarction. Cardiovasc Res. 53:31–47. 2002. View Article : Google Scholar : PubMed/NCBI

10 

Nian M, Lee P, Khaper N and Liu P: Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res. 94:1543–1553. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Landmesser U, Wollert KC and Drexler H: Potential novel pharmacological therapies for myocardial remodelling. Cardiovasc Res. 81:519–527. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Yamada Y, Ichihara S and Nishida T: Molecular genetics of myocardial infarction. Genomic Med. 2:7–22. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Swirski FK and Nahrendorf M: Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 339:161–166. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Cheng Y and Zhang C: MicroRNA-21 in cardiovascular disease. J Cardiovasc Transl Res. 3:251–255. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Marques FZ, Vizi D, Khammy O, Mariani JA and Kaye DM: The transcardiac gradient of cardio-microRNAs in the failing heart. Eur J Heart Fail. 18:1000–1008. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Oliveira-Carvalho V, da Silva MM, Guimarães GV, Bacal F and Bocchi EA: MicroRNAs: new players in heart failure. Mol Biol Rep. 40:2663–2670. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Huang JB, Mei J, Jiang LY, Jiang ZL, Liu H, Zhang JW and Ding FB: miR-196a2 rs11614913 T>C polymorphism is associated with an increased risk of tetralogy of fallot in a Chinese population. Acta Cardiol Sin. 31:18–23. 2015.PubMed/NCBI

18 

Meder B, Keller A, Vogel B, Haas J, Sedaghat-Hamedani F, Kayvanpour E, Just S, Borries A, Rudloff J, Leidinger P, et al: MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol. 106:13–23. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Bostjancic E, Zidar N and Glavac D: MicroRNA microarray expression profiling in human myocardial infarction. Dis Markers. 27:255–268. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Liang H, Zhang C, Ban T, Liu Y, Mei L, Piao X, Zhao D, Lu Y, Chu W and Yang B: A novel reciprocal loop between microRNA-21 and TGFβRIII is involved in cardiac fibrosis. Int J Biochem Cell Biol. 44:2152–2160. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Shan ZX, Lin QX, Fu YH, Deng CY, Zhou ZL, Zhu JN, Liu XY, Zhang YY, Li Y, Lin SG and Yu XY: Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction. Biochem Biophys Res Commun. 381:597–601. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Shi B, Guo Y, Wang J and Gao W: Altered expression of microRNAs in the myocardium of rats with acute myocardial infarction. BMC Cardiovasc Disord. 10:112010. View Article : Google Scholar : PubMed/NCBI

23 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e472015. View Article : Google Scholar : PubMed/NCBI

24 

Marot G, Foulley JL, Mayer CD and Jaffrézic F: Moderated effect size and P-value combinations for microarray meta-analyses. Bioinformatics. 25:2692–2699. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Reiner-Benaim A: FDR control by the BH procedure for two-sided correlated tests with implications to gene expression data analysis. Biom J. 49:107–126. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Benjamini Y and Hochberg Y: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 57:289–300. 1995.

27 

Wu Y, Zhang L, Zhang Y, Zhen Y and Liu S: Bioinformatics analysis to screen for critical genes between survived and non-survived patients with sepsis. Mol Med Rep. 18:3737–3743. 2018.PubMed/NCBI

28 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI

29 

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al: Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI

30 

The Gene Ontology Consortium, . The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 47:D330–D338. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Kanehisa M and Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30. 2000. View Article : Google Scholar : PubMed/NCBI

32 

Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC and Müller M: pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 12:772011. View Article : Google Scholar : PubMed/NCBI

33 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

34 

Ellis KL, Cameron VA, Troughton RW, Frampton CM, Ellmers LJ and Richards AM: Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients. Eur J Heart Fail. 15:1138–1147. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Su Q, Liu Y, Lv XW, Ye ZL, Sun YH, Kong BH and Qin ZB: Inhibition of lncRNA TUG1 upregulates miR-142-3p to ameliorate myocardial injury during ischemia and reperfusion via targeting HMGB1- and Rac1-induced autophagy. Mol Cell Cardiol. 133:12–25. 2019. View Article : Google Scholar

36 

Zhu Y, Lin Y, Yan W, Sun Z, Jiang Z, Shen B, Jiang X and Shi J: Novel biomarker MicroRNAs for subtyping of acute coronary syndrome: A Bioinformatics Approach. Biomed Res Int. 2016:46183232016. View Article : Google Scholar : PubMed/NCBI

37 

Durgan DJ, Smith JK, Hotze MA, Egbejimi O, Cuthbert KD, Zaha VG, Dyck JR, Abel ED and Young ME: Distinct transcriptional regulation of long-chain acyl-CoA synthetase isoforms and cytosolic thioesterase 1 in the rodent heart by fatty acids and insulin. Am J Physiol Heart Circ Physiol. 290:H2480–H2497. 2006. View Article : Google Scholar : PubMed/NCBI

38 

Chiu HC, Kovacs A, Ford DA, Hsu FF, Garcia R, Herrero P, Saffitz JE and Schaffer JE: A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest. 107:813–822. 2001. View Article : Google Scholar : PubMed/NCBI

39 

Yang L, Yang Y, Si D, Shi K, Liu D, Meng H and Meng F: High expression of long chain acyl-coenzyme A synthetase 1 in peripheral blood may be a molecular marker for assessing the risk of acute myocardial infarction. Exp Ther Med. 14:4065–4072. 2017.PubMed/NCBI

40 

Sun CY, She XM, Qin Y, Chu ZB, Chen L, Ai LS, Zhang L and Hu Y: miR-15a and miR-16 affect the angiogenesis of multiple myeloma by targeting VEGF. Carcinogenesis. 34:426–435. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Jackstadt R and Hermeking H: MicroRNAs as regulators and mediators of c-MYC function. Biochim Biophys Acta. 1849:544–553. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Chamorro-Jorganes A, Araldi E, Penalva LO, Sandhu D, Fernández-Hernando C and Suárez Y: MicroRNA-16 and microRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1. Arterioscler Thromb Vasc Biol. 31:2595–2606. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Chan LS, Yue PY, Wong YY and Wong RN: MicroRNA-15b contributes to ginsenoside-Rg1-induced angiogenesis through increased expression of VEGFR-2. Biochem Pharmacol. 86:392–400. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Abu-Halima M, Poryo M, Ludwig N, Mark J, Marsollek I, Giebels C, Petersen J, Schäfers HJ, Grundmann U, Pickardt T, et al: Differential expression of microRNAs following cardiopulmonary bypass in children with congenital heart diseases. J Transl Med. 15:1172017. View Article : Google Scholar : PubMed/NCBI

45 

Dahl TB, Holm S, Aukrust P and Halvorsen B: Visfatin/NAMPT: A multifaceted molecule with diverse roles in physiology and pathophysiology. Annu Rev Nutr. 32:229–243. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Qiu L and Liu X: Identification of key genes involved in myocardial infarction. Eur J Med Res. 24:222019. View Article : Google Scholar : PubMed/NCBI

47 

Montecucco F, Bauer I, Braunersreuther V, Bruzzone S, Akhmedov A, Lüscher TF, Speer T, Poggi A, Mannino E, Pelli G, et al: Inhibition of nicotinamide phosphoribosyltransferase reduces neutrophil-mediated injury in myocardial infarction. Antioxid Redox Signal. 18:630–641. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Wang X, Chen J and Huang X: Rosuvastatin attenuates myocardial ischemia-reperfusion injury via upregulating miR-17-3p-mediated autophagy. Cell Reprogram. 21:323–330. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Tao H, Chen ZW, Yang JJ and Shi KH: MicroRNA-29a suppresses cardiac fibroblasts proliferation via targeting VEGF-A/MAPK signal pathway. Int J Biol Macromol. 88:414–423. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Romaine SP, Tomaszewski M, Condorelli G and Samani NJ: MicroRNAs in cardiovascular disease: An introduction for clinicians. Heart. 101:921–928. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, Furth EE, Lee WM, Enders GH, Mendell JT and Thomas-Tikhonenko A: Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet. 38:1060–1065. 2006. View Article : Google Scholar : PubMed/NCBI

52 

Landskroner-Eiger S, Qiu C, Perrotta P, Siragusa M, Lee MY, Ulrich V, Luciano AK, Zhuang ZW, Corti F, Simons M, et al: Endothelial miR-17~92 cluster negatively regulates arteriogenesis via miRNA-19 repression of WNT signaling. Proc Natl Acad Sci USA. 112:12812–12817. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Maciejak A, Kiliszek M, Michalak M, Tulacz D, Opolski G, Matlak K, Dobrzycki S, Segiet A, Gora M and Burzynska B: Gene expression profiling reveals potential prognostic biomarkers associated with the progression of heart failure. Genome Med. 7:262015. View Article : Google Scholar : PubMed/NCBI

54 

Heger J, Bornbaum J, Würfel A, Hill C, Brockmann N, Gáspár R, Pálóczi J, Varga ZV, Sárközy M, Bencsik P, et al: JDP2 overexpression provokes cardiac dysfunction in mice. Sci Rep. 8:76472018. View Article : Google Scholar : PubMed/NCBI

55 

Pfeiffer L, Wahl S, Pilling LC, Reischl E, Sandling JK, Kunze S, Holdt LM, Kretschmer A, Schramm K, Adamski J, et al: DNA methylation of lipid-related genes affects blood lipid levels. Circ Cardiovasc Genet. 8:334–342. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Heximer SP, Knutsen RH, Sun X, Kaltenbronn KM, Rhee MH, Peng N, Oliveira-dos-Santos A, Penninger JM, Muslin AJ, Steinberg TH, et al: Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J Clin Invest. 111:445–452. 2003. View Article : Google Scholar : PubMed/NCBI

57 

Tang KM, Wang GR, Lu P, Karas RH, Aronovitz M, Heximer SP, Kaltenbronn KM, Blumer KJ, Siderovski DP, Zhu Y and Mendelsohn ME: Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med. 9:1506–1512. 2003. View Article : Google Scholar : PubMed/NCBI

58 

Wieland T, Lutz S and Chidiac P: Regulators of G protein signalling: A spotlight on emerging functions in the cardiovascular system. Curr Opin Pharmacol. 7:201–207. 2007. View Article : Google Scholar : PubMed/NCBI

59 

Wang J, Huang W, Xu R, Nie Y, Cao X, Meng J, Xu X, Hu S and Zheng Z: MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. J Cell Mol Med. 16:2150–2160. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Inouye M, Ripatti S, Kettunen J, Lyytikäinen LP, Oksala N, Laurila PP, Kangas AJ, Soininen P, Savolainen MJ, Viikari J, et al: Novel Loci for metabolic networks and multi-tissue expression studies reveal genes for atherosclerosis. PLoS Genet. 8:e10029072012. View Article : Google Scholar : PubMed/NCBI

61 

Thuny F, Textoris J, Amara AB, Filali AE, Capo C, Habib G, Raoult D and Mege JL: The gene expression analysis of blood reveals S100A11 and AQP9 as potential biomarkers of infective endocarditis. PLoS One. 7:e314902012. View Article : Google Scholar : PubMed/NCBI

62 

Huang X, Yu X, Li H, Han L and Yang X: Regulation mechanism of aquaporin 9 gene on inflammatory response and cardiac function in rats with myocardial infarction through extracellular signal-regulated kinase1/2 pathway. Heart Vessels. 34:2041–2051. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Yang Y, Cheng HW, Qiu Y, Dupee D, Noonan M, Lin YD, Fisch S, Unno K, Sereti KI and Liao R: MicroRNA-34a plays a key role in cardiac repair and regeneration following myocardial infarction. Circ Res. 117:450–459. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Huang Y, Qi Y, Du JQ and Zhang DF: MicroRNA-34a regulates cardiac fibrosis after myocardial infarction by targeting Smad4. Expert Opin Ther Targets. 18:1355–1365. 2014.PubMed/NCBI

65 

Matsumoto S, Sakata Y, Suna S, Nakatani D, Usami M, Hara M, Kitamura T, Hamasaki T, Nanto S, Kawahara Y and Komuro I: Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circ Res. 113:322–326. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Bernardo BC, Gao XM, Winbanks CE, Boey EJ, Tham YK, Kiriazis H, Gregorevic P, Obad S, Kauppinen S, Du XJ, et al: Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc Natl Acad Sci USA. 109:17615–17620. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Bernardo BC, Gao XM, Tham YK, Kiriazis H, Winbanks CE, Ooi JY, Boey EJ, Obad S, Kauppinen S, Gregorevic P, et al: Silencing of miR-34a attenuates cardiac dysfunction in a setting of moderate, but not severe, hypertrophic cardiomyopathy. PLoS One. 9:e903372014. View Article : Google Scholar : PubMed/NCBI

68 

Stephanou A, Brar BK, Scarabelli TM, Jonassen AK, Yellon DM, Marber MS, Knight RA and Latchman DS: Ischemia-induced STAT-1 expression and activation play a critical role in cardiomyocyte apoptosis. J Biol Chem. 275:10002–10008. 2000. View Article : Google Scholar : PubMed/NCBI

69 

Stephanou A: Role of STAT-1 and STAT-3 in ischaemia/reperfusion injury. J Cell Mol Med. 8:519–525. 2004. View Article : Google Scholar : PubMed/NCBI

70 

Zhang S, Liu W, Liu X, Qi J and Deng C: Biomarkers identification for acute myocardial infarction detection via weighted gene co-expression network analysis. Medicine (Baltimore). 96:e83752017. View Article : Google Scholar : PubMed/NCBI

71 

Chang PC, Lin SF, Chu Y, Wo HT, Lee HL, Huang YC, Wen MS and Chou CC: LCZ696 therapy reduces ventricular tachyarrhythmia inducibility in a myocardial infarction-induced heart failure rat model. Cardiovasc Ther. 2019:60326312019. View Article : Google Scholar : PubMed/NCBI

72 

Li SY, Li ZX, He ZG, Wang Q, Li YJ, Yang Q, Wu DZ, Zeng HL and Xiang HB: Quantitative proteomics reveal the alterations in the spinal cord after myocardial ischemia-reperfusion injury in rats. Int J Mol Med. 44:1877–1887. 2019.PubMed/NCBI

73 

Getz GS and Reardon CA: Do the Apoe−/- and Ldlr−/−Mice yield the same insight on atherogenesis? Arterioscler Thromb Vasc Biol. 36:1734–1741. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Frangogiannis NG: Chemokines in the ischemic myocardium: From inflammation to fibrosis. Inflamm Res. 53:585–595. 2004. View Article : Google Scholar : PubMed/NCBI

75 

Frangogiannis NG and Entman ML: Chemokines in myocardial ischemia. Trends Cardiovasc Med. 15:163–169. 2005. View Article : Google Scholar : PubMed/NCBI

76 

Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G and Schulz R: The myocardial JAK/STAT pathway: From protection to failure. Pharmacol Ther. 120:172–185. 2008. View Article : Google Scholar : PubMed/NCBI

77 

Fuglesteg BN, Suleman N, Tiron C, Kanhema T, Lacerda L, Andreasen TV, Sack MN, Jonassen AK, Mjøs OD, Opie LH and Lecour S: Signal transducer and activator of transcription 3 is involved in the cardioprotective signalling pathway activated by insulin therapy at reperfusion. Basic Res Cardiol. 103:444–453. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Liu YH, Wang D, Rhaleb NE, Yang XP, Xu J, Sankey SS, Rudolph AE and Carretero OA: Inhibition of p38 mitogen-activated protein kinase protects the heart against cardiac remodeling in mice with heart failure resulting from myocardial infarction. J Card Fail. 11:74–81. 2005. View Article : Google Scholar : PubMed/NCBI

79 

Ge ZW, Zhu XL, Wang BC, Hu JL, Sun JJ, Wang S, Chen XJ, Meng SP, Liu L and Cheng ZY: MicroRNA-26b relieves inflammatory response and myocardial remodeling of mice with myocardial infarction by suppression of MAPK pathway through binding to PTGS2. Int J Cardiol. 280:152–159. 2019. View Article : Google Scholar : PubMed/NCBI

80 

Liu X, Chen K, Zhuang Y, Huang Y, Sui Y, Zhang Y, Lv L and Zhang G: Paeoniflorin improves pressure overload-induced cardiac remodeling by modulating the MAPK signaling pathway in spontaneously hypertensive rats. Biomed Pharmacother. 111:695–704. 2019. View Article : Google Scholar : PubMed/NCBI

81 

Li C, Li J, Xue K, Zhang J, Wang C, Zhang Q, Chen X, Gao C, Yu X and Sun L: MicroRNA-143-3p promotes human cardiac fibrosis via targeting sprouty3 after myocardial infarction. J Mol Cell Cardiol. 129:281–292. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Jia L, Zhu L, Wang JZ, Wang XJ, Chen JZ, Song L, Wu YJ, Sun K, Yuan ZY and Hui R: Methylation of FOXP3 in regulatory T cells is related to the severity of coronary artery disease. Atherosclerosis. 228:346–352. 2013. View Article : Google Scholar : PubMed/NCBI

83 

Abbate A, Bonanno E, Mauriello A, Bussani R, Biondi-Zoccai GG, Liuzzo G, Leone AM, Silvestri F, Dobrina A, Baldi F, et al: Widespread myocardial inflammation and infarct-related artery patency. Circulation. 110:46–50. 2004. View Article : Google Scholar : PubMed/NCBI

84 

Fan L, Meng H, Guo X, Li X and Meng F: Differential gene expression profiles in peripheral blood in northeast chinese han people with acute myocardial infarction. Genet Mol Biol. 41:59–66. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Muse ED, Kramer ER, Wang H, Barrett P, Parviz F, Novotny MA, Lasken RS, Jatkoe TA, Oliveira G, Peng H, et al: A whole blood molecular signature for acute myocardial infarction. Sci Rep. 7:122682017. View Article : Google Scholar : PubMed/NCBI

86 

Park HJ, Noh JH, Eun JW, Koh YS, Seo SM, Park WS, Lee JY, Chang K, Seung KB, Kim PJ and Nam SW: Assessment and diagnostic relevance of novel serum biomarkers for early decision of ST-elevation myocardial infarction. Oncotarget. 6:12970–12983. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang S and Cao N: Uncovering potential differentially expressed miRNAs and targeted mRNAs in myocardial infarction based on integrating analysis. Mol Med Rep 22: 4383-4395, 2020.
APA
Wang, S., & Cao, N. (2020). Uncovering potential differentially expressed miRNAs and targeted mRNAs in myocardial infarction based on integrating analysis. Molecular Medicine Reports, 22, 4383-4395. https://doi.org/10.3892/mmr.2020.11517
MLA
Wang, S., Cao, N."Uncovering potential differentially expressed miRNAs and targeted mRNAs in myocardial infarction based on integrating analysis". Molecular Medicine Reports 22.5 (2020): 4383-4395.
Chicago
Wang, S., Cao, N."Uncovering potential differentially expressed miRNAs and targeted mRNAs in myocardial infarction based on integrating analysis". Molecular Medicine Reports 22, no. 5 (2020): 4383-4395. https://doi.org/10.3892/mmr.2020.11517
Copy and paste a formatted citation
x
Spandidos Publications style
Wang S and Cao N: Uncovering potential differentially expressed miRNAs and targeted mRNAs in myocardial infarction based on integrating analysis. Mol Med Rep 22: 4383-4395, 2020.
APA
Wang, S., & Cao, N. (2020). Uncovering potential differentially expressed miRNAs and targeted mRNAs in myocardial infarction based on integrating analysis. Molecular Medicine Reports, 22, 4383-4395. https://doi.org/10.3892/mmr.2020.11517
MLA
Wang, S., Cao, N."Uncovering potential differentially expressed miRNAs and targeted mRNAs in myocardial infarction based on integrating analysis". Molecular Medicine Reports 22.5 (2020): 4383-4395.
Chicago
Wang, S., Cao, N."Uncovering potential differentially expressed miRNAs and targeted mRNAs in myocardial infarction based on integrating analysis". Molecular Medicine Reports 22, no. 5 (2020): 4383-4395. https://doi.org/10.3892/mmr.2020.11517
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team