|
1
|
Wang B and Zheng J: Platelet generation in
vivo and in vitro. Springerplus. 5:7872016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Lu SJ, Li F, Yin H, Feng Q, Kimbrel EA,
Hahm E, Thon JN, Wang W, Italiano JE, Cho J and Lanza R: Platelets
generated from human embryonic stem cells are functional in vitro
and in the microcirculation of living mice. Cell Res. 21:530–545.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Golebiewska EM and Poole AW: Platelet
secretion: From haemostasis to wound healing and beyond. Blood Rev.
29:153–162. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Franco AT, Corken A and Ware J: Platelets
at the interface of thrombosis, inflammation, and cancer. Blood.
126:582–588. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Nachmias VT and Yoshida KI: The
cytoskeleton of the blood platelet: A Dynamic Structure. Advances
Mol Cell Biol. 2:181–211. 1988. View Article : Google Scholar
|
|
6
|
Nurhayati RW, Ojima Y and Taya M: Recent
developments in ex vivo platelet production. Cytotechnology.
68:2211–2221. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Saluk J, Bijak M, Ponczek MB and Wachowicz
B: The formation, metabolism and the evolution of blood platelets.
Postepy Hig Med Dosw (Online). 68:384–391. 2014.(In Polish).
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sim X, Poncz M, Gadue P and French DL:
Understanding platelet generation from megakaryocytes: Implications
for in vitro-derived platelets. Blood. 127:1227–1233. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Stasi R: How to approach thrombocytopenia.
Hematology Am Soc Hematol Educ Program. 2012:191–197. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Gollomp K, Lambert MP and Poncz M: Current
status of blood ‘pharming’: Megakaryoctye transfusions as a source
of platelets. Curr Opin Hematol. 24:565–571. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ellingson KD, Sapiano MRP, Haass KA,
Savinkina AA, Baker ML, Chung KW, Henry RA, Berger JJ, Kuehnert MJ
and Basavaraju SV: Continued decline in blood collection and
transfusion in the United States-2015. Transfusion. 57 (Suppl
2):S1588–S1598. 2017. View Article : Google Scholar
|
|
12
|
Estcourt LJ: Why has demand for platelet
components increased? A review. Transfus Med. 24:260–268. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Baigger A, Blasczyk R and Figueiredo C:
Towards the manufacture of megakaryocytes and platelets for
clinical application. Transfus Med Hemother. 44:165–173. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Whitaker B, Rajbhandary S, Kleinman S,
Harris A and Kamani N: Trends in United States blood collection and
transfusion: Results from the 2013 AABB Blood Collection,
Utilization, and patient blood management survey. Transfusion.
56:2173–2183. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Thon JN, Medvetz DA, Karlsson SM and
Italiano JE Jr: Road blocks in making platelets for transfusion. J
Thromb Haemost. 13 (Suppl 1):S55–S62. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Reems JA, Pineault N and Sun S: In vitro
megakaryocyte production and platelet biogenesis: state of the art.
Transfus Med Rev. 24:33–43. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lambert MP, Sullivan SK, Fuentes R, French
DL and Poncz M: Challenges and promises for the development of
donor-independent platelet transfusions. Blood. 121:3319–3324.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Fujiyama S, Hori N, Sato T, Enosawa S,
Murata M and Kobayashi E: Development of an ex vivo xenogeneic bone
environment producing human platelet-like cells. PLoS One.
15:e02305072020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Brand A: Alloimmune platelet
refractoriness: Incidence declines, unsolved problems persist.
Transfusion. 41:724–726. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Avanzi MP and Mitchell WB: Ex vivo
production of platelets from stem cells. Br J Haematol.
165:237–247. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Sugimoto N and Eto K: Platelet production
from induced pluripotent stem cells. J Thromb Haemost.
15:1717–1727. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Nakamura-Ishizu A, Matsumura T, Stumpf PS,
Umemoto T, Takizawa H, Takihara Y, O'Neil A, Majeed Abba, MacArthur
BD and Suda T: Thrombopoietin metabolically primes hematopoietic
stem cells to megakaryocyte-lineage differentiation. Cell Rep.
25:1772–1785 e6. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Chen Z, Wang Z and Gu Z: Bioinspired and
biomimetic nanomedicines. Acc Chem Res. 52:1255–1264.
2019.PubMed/NCBI
|
|
24
|
Morishima N and Nakanishi K: Proplatelet
formation in megakaryocytes is associated with endoplasmic
reticulum stress. Genes Cells. 21:798–806. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Borst S, Sim X, Poncz M, French DL and
Gadue P: Induced pluripotent stem cell-derived megakaryocytes and
platelets for disease modeling and future clinical applications.
Arterioscler Thromb Vasc Biol. 37:2007–2013. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Smith BW and Murphy GJ: Stem cells,
megakaryocytes, and platelets. Curr Opin Hematol. 21:430–437. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Pineault N, Robert A, Cortin V and Boyer
L: Ex vivo differentiation of cord blood stem cells into
megakaryocytes and platelets. Methods Mol Biol. 946:205–224. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Gertz JM, McLean KC and Bouchard BA:
Endocytosed factor V is trafficked to CD42b+ proplatelet
extensions during differentiation of human umbilical cord
blood-derived megakaryocytes. J Cell Physiol. 233:8691–8700. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
van den Oudenrijn S, von dem Borne AE and
de Haas M: Differences in megakaryocyte expansion potential between
CD34+ stem cells derived from cord blood, peripheral
blood, and bone marrow from adults and children. Exp Hematol.
28:1054–1061. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Nurhayati RW, Ojima Y and Taya M:
BMS-777607 promotes megakaryocytic differentiation and induces
polyploidization in the CHRF-288-11 cells. Hum Cell. 28:65–72.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Six KR, Sicot G, Devloo R, Feys HB, Baruch
D and Compernolle V: A comparison of haematopoietic stem cells from
umbilical cord blood and peripheral blood for platelet production
in a microfluidic device. Vox Sang. 114:330–339. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Choi ES, Nichol JL, Hokom MM, Hornkohl AC
and Hunt P: Platelets generated in vitro from
proplatelet-displaying human megakaryocytes are functional. Blood.
85:402–413. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Veljkovic DK, Rivard GE, Diamandis M,
Blavignac J, Cramer-Borde EM and Hayward CP: Increased expression
of urokinase plasminogen activator in Quebec platelet disorder is
linked to megakaryocyte differentiation. Blood. 113:1535–1542.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Cohen KS, Cheng S, Larson MG, Cupples LA,
McCabe EL, Wang YA, Ngwa JS, Martin RP, Klein RJ, Hashmi B, et al:
Circulating CD34(+) progenitor cell frequency is associated with
clinical and genetic factors. Blood. 121:e50–e56. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Pecci A, Malara A, Badalucco S, Bozzi V,
Torti M, Balduini CL and Balduini A: Megakaryocytes of patients
with MYH9-related thrombocytopenia present an altered proplatelet
formation. Thromb Haemost. 102:90–96. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ivetic N, Nazi I, Karim N, Clare R, Smith
JW, Moore JC, Hope KJ, Kelton JG and Arnold DM: Producing
megakaryocytes from a human peripheral blood source. Transfusion.
56:1066–1074. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Orban M, Goedel A, Haas J, Sandrock-Lang
K, Gartner F, Jung CB, Zieger B, Parrotta E, Kurnik K, Sinnecker D,
et al: Functional comparison of induced pluripotent stem cell- and
blood-derived GPIIbIIIa deficient platelets. PLoS One.
10:e01159782015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Sinnecker D, Goedel A, Laugwitz KL and
Moretti A: Induced pluripotent stem cell-derived cardiomyocytes: A
versatile tool for arrhythmia research. Circ Res. 112:961–968.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Heazlewood SY, Nilsson SK, Cartledge K, Be
CL, Vinson A, Gel M and Haylock DN: Progress in bio-manufacture of
platelets for transfusion. Platelets. 28:649–656. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Feng Q, Shabrani N, Thon JN, Huo H, Thiel
A, Machlus KR, Kim K, Brooks J, Li F, Luo C, et al: Scalable
generation of universal platelets from human induced pluripotent
stem cells. Stem Cell Reports. 3:817–831. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Börger AK, Eicke D, Wolf C, Gras C,
Aufderbeck S, Schulze K, Engels L, Eiz-Vesper B, Schambach A,
Guzman CA, et al: Generation of HLA-Universal iPSC-derived
megakaryocytes and platelets for survival under refractoriness
conditions. Mol Med. 22:274–285. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Gaur M, Kamata T, Wang S, Moran B, Shattil
SJ and Leavitt AD: Megakaryocytes derived from human embryonic stem
cells: A genetically tractable system to study megakaryocytopoiesis
and integrin function. J Thromb Haemost. 4:436–442. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhang L, Liu C, Wang H, Wu D, Su P, Wang
M, Guo J, Zhao S, Dong S, Zhou W, et al: Thrombopoietin knock-in
augments platelet generation from human embryonic stem cells. Stem
Cell Res Ther. 9:1942018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Matsubara Y, Ono Y, Suzuki H, Arai F, Suda
T, Murata M and Ikeda Y: OP9 bone marrow stroma cells differentiate
into megakaryocytes and platelets. PLoS One. 8:e581232013.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ono-Uruga Y, Tozawa K, Horiuchi T, Murata
M, Okamoto S, Ikeda Y, Suda T and Matsubara Y: Human adipose
tissue-derived stromal cells can differentiate into megakaryocytes
and platelets by secreting endogenous thrombopoietin. J Thromb
Haemost. 14:1285–1297. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Tozawa K, Ono-Uruga Y, Yazawa M, Mori T,
Murata M, Okamoto S, Ikeda Y and Matsubara Y: Megakaryocytes and
platelets from a novel human adipose tissue-derived mesenchymal
stem cell line. Blood. 133:633–643. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
McArthur K, Chappaz S and Kile BT:
Apoptosis in megakaryocytes and platelets: The life and death of a
lineage. Blood. 131:605–610. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Guo T, Wang X, Qu Y, Yin Y, Jing T and
Zhang Q: Megakaryopoiesis and platelet production: Insight into
hematopoietic stem cell proliferation and differentiation. Stem
Cell Investig. 2:32015.PubMed/NCBI
|
|
49
|
Pope NJ and Bresnick EH: Differential
coregulator requirements for function of the hematopoietic
transcription factor GATA-1 at endogenous loci. Nucleic Acids Res.
38:2190–2200. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Orkin SH, Shivdasani RA, Fujiwara Y and
McDevitt MA: Transcription factor GATA-1 in megakaryocyte
development. Stem Cells. 16 (Suppl 2):S79–S83. 1998. View Article : Google Scholar
|
|
51
|
Wang X, Crispino JD, Letting DL, Nakazawa
M, Poncz M and Blobel GA: Control of megakaryocyte-specific gene
expression by GATA-1 and FOG-1: Role of Ets transcription factors.
EMBO J. 21:5525–5234. 2002. View Article : Google Scholar
|
|
52
|
Gao Z, Huang Z, Olivey HE, Gurbuxani S,
Crispino JD and Svensson EC: FOG-1-mediated recruitment of NuRD is
required for cell lineage re-enforcement during haematopoiesis.
EMBO J. 29:457–468. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lejon S, Thong SY, Murthy A, AlQarni S,
Murzina NV, Blobel GA, Laue ED and Mackay JP: Insights into
association of the NuRD complex with FOG-1 from the crystal
structure of an RbAp48.FOG-1 complex. J Biol Chem. 286:1196–1203.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Hart A, Melet F, Grossfeld P, Chien K,
Jones C, Tunnacliffe A, Favier R and Bernstein A: Fli-1 is required
for murine vascular and megakaryocytic development and is
hemizygously deleted in patients with thrombocytopenia. Immunity.
13:167–177. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Starck J, Weiss-Gayet M, Gonnet C, Guyot
B, Vicat JM and Morle F: Inducible Fli-1 gene deletion in adult
mice modifies several myeloid lineage commitment decisions and
accelerates proliferation arrest and terminal erythrocytic
differentiation. Blood. 116:4795–4805. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Deutsch VR and Tomer A: Advances in
megakaryocytopoiesis and thrombopoiesis: From bench to bedside. Br
J Haematol. 161:778–793. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Eisbacher M, Holmes ML, Newton A, Hogg PJ,
Khachigian LM, Crossley M and Chong BH: Protein-protein interaction
between Fli-1 and GATA-1 mediates synergistic expression of
megakaryocyte-specific genes through cooperative DNA binding. Mol
Cell Biol. 23:3427–3441. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Vo KK, Jarocha DJ, Lyde RB, Hayes V, Thom
CS, Sullivan SK, French DL and Poncz M: FLI1 level during
megakaryopoiesis affects thrombopoiesis and platelet biology.
Blood. 129:3486–3494. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Okada Y, Nagai R, Matsuura E, Hoshika Y,
Nakata E, Nagura H, Watanabe A, Komatsu N and Doi T: Suppression of
RUNX1 by siRNA in megakaryocytic UT-7/GM cells. Nucleic Acids Symp
Ser (Oxf). 261–262. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Mata J, Curado S, Ephrussi A and Rørth P:
Tribbles coordinates mitosis and morphogenesis in Drosophila by
regulating string/CDC25 proteolysis. Cell. 101:511–522. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Butcher L, Ahluwalia M, Ord T, Johnston J,
Morris RH, Kiss-Toth E, Ord T and Erusalimsky JD: Evidence for a
role of TRIB3 in the regulation of megakaryocytopoiesis. Sci Rep.
7:66842017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Gotoh A, Miyazawa K, Ohyashiki K, Tauchi
T, Boswell HS, Broxmeyer HE and Toyama K: Tyrosine phosphorylation
and activation of focal adhesion kinase (p125FAK) by BCR-ABL
oncoprotein. Exp Hematol. 23:1153–1159. 1995.PubMed/NCBI
|
|
63
|
Gotoh T, Niino Y, Tokuda M, Hatase O,
Nakamura S, Matsuda M and Hattori S: Activation of R-Ras by
Ras-guanine nucleotide-releasing factor. J Biol Chem.
272:18602–18607. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ortiz-Rivero S, Baquero C, Hernandez-Cano
L, Roldan-Etcheverry JJ, Gutierrez-Herrero S, Fernandez-Infante C,
Martin-Granado V, Anguita E, de Pereda JM, Porras A and Guerrero C:
C3G, through its GEF activity, induces megakaryocytic
differentiation and proplatelet formation. Cell Commun Signal.
16:1012018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Sullenbarger B, Bahng JH, Gruner R, Kotov
N and Lasky LC: Prolonged continuous in vitro human platelet
production using three-dimensional scaffolds. Exp Hematol.
37:101–110. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Malara A, Currao M, Gruppi C, Celesti G,
Viarengo G, Buracchi C, Laghi L, Kaplan DL and Balduini A:
Megakaryocytes contribute to the bone marrow-matrix environment by
expressing fibronectin, type IV collagen, and laminin. Stem Cells.
32:926–937. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Abbonante V, Di Buduo CA, Gruppi C, De
Maria C, Spedden E, De Acutis A, Staii C, Raspanti M, Vozzi G,
Kaplan DL, et al: A new path to platelet production through matrix
sensing. Haematologica. 102:1150–1160. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tozzi L, Laurent PA, Di Buduo CA, Mu X,
Massaro A, Bretherton R, Stoppel W, Kaplan DL and Balduini A:
Multi-channel silk sponge mimicking bone marrow vascular niche for
platelet production. Biomaterials. 178:122–133. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Ito Y, Nakamura S, Sugimoto N, Shigemori
T, Kato Y, Ohno M, Sakuma S, Ito K, Kumon H, Hirose H, et al:
Turbulence activates platelet biogenesis to enable clinical scale
ex vivo production. Cell. 174:636–648 e18. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Jiang HJ, Yu Z, Ding N, Yang M, Zhang L,
Fan XM, Zhou Y, Zou Q, Hou J, Zheng J, et al: The role of AGK in
thrombocytopoiesis and possible therapeutic strategies. Blood.
136:119–129. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kaushansky K, Broudy VC, Lin N, Jorgensen
MJ, McCarty J, Fox N, Zucker-Franklin D and Lofton-Day C:
Thrombopoietin, the Mp1 ligand, is essential for full megakaryocyte
development. Proc Natl Acad Sci USA. 92:3234–3238. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Panuganti S, Schlinker AC, Lindholm PF,
Papoutsakis ET and Miller WM: Three-stage ex vivo expansion of
high-ploidy megakaryocytic cells: Toward large-scale platelet
production. Tissue Eng Part A. 19:998–1014. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Chang Y, Bluteau D, Debili N and
Vainchenker W: From hematopoietic stem cells to platelets. J Thromb
Haemost. 5 (Suppl 1):S318–S327. 2007. View Article : Google Scholar
|
|
74
|
Behrens K and Alexander WS: Cytokine
control of megakaryopoiesis. Growth Factors. 36:89–103. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Fielder PJ, Gurney AL, Stefanich E, Marian
M, Moore MW, Carver-Moore K and de Sauvage FJ: Regulation of
thrombopoietin levels by c-mpl-mediated binding to platelets.
Blood. 87:2154–2161. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
He X, Chen Z, Jiang Y, Qiu X and Zhao X:
Different mutations of the human c-mpl gene indicate distinct
haematopoietic diseases. J Hematol Oncol. 6:112013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Di Buduo CA, Currao M, Pecci A, Kaplan DL,
Balduini CL and Balduini A: Revealing eltrombopag's promotion of
human megakaryopoiesis through AKT/ERK-dependent pathway
activation. Haematologica. 101:1479–1488. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wong RSM, Saleh MN, Khelif A, Salama A,
Portella MSO, Burgess P and Bussel JB: Safety and efficacy of
long-term treatment of chronic/persistent ITP with eltrombopag:
Final results of the EXTEND study. Blood. 130:2527–2536. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Gill H, Leung GM, Lopes D and Kwong YL:
The thrombopoietin mimetics eltrombopag and romiplostim in the
treatment of refractory aplastic anaemia. Br J Haematol.
176:991–994. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Fischer JC and Uhrberg M: Prevention of
leukemia relapse by donor activating KIR2DS1. N Engl J Med.
367:2054–2055. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Al-Samkari H, Grace RF and Kuter DJ: The
role of romiplostim for pediatric patients with immune
thrombocytopenia. Ther Adv Hematol. 11:20406207209129922020.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Al-Samkari H, Parnes AD, Goodarzi K,
Weitzman JI, Connors JM and Kuter DJ: A multicenter study of
romiplostim for chemotherapy-induced thrombocytopenia in solid
tumors and hematologic malignancies. Haematologica. Jun
4–2020.(Epub ahead of print). doi.org/10.3324/haematol.2020.251900.
View Article : Google Scholar
|
|
83
|
Kuter DJ, Arnold DM, Rodeghiero F,
Janssens A, Selleslag D, Bird R, Newland A, Mayer J, Wang K and
Olie R: Safety and efficacy of self-administered romiplostim in
patients with immune thrombocytopenia: Results of an integrated
database of five clinical trials. Am J Hematol. 95:643–651. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Hosokawa K, Yamazaki H, Tanabe M, Imi T,
Sugimori N and Nakao S: High-dose romiplostim accelerates
hematologic recovery in patients with aplastic anemia refractory to
eltrombopag. Leukemia. Jul 3–2020.(Epub ahead of print). doi
org/10.1038/s41375-020-0950-6.
|