Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2021 Volume 23 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2021 Volume 23 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Developments in the production of platelets from stem cells (Review)

  • Authors:
    • Jie Yang
    • Jianfeng Luan
    • Yanfei Shen
    • Baoan Chen
  • View Affiliations / Copyright

    Affiliations: Department of Hematology and Oncology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China, Jinling Hospital Department of Blood Transfusion, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China, Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 210009, P.R. China
    Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 7
    |
    Published online on: November 3, 2020
       https://doi.org/10.3892/mmr.2020.11645
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Platelets are small pieces of cytoplasm that have become detached from the cytoplasm of mature megakaryocytes (MKs) in the bone marrow. Platelets modulate vascular system integrity and serve important role, particularly in hemostasis. With the rapid development of clinical medicine, the demand for platelet transfusion as a life‑saving intervention increases continuously. Stem cell technology appears to be highly promising for transfusion medicine, and the generation of platelets from stem cells would be of great value in the clinical setting. Furthermore, several studies have been undertaken to investigate the potential of producing platelets from stem cells. Initial success has been achieved in terms of the yields and function of platelets generated from stem cells. However, the requirements of clinical practice remain unmet. The aim of the present review was to focus on several sources of stem cells and factors that induce MK differentiation. Updated information on current research into the genetic regulation of megakaryocytopoiesis and platelet generation was summarized. Additionally, advanced strategies of platelet generation were reviewed and the progress made in this field was discussed.
View Figures
View References

1 

Wang B and Zheng J: Platelet generation in vivo and in vitro. Springerplus. 5:7872016. View Article : Google Scholar : PubMed/NCBI

2 

Lu SJ, Li F, Yin H, Feng Q, Kimbrel EA, Hahm E, Thon JN, Wang W, Italiano JE, Cho J and Lanza R: Platelets generated from human embryonic stem cells are functional in vitro and in the microcirculation of living mice. Cell Res. 21:530–545. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Golebiewska EM and Poole AW: Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev. 29:153–162. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Franco AT, Corken A and Ware J: Platelets at the interface of thrombosis, inflammation, and cancer. Blood. 126:582–588. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Nachmias VT and Yoshida KI: The cytoskeleton of the blood platelet: A Dynamic Structure. Advances Mol Cell Biol. 2:181–211. 1988. View Article : Google Scholar

6 

Nurhayati RW, Ojima Y and Taya M: Recent developments in ex vivo platelet production. Cytotechnology. 68:2211–2221. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Saluk J, Bijak M, Ponczek MB and Wachowicz B: The formation, metabolism and the evolution of blood platelets. Postepy Hig Med Dosw (Online). 68:384–391. 2014.(In Polish). View Article : Google Scholar : PubMed/NCBI

8 

Sim X, Poncz M, Gadue P and French DL: Understanding platelet generation from megakaryocytes: Implications for in vitro-derived platelets. Blood. 127:1227–1233. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Stasi R: How to approach thrombocytopenia. Hematology Am Soc Hematol Educ Program. 2012:191–197. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Gollomp K, Lambert MP and Poncz M: Current status of blood ‘pharming’: Megakaryoctye transfusions as a source of platelets. Curr Opin Hematol. 24:565–571. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Ellingson KD, Sapiano MRP, Haass KA, Savinkina AA, Baker ML, Chung KW, Henry RA, Berger JJ, Kuehnert MJ and Basavaraju SV: Continued decline in blood collection and transfusion in the United States-2015. Transfusion. 57 (Suppl 2):S1588–S1598. 2017. View Article : Google Scholar

12 

Estcourt LJ: Why has demand for platelet components increased? A review. Transfus Med. 24:260–268. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Baigger A, Blasczyk R and Figueiredo C: Towards the manufacture of megakaryocytes and platelets for clinical application. Transfus Med Hemother. 44:165–173. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Whitaker B, Rajbhandary S, Kleinman S, Harris A and Kamani N: Trends in United States blood collection and transfusion: Results from the 2013 AABB Blood Collection, Utilization, and patient blood management survey. Transfusion. 56:2173–2183. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Thon JN, Medvetz DA, Karlsson SM and Italiano JE Jr: Road blocks in making platelets for transfusion. J Thromb Haemost. 13 (Suppl 1):S55–S62. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Reems JA, Pineault N and Sun S: In vitro megakaryocyte production and platelet biogenesis: state of the art. Transfus Med Rev. 24:33–43. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Lambert MP, Sullivan SK, Fuentes R, French DL and Poncz M: Challenges and promises for the development of donor-independent platelet transfusions. Blood. 121:3319–3324. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Fujiyama S, Hori N, Sato T, Enosawa S, Murata M and Kobayashi E: Development of an ex vivo xenogeneic bone environment producing human platelet-like cells. PLoS One. 15:e02305072020. View Article : Google Scholar : PubMed/NCBI

19 

Brand A: Alloimmune platelet refractoriness: Incidence declines, unsolved problems persist. Transfusion. 41:724–726. 2001. View Article : Google Scholar : PubMed/NCBI

20 

Avanzi MP and Mitchell WB: Ex vivo production of platelets from stem cells. Br J Haematol. 165:237–247. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Sugimoto N and Eto K: Platelet production from induced pluripotent stem cells. J Thromb Haemost. 15:1717–1727. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Nakamura-Ishizu A, Matsumura T, Stumpf PS, Umemoto T, Takizawa H, Takihara Y, O'Neil A, Majeed Abba, MacArthur BD and Suda T: Thrombopoietin metabolically primes hematopoietic stem cells to megakaryocyte-lineage differentiation. Cell Rep. 25:1772–1785 e6. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Chen Z, Wang Z and Gu Z: Bioinspired and biomimetic nanomedicines. Acc Chem Res. 52:1255–1264. 2019.PubMed/NCBI

24 

Morishima N and Nakanishi K: Proplatelet formation in megakaryocytes is associated with endoplasmic reticulum stress. Genes Cells. 21:798–806. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Borst S, Sim X, Poncz M, French DL and Gadue P: Induced pluripotent stem cell-derived megakaryocytes and platelets for disease modeling and future clinical applications. Arterioscler Thromb Vasc Biol. 37:2007–2013. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Smith BW and Murphy GJ: Stem cells, megakaryocytes, and platelets. Curr Opin Hematol. 21:430–437. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Pineault N, Robert A, Cortin V and Boyer L: Ex vivo differentiation of cord blood stem cells into megakaryocytes and platelets. Methods Mol Biol. 946:205–224. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Gertz JM, McLean KC and Bouchard BA: Endocytosed factor V is trafficked to CD42b+ proplatelet extensions during differentiation of human umbilical cord blood-derived megakaryocytes. J Cell Physiol. 233:8691–8700. 2018. View Article : Google Scholar : PubMed/NCBI

29 

van den Oudenrijn S, von dem Borne AE and de Haas M: Differences in megakaryocyte expansion potential between CD34+ stem cells derived from cord blood, peripheral blood, and bone marrow from adults and children. Exp Hematol. 28:1054–1061. 2000. View Article : Google Scholar : PubMed/NCBI

30 

Nurhayati RW, Ojima Y and Taya M: BMS-777607 promotes megakaryocytic differentiation and induces polyploidization in the CHRF-288-11 cells. Hum Cell. 28:65–72. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Six KR, Sicot G, Devloo R, Feys HB, Baruch D and Compernolle V: A comparison of haematopoietic stem cells from umbilical cord blood and peripheral blood for platelet production in a microfluidic device. Vox Sang. 114:330–339. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Choi ES, Nichol JL, Hokom MM, Hornkohl AC and Hunt P: Platelets generated in vitro from proplatelet-displaying human megakaryocytes are functional. Blood. 85:402–413. 1995. View Article : Google Scholar : PubMed/NCBI

33 

Veljkovic DK, Rivard GE, Diamandis M, Blavignac J, Cramer-Borde EM and Hayward CP: Increased expression of urokinase plasminogen activator in Quebec platelet disorder is linked to megakaryocyte differentiation. Blood. 113:1535–1542. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Cohen KS, Cheng S, Larson MG, Cupples LA, McCabe EL, Wang YA, Ngwa JS, Martin RP, Klein RJ, Hashmi B, et al: Circulating CD34(+) progenitor cell frequency is associated with clinical and genetic factors. Blood. 121:e50–e56. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Pecci A, Malara A, Badalucco S, Bozzi V, Torti M, Balduini CL and Balduini A: Megakaryocytes of patients with MYH9-related thrombocytopenia present an altered proplatelet formation. Thromb Haemost. 102:90–96. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Ivetic N, Nazi I, Karim N, Clare R, Smith JW, Moore JC, Hope KJ, Kelton JG and Arnold DM: Producing megakaryocytes from a human peripheral blood source. Transfusion. 56:1066–1074. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Orban M, Goedel A, Haas J, Sandrock-Lang K, Gartner F, Jung CB, Zieger B, Parrotta E, Kurnik K, Sinnecker D, et al: Functional comparison of induced pluripotent stem cell- and blood-derived GPIIbIIIa deficient platelets. PLoS One. 10:e01159782015. View Article : Google Scholar : PubMed/NCBI

38 

Sinnecker D, Goedel A, Laugwitz KL and Moretti A: Induced pluripotent stem cell-derived cardiomyocytes: A versatile tool for arrhythmia research. Circ Res. 112:961–968. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Heazlewood SY, Nilsson SK, Cartledge K, Be CL, Vinson A, Gel M and Haylock DN: Progress in bio-manufacture of platelets for transfusion. Platelets. 28:649–656. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Feng Q, Shabrani N, Thon JN, Huo H, Thiel A, Machlus KR, Kim K, Brooks J, Li F, Luo C, et al: Scalable generation of universal platelets from human induced pluripotent stem cells. Stem Cell Reports. 3:817–831. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Börger AK, Eicke D, Wolf C, Gras C, Aufderbeck S, Schulze K, Engels L, Eiz-Vesper B, Schambach A, Guzman CA, et al: Generation of HLA-Universal iPSC-derived megakaryocytes and platelets for survival under refractoriness conditions. Mol Med. 22:274–285. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Gaur M, Kamata T, Wang S, Moran B, Shattil SJ and Leavitt AD: Megakaryocytes derived from human embryonic stem cells: A genetically tractable system to study megakaryocytopoiesis and integrin function. J Thromb Haemost. 4:436–442. 2006. View Article : Google Scholar : PubMed/NCBI

43 

Zhang L, Liu C, Wang H, Wu D, Su P, Wang M, Guo J, Zhao S, Dong S, Zhou W, et al: Thrombopoietin knock-in augments platelet generation from human embryonic stem cells. Stem Cell Res Ther. 9:1942018. View Article : Google Scholar : PubMed/NCBI

44 

Matsubara Y, Ono Y, Suzuki H, Arai F, Suda T, Murata M and Ikeda Y: OP9 bone marrow stroma cells differentiate into megakaryocytes and platelets. PLoS One. 8:e581232013. View Article : Google Scholar : PubMed/NCBI

45 

Ono-Uruga Y, Tozawa K, Horiuchi T, Murata M, Okamoto S, Ikeda Y, Suda T and Matsubara Y: Human adipose tissue-derived stromal cells can differentiate into megakaryocytes and platelets by secreting endogenous thrombopoietin. J Thromb Haemost. 14:1285–1297. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Tozawa K, Ono-Uruga Y, Yazawa M, Mori T, Murata M, Okamoto S, Ikeda Y and Matsubara Y: Megakaryocytes and platelets from a novel human adipose tissue-derived mesenchymal stem cell line. Blood. 133:633–643. 2019. View Article : Google Scholar : PubMed/NCBI

47 

McArthur K, Chappaz S and Kile BT: Apoptosis in megakaryocytes and platelets: The life and death of a lineage. Blood. 131:605–610. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Guo T, Wang X, Qu Y, Yin Y, Jing T and Zhang Q: Megakaryopoiesis and platelet production: Insight into hematopoietic stem cell proliferation and differentiation. Stem Cell Investig. 2:32015.PubMed/NCBI

49 

Pope NJ and Bresnick EH: Differential coregulator requirements for function of the hematopoietic transcription factor GATA-1 at endogenous loci. Nucleic Acids Res. 38:2190–2200. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Orkin SH, Shivdasani RA, Fujiwara Y and McDevitt MA: Transcription factor GATA-1 in megakaryocyte development. Stem Cells. 16 (Suppl 2):S79–S83. 1998. View Article : Google Scholar

51 

Wang X, Crispino JD, Letting DL, Nakazawa M, Poncz M and Blobel GA: Control of megakaryocyte-specific gene expression by GATA-1 and FOG-1: Role of Ets transcription factors. EMBO J. 21:5525–5234. 2002. View Article : Google Scholar

52 

Gao Z, Huang Z, Olivey HE, Gurbuxani S, Crispino JD and Svensson EC: FOG-1-mediated recruitment of NuRD is required for cell lineage re-enforcement during haematopoiesis. EMBO J. 29:457–468. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Lejon S, Thong SY, Murthy A, AlQarni S, Murzina NV, Blobel GA, Laue ED and Mackay JP: Insights into association of the NuRD complex with FOG-1 from the crystal structure of an RbAp48.FOG-1 complex. J Biol Chem. 286:1196–1203. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Hart A, Melet F, Grossfeld P, Chien K, Jones C, Tunnacliffe A, Favier R and Bernstein A: Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity. 13:167–177. 2000. View Article : Google Scholar : PubMed/NCBI

55 

Starck J, Weiss-Gayet M, Gonnet C, Guyot B, Vicat JM and Morle F: Inducible Fli-1 gene deletion in adult mice modifies several myeloid lineage commitment decisions and accelerates proliferation arrest and terminal erythrocytic differentiation. Blood. 116:4795–4805. 2010. View Article : Google Scholar : PubMed/NCBI

56 

Deutsch VR and Tomer A: Advances in megakaryocytopoiesis and thrombopoiesis: From bench to bedside. Br J Haematol. 161:778–793. 2013. View Article : Google Scholar : PubMed/NCBI

57 

Eisbacher M, Holmes ML, Newton A, Hogg PJ, Khachigian LM, Crossley M and Chong BH: Protein-protein interaction between Fli-1 and GATA-1 mediates synergistic expression of megakaryocyte-specific genes through cooperative DNA binding. Mol Cell Biol. 23:3427–3441. 2003. View Article : Google Scholar : PubMed/NCBI

58 

Vo KK, Jarocha DJ, Lyde RB, Hayes V, Thom CS, Sullivan SK, French DL and Poncz M: FLI1 level during megakaryopoiesis affects thrombopoiesis and platelet biology. Blood. 129:3486–3494. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Okada Y, Nagai R, Matsuura E, Hoshika Y, Nakata E, Nagura H, Watanabe A, Komatsu N and Doi T: Suppression of RUNX1 by siRNA in megakaryocytic UT-7/GM cells. Nucleic Acids Symp Ser (Oxf). 261–262. 2006. View Article : Google Scholar : PubMed/NCBI

60 

Mata J, Curado S, Ephrussi A and Rørth P: Tribbles coordinates mitosis and morphogenesis in Drosophila by regulating string/CDC25 proteolysis. Cell. 101:511–522. 2000. View Article : Google Scholar : PubMed/NCBI

61 

Butcher L, Ahluwalia M, Ord T, Johnston J, Morris RH, Kiss-Toth E, Ord T and Erusalimsky JD: Evidence for a role of TRIB3 in the regulation of megakaryocytopoiesis. Sci Rep. 7:66842017. View Article : Google Scholar : PubMed/NCBI

62 

Gotoh A, Miyazawa K, Ohyashiki K, Tauchi T, Boswell HS, Broxmeyer HE and Toyama K: Tyrosine phosphorylation and activation of focal adhesion kinase (p125FAK) by BCR-ABL oncoprotein. Exp Hematol. 23:1153–1159. 1995.PubMed/NCBI

63 

Gotoh T, Niino Y, Tokuda M, Hatase O, Nakamura S, Matsuda M and Hattori S: Activation of R-Ras by Ras-guanine nucleotide-releasing factor. J Biol Chem. 272:18602–18607. 1997. View Article : Google Scholar : PubMed/NCBI

64 

Ortiz-Rivero S, Baquero C, Hernandez-Cano L, Roldan-Etcheverry JJ, Gutierrez-Herrero S, Fernandez-Infante C, Martin-Granado V, Anguita E, de Pereda JM, Porras A and Guerrero C: C3G, through its GEF activity, induces megakaryocytic differentiation and proplatelet formation. Cell Commun Signal. 16:1012018. View Article : Google Scholar : PubMed/NCBI

65 

Sullenbarger B, Bahng JH, Gruner R, Kotov N and Lasky LC: Prolonged continuous in vitro human platelet production using three-dimensional scaffolds. Exp Hematol. 37:101–110. 2009. View Article : Google Scholar : PubMed/NCBI

66 

Malara A, Currao M, Gruppi C, Celesti G, Viarengo G, Buracchi C, Laghi L, Kaplan DL and Balduini A: Megakaryocytes contribute to the bone marrow-matrix environment by expressing fibronectin, type IV collagen, and laminin. Stem Cells. 32:926–937. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Abbonante V, Di Buduo CA, Gruppi C, De Maria C, Spedden E, De Acutis A, Staii C, Raspanti M, Vozzi G, Kaplan DL, et al: A new path to platelet production through matrix sensing. Haematologica. 102:1150–1160. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Tozzi L, Laurent PA, Di Buduo CA, Mu X, Massaro A, Bretherton R, Stoppel W, Kaplan DL and Balduini A: Multi-channel silk sponge mimicking bone marrow vascular niche for platelet production. Biomaterials. 178:122–133. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Ito Y, Nakamura S, Sugimoto N, Shigemori T, Kato Y, Ohno M, Sakuma S, Ito K, Kumon H, Hirose H, et al: Turbulence activates platelet biogenesis to enable clinical scale ex vivo production. Cell. 174:636–648 e18. 2018. View Article : Google Scholar : PubMed/NCBI

70 

Jiang HJ, Yu Z, Ding N, Yang M, Zhang L, Fan XM, Zhou Y, Zou Q, Hou J, Zheng J, et al: The role of AGK in thrombocytopoiesis and possible therapeutic strategies. Blood. 136:119–129. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Kaushansky K, Broudy VC, Lin N, Jorgensen MJ, McCarty J, Fox N, Zucker-Franklin D and Lofton-Day C: Thrombopoietin, the Mp1 ligand, is essential for full megakaryocyte development. Proc Natl Acad Sci USA. 92:3234–3238. 1995. View Article : Google Scholar : PubMed/NCBI

72 

Panuganti S, Schlinker AC, Lindholm PF, Papoutsakis ET and Miller WM: Three-stage ex vivo expansion of high-ploidy megakaryocytic cells: Toward large-scale platelet production. Tissue Eng Part A. 19:998–1014. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Chang Y, Bluteau D, Debili N and Vainchenker W: From hematopoietic stem cells to platelets. J Thromb Haemost. 5 (Suppl 1):S318–S327. 2007. View Article : Google Scholar

74 

Behrens K and Alexander WS: Cytokine control of megakaryopoiesis. Growth Factors. 36:89–103. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Fielder PJ, Gurney AL, Stefanich E, Marian M, Moore MW, Carver-Moore K and de Sauvage FJ: Regulation of thrombopoietin levels by c-mpl-mediated binding to platelets. Blood. 87:2154–2161. 1996. View Article : Google Scholar : PubMed/NCBI

76 

He X, Chen Z, Jiang Y, Qiu X and Zhao X: Different mutations of the human c-mpl gene indicate distinct haematopoietic diseases. J Hematol Oncol. 6:112013. View Article : Google Scholar : PubMed/NCBI

77 

Di Buduo CA, Currao M, Pecci A, Kaplan DL, Balduini CL and Balduini A: Revealing eltrombopag's promotion of human megakaryopoiesis through AKT/ERK-dependent pathway activation. Haematologica. 101:1479–1488. 2016. View Article : Google Scholar : PubMed/NCBI

78 

Wong RSM, Saleh MN, Khelif A, Salama A, Portella MSO, Burgess P and Bussel JB: Safety and efficacy of long-term treatment of chronic/persistent ITP with eltrombopag: Final results of the EXTEND study. Blood. 130:2527–2536. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Gill H, Leung GM, Lopes D and Kwong YL: The thrombopoietin mimetics eltrombopag and romiplostim in the treatment of refractory aplastic anaemia. Br J Haematol. 176:991–994. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Fischer JC and Uhrberg M: Prevention of leukemia relapse by donor activating KIR2DS1. N Engl J Med. 367:2054–2055. 2012. View Article : Google Scholar : PubMed/NCBI

81 

Al-Samkari H, Grace RF and Kuter DJ: The role of romiplostim for pediatric patients with immune thrombocytopenia. Ther Adv Hematol. 11:20406207209129922020. View Article : Google Scholar : PubMed/NCBI

82 

Al-Samkari H, Parnes AD, Goodarzi K, Weitzman JI, Connors JM and Kuter DJ: A multicenter study of romiplostim for chemotherapy-induced thrombocytopenia in solid tumors and hematologic malignancies. Haematologica. Jun 4–2020.(Epub ahead of print). doi.org/10.3324/haematol.2020.251900. View Article : Google Scholar

83 

Kuter DJ, Arnold DM, Rodeghiero F, Janssens A, Selleslag D, Bird R, Newland A, Mayer J, Wang K and Olie R: Safety and efficacy of self-administered romiplostim in patients with immune thrombocytopenia: Results of an integrated database of five clinical trials. Am J Hematol. 95:643–651. 2020. View Article : Google Scholar : PubMed/NCBI

84 

Hosokawa K, Yamazaki H, Tanabe M, Imi T, Sugimori N and Nakao S: High-dose romiplostim accelerates hematologic recovery in patients with aplastic anemia refractory to eltrombopag. Leukemia. Jul 3–2020.(Epub ahead of print). doi org/10.1038/s41375-020-0950-6.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yang J, Luan J, Shen Y and Chen B: Developments in the production of platelets from stem cells (Review). Mol Med Rep 23: 7, 2021.
APA
Yang, J., Luan, J., Shen, Y., & Chen, B. (2021). Developments in the production of platelets from stem cells (Review). Molecular Medicine Reports, 23, 7. https://doi.org/10.3892/mmr.2020.11645
MLA
Yang, J., Luan, J., Shen, Y., Chen, B."Developments in the production of platelets from stem cells (Review)". Molecular Medicine Reports 23.1 (2021): 7.
Chicago
Yang, J., Luan, J., Shen, Y., Chen, B."Developments in the production of platelets from stem cells (Review)". Molecular Medicine Reports 23, no. 1 (2021): 7. https://doi.org/10.3892/mmr.2020.11645
Copy and paste a formatted citation
x
Spandidos Publications style
Yang J, Luan J, Shen Y and Chen B: Developments in the production of platelets from stem cells (Review). Mol Med Rep 23: 7, 2021.
APA
Yang, J., Luan, J., Shen, Y., & Chen, B. (2021). Developments in the production of platelets from stem cells (Review). Molecular Medicine Reports, 23, 7. https://doi.org/10.3892/mmr.2020.11645
MLA
Yang, J., Luan, J., Shen, Y., Chen, B."Developments in the production of platelets from stem cells (Review)". Molecular Medicine Reports 23.1 (2021): 7.
Chicago
Yang, J., Luan, J., Shen, Y., Chen, B."Developments in the production of platelets from stem cells (Review)". Molecular Medicine Reports 23, no. 1 (2021): 7. https://doi.org/10.3892/mmr.2020.11645
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team