|
1
|
Cucchiarini M, de Girolamo L, Filardo G,
Oliveira JM, Orth P, Pape D and Reboul P: Basic science of
osteoarthritis. J Exp Orthop. 3:222016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Hügle T and Geurts J: What drives
osteoarthritis?-synovial versus subchondral bone pathology.
Rheumatology (Oxford). 56:1461–1471. 2017.PubMed/NCBI
|
|
3
|
Nelson AE: Osteoarthritis year in review
2017: Clinical. Osteoarthritis Cartilage. 26:319–325. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Xia B, Di Chen, Zhang J, Hu S, Jin H and
Tong P: Osteoarthritis pathogenesis: A review of molecular
mechanisms. Calcif Tissue Int. 95:495–505. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Chen D, Shen J, Zhao W, Wang T, Han L,
Hamilton JL and Im HJ: Osteoarthritis: Toward a comprehensive
understanding of pathological mechanism. Bone Res. 5:160442017.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Vargas Negrín F, Medina Abellán MD,
Hermosa Hernán JC and de Felipe Medina R: Treatment of patients
with osteoarthritis. Aten Primaria. 46 (Suppl 1):39–61. 2014.(In
Spanish). View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sun MM, Beier F and Pest MA: Recent
developments in emerging therapeutic targets of osteoarthritis.
Curr Opin Rheumatol. 29:96–102. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Chevalier X, Eymard F and Richette P:
Biologic agents in osteoarthritis: Hopes and disappointments. Nat
Rev Rheumatol. 9:400–410. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Mobasheri A and Batt M: An update on the
pathophysiology of osteoarthritis. Ann Phys Rehabil Med.
59:333–339. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wu J, Liu W, Bemis A, Wang E, Qiu Y,
Morris EA, Flannery CR and Yang Z: Comparative proteomic
characterization of articular cartilage tissue from normal donors
and patients with osteoarthritis. Arthritis Rheum. 56:3675–3684.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Boileau C, Martel-Pelletier J, Fahmi H,
Mineau F, Boily M and Pelletier JP: The peroxisome
proliferator-activated receptor gamma agonist pioglitazone reduces
the development of cartilage lesions in an experimental dog model
of osteoarthritis: In vivo protective effects mediated through the
inhibition of key signaling and catabolic pathways. Arthritis
Rheum. 56:2288–2298. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Monemdjou R, Vasheghani F, Fahmi H, Perez
G, Blati M, Taniguchi N, Lotz M, St-Arnaud R, Pelletier JP,
Martel-Pelletier J, et al: Association of cartilage-specific
deletion of peroxisome proliferator-activated receptor γ with
abnormal endochondral ossification and impaired cartilage growth
and development in a murine model. Arthritis Rheum. 64:1551–1561.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Guan Y: Peroxisome proliferator-activated
receptor family and its relationship to renal complications of the
metabolic syndrome. J Am Soc Nephrol. 15:2801–2815. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Dubois V, Eeckhoute J, Lefebvre P and
Staels B: Distinct but complementary contributions of PPAR isotypes
to energy homeostasis. J Clin Invest. 127:1202–1214. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
François M, Richette P, Tsagris L, Fitting
C, Lemay C, Benallaoua M, Tahiri K and Corvol MT: Activation of the
peroxisome proliferator-activated receptor alpha pathway
potentiates interleukin-1 receptor antagonist production in
cytokine-treated chondrocytes. Arthritis Rheum. 54:1233–1245. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kono K, Kamijo Y, Hora K, Takahashi K,
Higuchi M, Kiyosawa K, Shigematsu H, Gonzalez FJ and Aoyama T:
PPAR{alpha} attenuates the proinflammatory response in activated
mesangial cells. Am J Physiol Renal Physiol. 296:F328–F336. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Sha W, Thompson K, South J, Baron M and
Leask A: Loss of PPARγ expression by fibroblasts enhances dermal
wound closure. Fibrogenesis Tissue Repair. 5:52012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Majdalawieh A and Ro HS: PPARgamma1 and
LXRalpha face a new regulator of macrophage cholesterol homeostasis
and inflammatory responsiveness, AEBP1. Nucl Recept Signal.
8:e0042010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Tanaka T, Yamamoto J, Iwasaki S, Asaba H,
Hamura H, Ikeda Y, Watanabe M, Magoori K, Ioka RX, Tachibana K, et
al: Activation of peroxisome proliferator-activated receptor delta
induces fatty acid beta-oxidation in skeletal muscle and attenuates
metabolic syndrome. Proc Natl Acad Sci USA. 100:15924–15929. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Tyagi S, Gupta P, Saini AS, Kaushal C and
Sharma S: The peroxisome proliferator-activated receptor: A family
of nuclear receptors role in various diseases. J Adv Pharm Technol
Res. 2:236–240. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Issemann I and Green S: Activation of a
member of the steroid hormone receptor superfamily by peroxisome
proliferators. Nature. 347:645–650. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Michalik L, Auwerx J, Berger JP,
Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T,
Lazar MA, O'Rahilly S, et al: International Union of Pharmacology.
LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev.
58:726–741. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zoete V, Grosdidier A and Michielin O:
Peroxisome proliferator-activated receptor structures: Ligand
specificity, molecular switch and interactions with regulators.
Biochim Biophys Acta. 1771:915–925. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Guan Y and Breyer MD: Peroxisome
proliferator-activated receptors (PPARs): Novel therapeutic targets
in renal disease. Kidney Int. 60:14–30. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Michalik L and Wahli W: Involvement of
PPAR nuclear receptors in tissue injury and wound repair. J Clin
Invest. 116:598–606. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Bougarne N, Paumelle R, Caron S, Hennuyer
N, Mansouri R, Gervois P, Staels B, Haegeman G and De Bosscher K:
PPARalpha blocks glucocorticoid receptor alpha-mediated
transactivation but cooperates with the activated glucocorticoid
receptor alpha for transrepression on NF-kappaB. Proc Natl Acad Sci
USA. 106:7397–7402. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Qi C, Zhu Y and Reddy JK: Peroxisome
proliferator-activated receptors, coactivators, and downstream
targets. Cell Biochem Biophys. 32:187–204. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Yu S and Reddy JK: Transcription
coactivators for peroxisome proliferator-activated receptors.
Biochim Biophys Acta. 1771:936–951. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Balakumar P, Rose M, Ganti SS, Krishan P
and Singh M: PPAR dual agonists: Are they opening Pandora's Box?
Pharmacol Res. 56:91–98. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Berger J and Moller DE: The mechanisms of
action of PPARs. Annu Rev Med. 53:409–435. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Oliveira AC, Bertollo CM, Rocha LT,
Nascimento EB Jr, Costa KA and Coelho MM: Antinociceptive and
antiedematogenic activities of fenofibrate, an agonist of PPAR
alpha, and pioglitazone, an agonist of PPAR gamma. Eur J Pharmacol.
561:194–201. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kytikova OY, Perelman JM, Novgorodtseva
TP, Denisenko YK, Kolosov VP, Antonyuk MV and Gvozdenko TA:
Peroxisome Proliferator-Activated Receptors as a Therapeutic Target
in Asthma. PPAR Res. 2020:89069682020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Peraza MA, Burdick AD, Marin HE, Gonzalez
FJ and Peters JM: The toxicology of ligands for peroxisome
proliferator-activated receptors (PPAR). Toxicol Sci. 90:269–295.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ammazzalorso A, De Filippis B, Giampietro
L and Amoroso R: Blocking the peroxisome proliferator-activated
receptor (PPAR): An overview. ChemMedChem. 8:1609–1616.
2013.PubMed/NCBI
|
|
35
|
Ferré P: The biology of peroxisome
proliferator-activated receptors: Relationship with lipid
metabolism and insulin sensitivity. Diabetes. 53 (Suppl 1):S43–S50.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Racke MK and Drew PD: PPARs in
Neuroinflammation. PPAR Res. 2008:6383562008. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Terauchi Y and Kadowaki T: PPAR and
diabetes. Nihon Rinsho. 63:623–629. 2005.(In Japanese). PubMed/NCBI
|
|
38
|
Fajas L, Debril MB and Auwerx J:
Peroxisome proliferator-activated receptor-gamma: From adipogenesis
to carcinogenesis. J Mol Endocrinol. 27:1–9. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Gross B, Pawlak M, Lefebvre P and Staels
B: PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat Rev
Endocrinol. 13:36–49. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Jones AB: Peroxisome
proliferator-activated receptor (PPAR) modulators: Diabetes and
beyond. Med Res Rev. 21:540–552. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Gurnell M, Savage DB, Chatterjee VK and
O'Rahilly S: The metabolic syndrome: Peroxisome
proliferator-activated receptor gamma and its therapeutic
modulation. J Clin Endocrinol Metab. 88:2412–2421. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Korbecki J, Bobiński R and Dutka M:
Self-regulation of the inflammatory response by peroxisome
proliferator-activated receptors. Inflamm Res. 68:443–458. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hou Y, Moreau F and Chadee K: PPARγ is an
E3 ligase that induces the degradation of NFκB/p65. Nat Commun.
3:13002012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Scirpo R, Fiorotto R, Villani A, Amenduni
M, Spirli C and Strazzabosco M: Stimulation of nuclear receptor
peroxisome proliferator-activated receptor-γ limits NF-κB-dependent
inflammation in mouse cystic fibrosis biliary epithelium.
Hepatology. 62:1551–1562. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wang S, Awad KS, Elinoff JM, Dougherty EJ,
Ferreyra GA, Wang JY, Cai R, Sun J, Ptasinska A and Danner RL: G
protein-coupled receptor 40 (GPR40) and peroxisome
proliferator-activated receptor γ (PPARγ): An Integrated
Two-Receptor Signaling Pathway. J Biol Chem. 290:19544–19557. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Badr MZ: PPAR research: Successful
launching and promising future. PPAR Res. 2009:5435842009.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Colin C, Salamone S, Grillier-Vuissoz I,
Boisbrun M, Kuntz S, Lecomte J, Chapleur Y and Flament S: New
troglitazone derivatives devoid of PPARγ agonist activity display
an increased antiproliferative effect in both hormone-dependent and
hormone-independent breast cancer cell lines. Breast Cancer Res
Treat. 124:101–110. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Grommes C, Landreth GE and Heneka MT:
Antineoplastic effects of peroxisome proliferator-activated
receptor gamma agonists. Lancet Oncol. 5:419–429. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Fu J, Gaetani S, Oveisi F, Lo Verme J,
Serrano A, Rodríguez De Fonseca F, Rosengarth A, Luecke H, Di
Giacomo B, Tarzia G, et al: Oleylethanolamide regulates feeding and
body weight through activation of the nuclear receptor PPAR-alpha.
Nature. 425:90–93. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Michalik L, Desvergne B, Tan NS,
Basu-Modak S, Escher P, Rieusset J, Peters JM, Kaya G, Gonzalez FJ,
Zakany J, et al: Impaired skin wound healing in peroxisome
proliferator-activated receptor (PPAR)alpha and PPARbeta mutant
mice. J Cell Biol. 154:799–814. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Lee HY, Gao X, Barrasa MI, Li H, Elmes RR,
Peters LL and Lodish HF: PPAR-α and glucocorticoid receptor
synergize to promote erythroid progenitor self-renewal. Nature.
522:474–477. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lee JM, Wagner M, Xiao R, Kim KH, Feng D,
Lazar MA and Moore DD: Nutrient-sensing nuclear receptors
coordinate autophagy. Nature. 516:112–115. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Blanco FJ, Rego I and Ruiz-Romero C: The
role of mitochondria in osteoarthritis. Nat Rev Rheumatol.
7:161–169. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Gavriilidis C, Miwa S, von Zglinicki T,
Taylor RW and Young DA: Mitochondrial dysfunction in osteoarthritis
is associated with down-regulation of superoxide dismutase 2.
Arthritis Rheum. 65:378–387. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Clockaerts S, Bastiaansen-Jenniskens YM,
Feijt C, Verhaar JA, Somville J, De Clerck LS and Van Osch GJ:
Peroxisome proliferator activated receptor alpha activation
decreases inflammatory and destructive responses in osteoarthritic
cartilage. Osteoarthritis Cartilage. 19:895–902. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ratneswaran A, LeBlanc EA, Walser E, Welch
I, Mort JS, Borradaile N and Beier F: Peroxisome
proliferator-activated receptor δ promotes the progression of
posttraumatic osteoarthritis in a mouse model. Arthritis Rheumatol.
67:454–464. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Vasheghani F, Monemdjou R, Fahmi H, Zhang
Y, Perez G, Blati M, St-Arnaud R, Pelletier JP, Beier F,
Martel-Pelletier J, et al: Adult cartilage-specific peroxisome
proliferator-activated receptor gamma knockout mice exhibit the
spontaneous osteoarthritis phenotype. Am J Pathol. 182:1099–1106.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Vasheghani F, Zhang Y, Li YH, Blati M,
Fahmi H, Lussier B, Roughley P, Lagares D, Endisha H, Saffar B, et
al: PPARγ deficiency results in severe, accelerated osteoarthritis
associated with aberrant mTOR signalling in the articular
cartilage. Ann Rheum Dis. 74:569–578. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wang Y, Zhao X, Lotz M, Terkeltaub R and
Liu-Bryan R: Mitochondrial biogenesis is impaired in osteoarthritis
chondrocytes but reversible via peroxisome proliferator-activated
receptor γ coactivator 1α. Arthritis Rheumatol. 67:2141–2153. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Cordani N, Pisa V, Pozzi L, Sciorati C and
Clementi E: Nitric oxide controls fat deposition in dystrophic
skeletal muscle by regulating fibro-adipogenic precursor
differentiation. Stem Cells. 32:874–885. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Reggio A, Spada F, Rosina M, Massacci G,
Zuccotti A, Fuoco C, Gargioli C, Castagnoli L and Cesareni G: The
immunosuppressant drug azathioprine restrains adipogenesis of
muscle Fibro/Adipogenic Progenitors from dystrophic mice by
affecting AKT signaling. Sci Rep. 9:43602019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Cerquone Perpetuini A, Giuliani G, Reggio
A, Cerretani M, Santoriello M, Stefanelli R, Palma A, Vumbaca S,
Harper S, Castagnoli L, et al: Janus effect of glucocorticoids on
differentiation of muscle fibro/adipogenic progenitors. Sci Rep.
10:53632020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Reggio A, Rosina M, Palma A, Cerquone
Perpetuini A, Petrilli LL, Gargioli C, Fuoco C, Micarelli E,
Giuliani G, Cerretani M, et al: Adipogenesis of skeletal muscle
fibro/adipogenic progenitors is affected by the
WNT5a/GSK3/β-catenin axis. Cell Death Differ. 27:2921–2941. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Boileau C, Martel-Pelletier J, Fahmi H,
Mineau F, Boily M and Pelletier JP: The peroxisome
proliferator-activated receptor gamma agonist pioglitazone reduces
the development of cartilage lesions in an experimental dog model
of osteoarthritis: In vivo protective effects mediated through the
inhibition of key signaling and catabolic pathways. Arthritis
Rheum. 56:2288–2298. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Fahmi H, Martel-Pelletier J, Pelletier JP
and Kapoor M: Peroxisome proliferator-activated receptor gamma in
osteoarthritis. Mod Rheumatol. 21:1–9. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Giaginis C, Giagini A and Theocharis S:
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma)
ligands as potential therapeutic agents to treat arthritis.
Pharmacol Res. 60:160–169. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hellio Le Graverand-Gastineau MP: OA
clinical trials: current targets and trials for OA. Choosing
molecular targets: what have we learned and where we are headed?
Osteoarthritis Cartilage. 17:1393–1401. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Malemud CJ: Biologic basis of
osteoarthritis: State of the evidence. Curr Opin Rheumatol.
27:289–294. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kobayashi T, Notoya K, Naito T, Unno S,
Nakamura A, Martel-Pelletier J and Pelletier JP: Pioglitazone, a
peroxisome proliferator-activated receptor gamma agonist, reduces
the progression of experimental osteoarthritis in guinea pigs.
Arthritis Rheum. 52:479–487. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Afif H, Benderdour M, Mfuna-Endam L,
Martel-Pelletier J, Pelletier JP, Duval N and Fahmi H: Peroxisome
proliferator-activated receptor gamma1 expression is diminished in
human osteoarthritic cartilage and is downregulated by
interleukin-1beta in articular chondrocytes. Arthritis Res Ther.
9:R312007. View
Article : Google Scholar : PubMed/NCBI
|
|
71
|
Qu Y, Zhou L and Wang C: Mangiferin
inhibits IL-1β-induced inflammatory response by activating PPAR-γ
in human osteoarthritis chondrocytes. Inflammation. 40:52–57. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wang K, Han L, Zhu Y, Liu Y, Wang J and
Xue C: Antarctic Krill Oil improves articular cartilage
degeneration via activating chondrocyte autophagy and inhibiting
apoptosis in osteoarthritis mice. J Funct Foods. 46:413–422. 2018.
View Article : Google Scholar
|
|
73
|
Wang JS, Xiao WW, Zhong YS, Li XD, Du SX,
Xie P, Zheng GZ and Han JM: Galectin-3 deficiency protects
lipopolysaccharide-induced chondrocytes injury via regulation of
TLR4 and PPAR-γ-mediated NF-κB signaling pathway. J Cell Biochem.
120:10195–10204. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Jingbo W, Aimin C, Qi W, Xin L and
Huaining L: Betulinic acid inhibits IL-1β-induced inflammation by
activating PPAR-γ in human osteoarthritis chondrocytes. Int
Immunopharmacol. 29:687–692. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kang X, Yang Z, Sheng J, Liu JB, Xie QY,
Zheng W and Chen K: Oleanolic acid prevents cartilage degeneration
in diabetic mice via PPARγ associated mitochondrial stabilization.
Biochem Biophys Res Commun. 490:834–840. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Karsdal MA, Michaelis M, Ladel C, Siebuhr
AS, Bihlet AR, Andersen JR, Guehring H, Christiansen C, Bay-Jensen
AC and Kraus VB: Disease-modifying treatments for osteoarthritis
(DMOADs) of the knee and hip: Lessons learned from failures and
opportunities for the future. Osteoarthritis Cartilage.
24:2013–2021. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Vitale ND, Vandenbulcke F, Chisari E,
Iacono F, Lovato L, Di Matteo B and Kon E: Innovative regenerative
medicine in the management of knee OA: The role of Autologous
Protein Solution. J Clin Orthop Trauma. 10:49–52. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Stienstra R, Mandard S, Patsouris D, Maass
C, Kersten S and Müller M: Peroxisome proliferator-activated
receptor alpha protects against obesity-induced hepatic
inflammation. Endocrinology. 148:2753–2763. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhou JL, Liu SQ, Qiu B, Hu QJ, Ming JH and
Peng H: The protective effect of sodium hyaluronate on the
cartilage of rabbit osteoarthritis by inhibiting peroxisome
proliferator-activated receptor-gamma messenger RNA expression.
Yonsei Med J. 50:832–837. 2009. View Article : Google Scholar : PubMed/NCBI
|