|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Aichler M, Luber B, Lordick F and Walch A:
Proteomic and metabolic prediction of response to therapy in
gastric cancer. World J Gastroenterol. 20:13648–13657. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Barreto SG and Windsor JA: Redefining
early gastric cancer. Surg Endosc. 30:24–37. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Choi JH, Kim ES, Lee YJ, Cho KB, Park KS,
Jang BK, Chung WJ, Hwang JS and Ryu SW: Comparison of quality of
life and worry of cancer recurrence between endoscopic and surgical
treatment for early gastric cancer. Gastrointest Endosc.
82:299–307. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Jemal A, Siegel R, Ward E, Murray T, Xu J
and Thun MJ: Cancer statistics, 2007. CA Cancer J Clin. 57:43–66.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Bobrie A, Colombo M, Raposo G and Thery C:
Exosome secretion: Molecular mechanisms and roles in immune
responses. Traffic. 12:1659–1668. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Mathivanan S, Ji H and Simpson RJ:
Exosomes: Extracellular organelles important in intercellular
communication. J Proteomics. 73:1907–1920. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Guo W, Gao Y, Li N, Shao F, Wang C, Wang
P, Yang Z, Li R and He J: Exosomes: New players in cancer (Review).
Oncol Rep. 38:665–675. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Caruso S and Poon IKH: Apoptotic
cell-derived extracellular vesicles: More Than just debris. Front
Immunol. 9:14862018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Seo N, Akiyoshi K and Shiku H:
Exosome-mediated regulation of tumor immunology. Cancer Sci.
109:2998–3004. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Simons M and Raposo G: Exosomes-vesicular
carriers for intercellular communication. Curr Opin Cell Biol.
21:575–581. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Deng G and Sui G: Noncoding RNA in
oncogenesis: A new era of identifying key players. Int J Mol Sci.
14:18319–18349. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wang WT, Han C, Sun YM, Chen TQ and Chen
YQ: Noncoding RNAs in cancer therapy resistance and targeted drug
development. J Hematol Oncol. 12:552019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Iqbal MA, Arora S, Prakasam G, Calin GA
and Syed MA: MicroRNA in lung cancer: Role, mechanisms, pathways
and therapeutic relevance. Mol Aspects Med. 70:3–20. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Michlewski G and Caceres JF:
Post-transcriptional control of miRNA biogenesis. RNA. 25:1–16.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhang XZ, Liu H and Chen SR: Mechanisms of
long non-coding rnas in cancers and their dynamic regulations.
Cancers (Basel). 12:12452020. View Article : Google Scholar
|
|
17
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ma Y, Liu Y and Jiang Z: CircRNAs: A new
perspective of biomarkers in the nervous system. Biomed
Pharmacother. 128:1102512020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Qiu M, Xia W, Chen R, Wang S, Xu Y, Ma Z,
Xu W, Zhang E, Wang J, Fang T, et al: The Circular RNA circPRKCI
promotes tumor growth in lung adenocarcinoma. Cancer Res.
78:2839–2851. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Calatayud D, Dehlendorff C, Boisen MK,
Hasselby JP, Schultz NA, Werner J, Immervoll H, Molven A, Hansen CP
and Johansen JS: Tissue MicroRNA profiles as diagnostic and
prognostic biomarkers in patients with resectable pancreatic ductal
adenocarcinoma and periampullary cancers. Biomarker Res. 5:82017.
View Article : Google Scholar
|
|
21
|
Ho YJ and Yeh CK: Concurrent anti-vascular
therapy and chemotherapy in solid tumors using drug-loaded acoustic
nanodroplet vaporization. Acta Biomater. 49:472–485. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kesharwani P, Gajbhiye V and Jain NK: A
review of nanocarriers for the delivery of small interfering RNA.
Biomaterials. 33:7138–7150. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Lin CH, Tsai ZT and Wang D: Role of
antisense RNAs in evolution of yeast regulatory complexity.
Genomics. 102:484–490. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wong CM, Tsang FH and Ng IO: Non-coding
RNAs in hepatocellular carcinoma: Molecular functions and
pathological implications. Nat Rev Gastroenterol Hepatol.
15:137–151. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Peng JF, Zhuang YY, Huang FT and Zhang SN:
Noncoding RNAs and pancreatic cancer. World J Gastroenterol.
22:801–814. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Valadi H, Ekstrom K, Bossios A, Sjostrand
M, Lee JJ and Lotvall JO: Exosome-mediated transfer of mRNAs and
microRNAs is a novel mechanism of genetic exchange between cells.
Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Taylor DD and Gercel-Taylor C: MicroRNA
signatures of tumor-derived exosomes as diagnostic biomarkers of
ovarian cancer. Gynecol Oncol. 110:13–21. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Xie Y, Dang W, Zhang S, Yue W, Yang L,
Zhai X, Yan Q and Lu J: The role of exosomal noncoding RNAs in
cancer. Mol Cancer. 18:372019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Skotland T, Sandvig K and Llorente A:
Lipids in exosomes: Current knowledge and the way forward. Prog
Lipid Res. 66:30–41. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lin LY, Yang L, Zeng Q, Wang L, Chen ML,
Zhao ZH, Ye GD, Luo QC, Lv PY, Guo QW, et al: Tumor-originated
exosomal lncUEGC1 as a circulating biomarker for early-stage
gastric cancer. Mol Cancer. 17:842018. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhang X, Wang S, Wang H, Cao J, Huang X,
Chen Z, Xu P, Sun G, Xu J, Lv J and Xu Z: Circular RNA circNRIP1
acts as a microRNA-149-5p sponge to promote gastric cancer
progression via the AKT1/mTOR pathway. Mol Cancer. 18:202019.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Rajagopal C and Harikumar KB: The origin
and functions of exosomes in cancer. Front Oncol. 8:662018.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Pan BT and Johnstone RM: Fate of the
transferrin receptor during maturation of sheep reticulocytes in
vitro: Selective externalization of the receptor. Cell. 33:967–978.
1983. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Johnstone RM, Adam M, Hammond JR, Orr L
and Turbide C: Vesicle formation during reticulocyte maturation.
Association of plasma membrane activities with released vesicles
(exosomes). J Biol Chem. 262:9412–9420. 1987.PubMed/NCBI
|
|
35
|
Milman N, Ginini L and Gil Z: Exosomes and
their role in tumorigenesis and anticancer drug resistance. Drug
Resist Updat. 45:1–12. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Harding C, Heuser J and Stahl P:
Receptor-mediated endocytosis of transferrin and recycling of the
transferrin receptor in rat reticulocytes. J Cell Biol. 97:329–339.
1983. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Pan BT, Teng K, Wu C, Adam M and Johnstone
RM: Electron microscopic evidence for externalization of the
transferrin receptor in vesicular form in sheep reticulocytes. J
Cell Biol. 101:942–948. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Jan AT, Rahman S, Khan S, Tasduq SA and
Choi I: Biology, pathophysiological role, and clinical implications
of exosomes: A Critical Appraisal. Cells. 8:992019. View Article : Google Scholar
|
|
39
|
Ferguson SW and Nguyen J: Exosomes as
therapeutics: The implications of molecular composition and
exosomal heterogeneity. J Control Release. 228:179–190. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hannafon BN, Carpenter KJ, Berry WL,
Janknecht R, Dooley WC and Ding WQ: Exosome-mediated microRNA
signaling from breast cancer cells is altered by the
anti-angiogenesis agent docosahexaenoic acid (DHA). Mol Cancer.
14:1332015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wu Z, Yang Z, Dai Y, Zhu Q and Chen LA:
Update on liquid biopsy in clinical management of non-small cell
lung cancer. Onco Targets Ther. 12:5097–5109. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Sancho-Albero M, Navascues N, Mendoza G,
Sebastián V, Arruebo M, Martín-Duque P and Santamaría J: Exosome
origin determines cell targeting and the transfer of therapeutic
nanoparticles towards target cells. J Nanobiotechnology. 17:162019.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Bai J, Xie X, Lei Y, An G, He L and Chen
R: Consideration of dual characters of exosomes in the tumour
immune response. Cell Biol Int. 38:538–545. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Arima Y, Liu W, Takahashi Y, Nishikawa M
and Takakura Y: Effects of localization of antigen proteins in
antigen-loaded exosomes on efficiency of antigen presentation. Mol
Pharm. 16:2309–2314. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhang X, Shi H, Yuan X, Jiang P, Qian H
and Xu W: Tumor-derived exosomes induce N2 polarization of
neutrophils to promote gastric cancer cell migration. Mol Cancer.
17:1462018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lloret-Llinares M, Karadoulama E, Chen Y,
Wojenski LA, Villafano GJ, Bornholdt J, Andersson R, Core L,
Sandelin A and Jensen TH: The RNA exosome contributes to gene
expression regulation during stem cell differentiation. Nucleic
Acids Res. 46:11502–11513. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Singh R, Pochampally R, Watabe K, Lu Z and
Mo YY: Exosome-mediated transfer of miR-10b promotes cell invasion
in breast cancer. Mol Cancer. 13:2562014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Di C, Zhang Q, Wang Y, Wang F, Chen Y, Gan
L, Zhou R, Sun C, Li H, Zhang X, et al: Exosomes as drug carriers
for clinical application. Artif Cells Nanomed Biotechnol. 46
(sup3):S564–S570. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Izadpanah M, Seddigh A, Ebrahimi Barough
S, Fazeli SAS and Ai J: Potential of extracellular vesicles in
neurodegenerative diseases: Diagnostic and therapeutic indications.
J Mol Neurosci. 66:172–179. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Dhondt B, Van Deun J, Vermaerke S, de
Marco A, Lumen N, De Wever O and Hendrix A: Urinary extracellular
vesicle biomarkers in urological cancers: From discovery towards
clinical implementation. Int J Biochem Cell Biol. 99:236–256. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Roy S, Hochberg FH and Jones PS:
Extracellular vesicles: The growth as diagnostics and therapeutics;
a survey. J Extracell Vesicles. 7:14387202018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Akers JC, Gonda D, Kim R, Carter BS and
Chen CC: Biogenesis of extracellular vesicles (EV): Exosomes,
microvesicles, retrovirus-like vesicles, and apoptotic bodies. J
Neurooncol. 113:1–11. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wang X, Yao X, Xie T, Chang Z, Guo Y and
Ni H: Exosome-derived uterine miR-218 isolated from cows with
endometritis regulates the release of cytokines and chemokines.
Microb Biotechnol. 13:1103–1117. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Mathieu M, Martin-Jaular L, Lavieu G and
Thery C: Specificities of secretion and uptake of exosomes and
other extracellular vesicles for cell-to-cell communication. Cell
Biol. 21:9–17. 2019.
|
|
55
|
Klingeborn M, Dismuke WM, Bowes Rickman C
and Stamer WD: Roles of exosomes in the normal and diseased eye.
Prog Retin Eye Res. 59:158–177. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Xitong D and Xiaorong Z: Targeted
therapeutic delivery using engineered exosomes and its applications
in cardiovascular diseases. Gene. 575:377–384. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yang XX, Sun C, Wang L and Guo XL: New
insight into isolation, identification techniques and medical
applications of exosomes. J Control Release. 308:119–129. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lopez-Beltran A, Cheng L, Gevaert T,
Blanca A, Cimadamore A, Santoni M, Massari F, Scarpelli M,
Raspollini MR and Montironi R: Current and emerging bladder cancer
biomarkers with an emphasis on urine biomarkers. Expert Rev Mol
Diagn. 20:231–243. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Normanno N, Cervantes A, Ciardiello F, De
Luca A and Pinto C: The liquid biopsy in the management of
colorectal cancer patients: Current applications and future
scenarios. Cancer Treat Rev. 70:1–8. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Buscail E, Maulat C, Muscari F, Chiche L,
Cordelier P, Dabernat S, Alix-Panabières C and Buscail L: Liquid
biopsy approach for pancreatic ductal adenocarcinoma. Cancers.
11:8522019. View Article : Google Scholar
|
|
61
|
Boussios S, Ozturk MA, Moschetta M,
Karathanasi A, Zakynthinakis-Kyriakou N, Katsanos KH, Christodoulou
DK and Pavlidis N: The developing story of predictive biomarkers in
colorectal cancer. J Pers Med. 9:122019. View Article : Google Scholar
|
|
62
|
Li W and Gao YQ: MiR-217 is involved in
the carcinogenesis of gastric cancer by down-regulating CDH1
expression. Kaohsiung J Med Sci. 34:377–384. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhao R and Zhang Y, Zhang X, Yang Y, Zheng
X, Li X, Liu Y and Zhang Y: Exosomal long noncoding RNA HOTTIP as
potential novel diagnostic and prognostic biomarker test for
gastric cancer. Mol Cancer. 17:682018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wang G, Liu W, Zou Y, Wang G, Deng Y, Luo
J, Zhang Y, Li H, Zhang Q, Yang Y and Chen G: Three isoforms of
exosomal circPTGR1 promote hepatocellular carcinoma metastasis via
the miR449a-MET pathway. EBioMedicine. 40:432–445. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Li J, Li Z, Jiang P, Peng M, Zhang X, Chen
K, Liu H, Bi H, Liu X and Li X: Circular RNA IARS (circ-IARS)
secreted by pancreatic cancer cells and located within exosomes
regulates endothelial monolayer permeability to promote tumor
metastasis. J Exp Clin Cancer Res. 37:1772018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J,
Chen D, Gu J, He X and Huang S: Circular RNA is enriched and stable
in exosomes: A promising biomarker for cancer diagnosis. Cell Res.
25:981–984. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Tang W, Fu K, Sun H, Rong D, Wang H and
Cao H: CircRNA microarray profiling identifies a novel circulating
biomarker for detection of gastric cancer. Mol Cancer. 17:1372018.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zarkavelis G, Boussios S, Papadaki A,
Katsanos KH, Christodoulou DK and Pentheroudakis G: Current and
future biomarkers in colorectal cancer. Ann Gastroenterol.
30:613–621. 2017.PubMed/NCBI
|
|
69
|
Vedeld HM, Goel A and Lind GE: Epigenetic
biomarkers in gastrointestinal cancers: The current state and
clinical perspectives. Semin Cancer Biol. 51:36–49. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Shah M, Prasad A, Rajan D, Tan CB, Shah M,
Raghavan P and Mustacchia P: Direct liver invasion from a gastric
adenocarcinoma as an initial presentation of extranodal tumor
spread. Case Rep Med. 2012:6512322012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ruggieri V, Russi S, Zoppoli P, La Rocca
F, Angrisano T, Falco G, Calice G and Laurino S: The Role of
MicroRNAs in the regulation of gastric cancer stem cells: A
meta-analysis of the current status. J Clin Med. 8:6392019.
View Article : Google Scholar
|
|
72
|
Wang J, Guan X, Zhang Y, Ge S, Zhang L, Li
H, Wang X, Liu R, Ning T, Deng T, et al: Exosomal miR-27a derived
from gastric cancer cells regulates the transformation of
fibroblasts into cancer-associated fibroblasts. Cell Physiol
Biochem. 49:869–883. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Tokuhisa M, Ichikawa Y, Kosaka N, Ochiya
T, Yashiro M, Hirakawa K, Kosaka T, Makino H, Akiyama H, Kunisaki C
and Endo I: Exosomal miRNAs from peritoneum lavage fluid as
potential prognostic biomarkers of peritoneal metastasis in gastric
cancer. PLoS One. 10:e01304722015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Hu Y, Qi C, Liu X, Zhang C, Gao J, Wu Y,
Yang J, Zhao Q, Li J, Wang X and Shen L: Malignant ascites-derived
exosomes promote peritoneal tumor cell dissemination and reveal a
distinct miRNA signature in advanced gastric cancer. Cancer Lett.
457:142–150. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wang ZK, Lin JX, Li P, Xie JW, Wang JB, Lu
J, Chen QY, Cao LL, Lin M, Tu RH, et al: Higher risk of lymph node
metastasis in young patients with early gastric cancer. J Cancer.
10:4389–4396. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Pan L, Liang W, Fu M, Huang ZH, Li X,
Zhang W, Zhang P, Qian H, Jiang PC, Xu WR and Zhang X:
Exosomes-mediated transfer of long noncoding RNA ZFAS1 promotes
gastric cancer progression. J Cancer Res Clin Oncol. 143:991–1004.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Bagger SO, Hopkinson BM, Pandey DP, Bak M,
Brydholm AV, Villadsen R, Helin K, Rønnov-Jessen L, Petersen OW and
Kim J: Aggressiveness of non-EMT breast cancer cells relies on
FBXO11 activity. Mol Cancer. 17:1712018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Colella B, Faienza F and Di Bartolomeo S:
EMT regulation by autophagy: A new perspective in glioblastoma
biology. Cancers. 11:3122019. View Article : Google Scholar
|
|
79
|
Aiello NM, Maddipati R, Norgard RJ, Balli
D, Li J, Yuan S, Yamazoe T, Black T, Sahmoud A, Furth EE, et al:
EMT subtype influences epithelial plasticity and mode of cell
migration. Dev Cell. 45:681–695.e684. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Pastushenko I and Blanpain C: EMT
Transition States during Tumor Progression and Metastasis. Trends
Cell Biol. 29:212–226. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Yang H, Fu H, Wang B, Zhang X, Mao J, Li
X, Wang M, Sun Z, Qian H and Xu W: Exosomal miR-423-5p targets SUFU
to promote cancer growth and metastasis and serves as a novel
marker for gastric cancer. Mol Carcinog. 57:1223–1236. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Tian W, Liu S and Li B: Potential role of
exosomes in cancer metastasis. Biomed Res Int. 2019:46497052019.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Rodriguez-Aznar E, Wiesmuller L, Sainz B
Jr and Hermann PC: EMT and stemness-key players in pancreatic
cancer stem cells. Cancers. 11:11362019. View Article : Google Scholar
|
|
84
|
Lee IC, Fadera S and Liu HL: Strategy of
differentiation therapy: effect of dual-frequency ultrasound on the
induction of liver cancer stem-like cells on a HA-based multilayer
film system. J Mater Chem B. 7:5401–5411. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Park SY, Choi JH and Nam JS: Targeting
cancer stem cells in triple-negative breast cancer. Cancers
(Basel). 11:9652019. View Article : Google Scholar
|
|
86
|
Peitzsch C, Tyutyunnykova A, Pantel K and
Dubrovska A: Cancer stem cells: The root of tumor recurrence and
metastases. Semin Cancer Biol. 44:10–24. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Sun ZP, Li AQ, Jia WH, Ye S, Van Eps G, Yu
JM and Yang WJ: MicroRNA expression profiling in exosomes derived
from gastric cancer stem-like cells. Oncotarget. 8:93839–93855.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Viallard C and Larrivee B: Tumor
angiogenesis and vascular normalization: alternative therapeutic
targets. Angiogenesis. 20:409–426. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Mao G, Liu Y, Fang X, Liu Y, Fang L, Lin
L, Liu X and Wang N: Tumor-derived microRNA-494 promotes
angiogenesis in non-small cell lung cancer. Angiogenesis.
18:373–382. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Dong H, Weng C, Bai R, Sheng J, Gao X, Li
L and Xu Z: The regulatory network of miR-141 in the inhibition of
angiogenesis. Angiogenesis. 22:251–262. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Bikfalvi A: History and conceptual
developments in vascular biology and angiogenesis research: A
personal view. Angiogenesis. 20:463–478. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhao S, Li J, Zhang G, Wang Q, Wu C, Zhang
Q, Wang H, Sun P, Xiang R and Yang S: Exosomal miR-451a functions
as a tumor suppressor in hepatocellular carcinoma by targeting
LPIN1. Cell Physiol Biochem. 53:19–35. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wang ZF, Liao F, Wu H and Dai J: Glioma
stem cells-derived exosomal miR-26a promotes angiogenesis of
microvessel endothelial cells in glioma. J Exp Clin Cancer Res.
38:2012019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wu XG, Zhou CF, Zhang YM, Yan RM, Wei WF,
Chen XJ, Yi HY, Liang LJ, Fan LS, Liang L, et al: Cancer-derived
exosomal miR-221-3p promotes angiogenesis by targeting THBS2 in
cervical squamous cell carcinoma. Angiogenesis. 22:397–410. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Hu HY, Yu CH, Zhang HH, Zhang SZ, Yu WY,
Yang Y and Chen Q: Exosomal miR-1229 derived from colorectal cancer
cells promotes angiogenesis by targeting HIPK2. Int J Biol
Macromol. 132:470–477. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Matsuura Y, Wada H, Eguchi H, Gotoh K,
Kobayashi S, Kinoshita M, Kubo M, Hayashi K, Iwagami Y, Yamada D,
et al: Exosomal miR-155 derived from hepatocellular carcinoma cells
under hypoxia promotes angiogenesis in endothelial cells. Dig Dis
Sci. 64:792–802. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Yang H, Zhang H, Ge S, Ning T, Bai M, Li
J, Li S, Sun W, Deng T, Zhang L, et al: Exosome-Derived miR-130a
activates angiogenesis in gastric cancer by targeting C-MYB in
vascular endothelial cells. Mol Ther. 26:2466–2475. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Hida K, Kikuchi H, Maishi N and Hida Y:
ATP-binding cassette transporters in tumor endothelial cells and
resistance to metronomic chemotherapy. Cancer Lett. 400:305–310.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhang HD, Jiang LH, Hou JC, Zhong SL, Zhu
LP, Wang DD, Zhou SY, Yang SJ, Wang JY, Zhang Q, et al: Exosome: A
novel mediator in drug resistance of cancer cells. Epigenomics.
10:1499–1509. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Qu Z, Wu J, Wu J, Luo D, Jiang C and Ding
Y: Exosomes derived from HCC cells induce sorafenib resistance in
hepatocellular carcinoma both in vivo and in vitro. J Exp Clin
Cancer Res. 35:1592016. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zhang W, Cai X, Yu J, Lu X, Qian Q and
Qian W: Exosome-mediated transfer of lncRNA RP11838N2.4 promotes
erlotinib resistance in non-small cell lung cancer. Int J Oncol.
53:527–538. 2018.PubMed/NCBI
|
|
102
|
Wei F, Ma C, Zhou T, Dong X, Luo Q, Geng
L, Ding L, Zhang Y, Zhang L, Li N, et al: Exosomes derived from
gemcitabine-resistant cells transfer malignant phenotypic traits
via delivery of miRNA-222-3p. Mol Cancer. 16:1322017. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Qin X, Yu S, Zhou L, Shi M, Hu Y, Xu X,
Shen B, Liu S, Yan D and Feng J: Cisplatin-resistant lung cancer
cell-derived exosomes increase cisplatin resistance of recipient
cells in exosomal miR-100-5p-dependent manner. Int J Nanomedicine.
12:3721–3733. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Xie F, Chen R, Zhang L, Yin Z, Zhu Q, You
S, Jiang C, Li Y, Li S, Zha X and Wang J: Efficacy of two-weekly
nanoparticle albumin-bound paclitaxel as neoadjuvant chemotherapy
for breast cancer. Nanomedicine (Lond). 14:1595–1603. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Vergote I, Scambia G, O'Malley DM, Van
Calster B, Park SY, Del Campo JM, Meier W, Bamias A, Colombo N,
Wenham RM, et al: Trebananib or placebo plus carboplatin and
paclitaxel as first-line treatment for advanced ovarian cancer
(TRINOVA-3/ENGOT-ov2/GOG-3001): A randomised, double-blind, phase 3
trial. Lancet Oncol. 20:862–876. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Colevas AD: Systemic therapy for
metastatic or recurrent squamous cell carcinoma of the head and
neck. J Natl Compr Canc Netw. 13:e37–e48. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Socinski MA, Okamoto I, Hon JK, Hirsh V,
Dakhil SR, Page RD, Orsini J, Yamamoto N, Zhang H and Renschler MF:
Safety and efficacy analysis by histology of weekly nab-paclitaxel
in combination with carboplatin as first-line therapy in patients
with advanced non-small-cell lung cancer. Ann Oncol. 24:2390–2396.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Guo Z, Wang X, Lin R, Chen L, Fan N, Chen
Y, Lin J and Yu J: Paclitaxel-based regimens as first-line
treatment in advanced gastric cancer. J Chemother. 27:94–98. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Zhang D and Fan D: Multidrug resistance in
gastric cancer: Recent research advances and ongoing therapeutic
challenges. Expert Rev Anticancer Ther. 7:1369–1378. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Wang M, Qiu R, Yu S, Xu X, Li G, Gu R, Tan
C, Zhu W and Shen B: Paclitaxelresistant gastric cancer MGC803
cells promote epithelialtomesenchymal transition and
chemoresistance in paclitaxelsensitive cells via exosomal delivery
of miR1555p. Int J Oncol. 54:326–338. 2019.PubMed/NCBI
|
|
111
|
Hultman B, Mahteme H, Sundbom M, Ljungman
M, Larsson R and Nygren P: Benchmarking of gastric cancer
sensitivity to anti-cancer drugs ex vivo as a basis for drug
selection in systemic and intraperitoneal therapy. J Exp Clin
Cancer Res. 33:1102014. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Liu X, Lu Y, Xu Y, Hou S, Huang J, Wang B,
Zhao J, Xia S, Fan S, Yu X, et al: Exosomal transfer of miR-501
confers doxorubicin resistance and tumorigenesis via targeting of
BLID in gastric cancer. Cancer Lett. 459:122–134. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ji R, Zhang B, Zhang X, Xue J, Yuan X, Yan
Y, Wang M, Zhu W, Qian H and Xu W: Exosomes derived from human
mesenchymal stem cells confer drug resistance in gastric cancer.
Cell Cycle. 14:2473–2483. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Panfoli I, Ravera S, Podestà M, Cossu C,
Santucci L, Bartolucci M, Bruschi M, Calzia D, Sabatini F,
Bruschettini M, et al: Exosomes from human mesenchymal stem cells
conduct aerobic metabolism in term and preterm newborn infants.
FASEB J. 30:1416–1424. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Pakravan K, Babashah S, Sadeghizadeh M,
Mowla SJ, Mossahebi-Mohammadi M, Ataei F, Dana N and Javan M:
MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes
suppresses in vitro angiogenesis through modulating the
mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol
(Dordr). 40:457–470. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Bliss SA, Sinha G, Sandiford OA, Williams
LM, Engelberth DJ, Guiro K, Isenalumhe LL, Greco SJ, Ayer S, Bryan
M, et al: Mesenchymal stem cell-derived exosomes stimulate cycling
quiescence and early breast cancer dormancy in bone marrow. Cancer
Res. 76:5832–5844. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Zhang H, Wang Y, Yang G, Yu H, Zhou Z and
Tang M: MicroRNA-30a regulates chondrogenic differentiation of
human bone marrow-derived mesenchymal stem cells through targeting
Sox9. Exp Ther Med. 18:4689–4697. 2019.PubMed/NCBI
|
|
118
|
Xin H, Liu Z, Buller B, Li Y, Golembieski
W, Gan X, Wang F, Lu M, Ali MM, Zhang ZG and Chopp M: MiR-17-92
enriched exosomes derived from multipotent mesenchymal stromal
cells enhance axon-myelin remodeling and motor electrophysiological
recovery after stroke. J Cereb Blood Flow Metab. 2020.(Ahead of
print). View Article : Google Scholar
|
|
119
|
Cheng Q, Li X and Liu J, Ye Q, Chen Y, Tan
S and Liu J: Multiple myeloma-derived exosomes regulate the
functions of mesenchymal stem cells partially via modulating miR-21
and miR-146a. Stem Cells Int. 2017:90121522017. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Ho GY, Woodward N and Coward JI: Cisplatin
versus carboplatin: comparative review of therapeutic management in
solid malignancies. Crit Rev Oncol Hematol. 102:37–46. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Wang X, Zhang H, Bai M, Ning T, Ge S, Deng
T, Liu R, Zhang L, Ying G and Ba Y: Exosomes serve as nanoparticles
to deliver anti-miR-214 to reverse chemoresistance to cisplatin in
gastric cancer. Mol Ther. 26:774–783. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Zhang Q, Zhang H, Ning T, Liu D, Deng T,
Liu R, Bai M, Zhu K, Li J, Fan Q, et al: Exosome-delivered c-met
sirna could reverse chemoresistance to cisplatin in gastric cancer.
Int J Nanomedicine. 15:2323–2335. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Zheng P, Chen L, Yuan X, Luo Q, Liu Y, Xie
G, Ma Y and Shen L: Exosomal transfer of tumor-associated
macrophage-derived miR-21 confers cisplatin resistance in gastric
cancer cells. J Exp Clin Cancer Res. 36:532017. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
van der Pol E, Boing AN, Harrison P, Sturk
A and Nieuwland R: Classification, functions, and clinical
relevance of extracellular vesicles. Pharmacol Rev. 64:676–705.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Palmirotta R, Lovero D, Cafforio P, Felici
C, Mannavola F, Pellè E, Quaresmini D, Tucci M and Silvestris F:
Liquid biopsy of cancer: A multimodal diagnostic tool in clinical
oncology. Ther Adv Med Oncol. 10:17588359187946302018. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Ren W, Zhang X, Li W, Feng Q, Feng H, Tong
Y, Rong H, Wang W, Zhang D, Zhang Z, et al: Exosomal miRNA-107
induces myeloid-derived suppressor cell expansion in gastric
cancer. Cancer Manag Res. 11:4023–4040. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Wang N, Wang L, Yang Y, Gong L, Xiao B and
Liu X: A serum exosomal microRNA panel as a potential biomarker
test for gastric cancer. Biochem Biophys Res Commun. 493:1322–1328.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Ohshima K, Inoue K, Fujiwara A, Hatakeyama
K, Kanto K, Watanabe Y, Muramatsu K, Fukuda Y, Ogura S, Yamaguchi K
and Mochizuki T: Let-7 microRNA family is selectively secreted into
the extracellular environment via exosomes in a metastatic gastric
cancer cell line. PLoS One. 5:e132472010. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Cai C, Zhang H, Zhu Y, Zheng P, Xu Y, Sun
J, Zhang M, Lan T, Gu B, Li S and Ma P: Serum exosomal long
noncoding RNA pcsk2-2:1 as a potential novel diagnostic biomarker
for gastric cancer. Onco Targets Ther. 12:10035–10041. 2019.
View Article : Google Scholar : PubMed/NCBI
|