Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
April-2021 Volume 23 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2021 Volume 23 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Prenatal ethanol exposure impairs the formation of radial glial fibers and promotes the transformation of GFAPδ‑positive radial glial cells into astrocytes

  • Authors:
    • Yu Li
    • Li-Na Zhang
    • Li Chong
    • Yue Liu
    • Feng-Yu Xi
    • Hong Zhang
    • Xiang-Long Duan
  • View Affiliations / Copyright

    Affiliations: Department of Infectious Diseases, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China, The Third Department of Neurology, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China, Department of Clinical Laboratory, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China, Shaanxi Center for Models of Clinical Medicine in International Cooperation of Science and Technology, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 274
    |
    Published online on: February 9, 2021
       https://doi.org/10.3892/mmr.2021.11913
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

During embryonic cortical development, radial glial cells (RGCs) are the major source of neurons, and these also serve as a supportive scaffold to guide neuronal migration. Similar to Vimentin, glial fibrillary acidic protein (GFAP) is one of the major intermediate filament proteins present in glial cells. Previous studies confirmed that prenatal ethanol exposure (PEE) significantly affected the levels of GFAP and increased the disassembly of radial glial fibers. GFAPδ is a variant of GFAP that is specifically expressed in RGCs; however, to the best of our knowledge, there are no reports regarding how PEE influences its expression during cortical development. In the present study, the effects of PEE on the expression and distribution of GFAPδ during early cortical development were assessed. It was found that PEE significantly decreased the expression levels of GFAP and GFAPδ. Using double immunostaining, GFAPδ was identified to be specifically expressed in apical and basal RGCs, and was co‑localized with other intermediate filament proteins, such as GFAP, Nestin and Vimentin. Additionally, PEE significantly affected the morphology of radial glial fibers and altered the behavior of RGCs. The loss of GFAPδ accelerated the transformation of RGCs into astrocytes. Using co‑immunostaining with Ki67 or phospho‑histone H3, GFAPδ+ cells were observed to be proliferative or mitotic cells, and ethanol treatment significantly decreased the proliferative or mitotic activities of GFAPδ+ RGCs. Taken together, the results suggested that PEE altered the expression patterns of GFAPδ and impaired the development of radial glial fibers and RGC behavior. The results of the present study provided evidence that GFAPδ may be a promising target to rescue the damage induced by PEE.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Popova S, Lange S, Probst C, Gmel G and Rehm J: Estimation of national, regional, and global prevalence of alcohol use during pregnancy and fetal alcohol syndrome: A systematic review and meta-analysis. Lancet Global health. 5:e290–e299. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Popova S, Lange S, Probst C, Parunashvili N and Rehm J: Prevalence of alcohol consumption during pregnancy and Fetal Alcohol Spectrum Disorders among the general and Aboriginal populations in Canada and the United States. Eur J Med Genet. 60:32–48. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Riley EP, Infante MA and Warren KR: Fetal alcohol spectrum disorders: An overview. Neuropsychol Rev. 21:73–80. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Wilhoit LF, Scott DA and Simecka BA: Fetal alcohol spectrum disorders: Characteristics, complications, and treatment. Community Ment Health J. 53:711–718. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Petrelli B, Weinberg J and Hicks GG: Effects of prenatal alcohol exposure (PAE): Insights into FASD using mouse models of PAE. Biochem Cell Biol. 96:131–147. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Davis-Anderson KL, Wesseling H, Siebert LM, Lunde-Young ER, Naik VD, Steen H and Ramadoss J: Fetal regional brain protein signature in FASD rat model. Reprod Toxicol. 76:84–92. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Creeley CE, Dikranian KT, Johnson SA, Farber NB and Olney JW: Alcohol-induced apoptosis of oligodendrocytes in the fetal macaque brain. Acta Neuropathol Commun. 1:232013. View Article : Google Scholar : PubMed/NCBI

8 

Farber NB, Creeley CE and Olney JW: Alcohol-induced neuroapoptosis in the fetal macaque brain. Neurobiol Dis. 40:200–206. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Gerlai R: Embryonic alcohol exposure: Towards the development of a zebrafish model of fetal alcohol spectrum disorders. Dev Psychobiol. 57:787–798. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Flentke GR and Smith SM: The avian embryo as a model for fetal alcohol spectrum disorder. Biochem Cell Biol. 96:98–106. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Popova S, Lange S, Probst C, Gmel G and Rehm J: Global prevalence of alcohol use and binge drinking during pregnancy, and fetal alcohol spectrum disorder. Biochem Cell Biol. 96:237–240. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Cheng HG, Deng F, Xiong W and Phillips MR: Prevalence of alcohol use disorders in mainland China: A systematic review. Addiction. 110:761–774. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Wang YY and D'Amato RC: Understanding fetal alcohol spectrum disorders in China. J Pediatr Neuropsychol. 3:53–60. 2017. View Article : Google Scholar

14 

Clarren SK, Alvord EC Jr, Sumi SM, Streissguth AP and Smith DW: Brain malformations related to prenatal exposure to ethanol. J Pediatr. 92:64–67. 1978. View Article : Google Scholar : PubMed/NCBI

15 

Miller MW: Migration of cortical neurons is altered by gestational exposure to ethanol. Alcohol Clin Exp Res. 17:304–314. 1993. View Article : Google Scholar : PubMed/NCBI

16 

Lotfullina N and Khazipov R: Ethanol and the developing brain: Inhibition of neuronal activity and neuroapoptosis. Neuroscientist. 24:130–141. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Sowell ER, Mattson SN, Kan E, Thompson PM, Riley EP and Toga AW: Abnormal cortical thickness and brain-behavior correlation patterns in individuals with heavy prenatal alcohol exposure. Cereb Cortex. 18:136–144. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Zhou D, Lebel C, Lepage C, Rasmussen C, Evans A, Wyper K, Pei J, Andrew G, Massey A, Massey D and Beaulieu C: Developmental cortical thinning in fetal alcohol spectrum disorders. NeuroImage. 58:16–25. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Kang W, Wong LC, Shi SH and Hébert JM: The transition from radial glial to intermediate progenitor cell is inhibited by FGF signaling during corticogenesis. J Neurosci. 29:14571–14580. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Segklia A, Seuntjens E, Elkouris M, Tsalavos S, Stappers E, Mitsiadis TA, Huylebroeck D, Remboutsika E and Graf D: Bmp7 regulates the survival, proliferation, and neurogenic properties of neural progenitor cells during corticogenesis in the mouse. PLoS One. 7:e340882012. View Article : Google Scholar : PubMed/NCBI

21 

Choe Y, Huynh T and Pleasure SJ: Migration of oligodendrocyte progenitor cells is controlled by transforming growth factor β family proteins during corticogenesis. J Neurosci. 34:14973–14983. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Tiberi L, Vanderhaeghen P and van den Ameele J: Cortical neurogenesis and morphogens: Diversity of cues, sources and functions. Curr Opin Cell Biol. 24:269–276. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Bengoa-Vergniory N and Kypta RM: Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cell Mol Life Sci. 72:4157–4172. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Inestrosa NC and Varela-Nallar L: Wnt signalling in neuronal differentiation and development. Cell Tissue Res. 359:215–223. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Razavi MJ, Zhang T, Chen H, Li Y, Platt S, Zhao Y, Guo L, Hu X, Wang X and Liu T: Radial structure scaffolds convolution patterns of developing cerebral cortex. Front Comput Neurosci. 11:762017. View Article : Google Scholar : PubMed/NCBI

26 

Yamamoto H, Mandai K, Konno D, Maruo T, Matsuzaki F and Takai Y: Impairment of radial glial scaffold-dependent neuronal migration and formation of double cortex by genetic ablation of afadin. Brain Res. 1620:139–152. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Falk S and Götz M: Glial control of neurogenesis. Curr Opin Neurobiol. 47:188–195. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Yuzwa SA and Miller FD: Deciphering cell-cell communication in the developing mammalian brain. Neurogenesis (Austin). 4:e12864252017. View Article : Google Scholar : PubMed/NCBI

29 

Miller MW and Robertson S: Prenatal exposure to ethanol alters the postnatal development and transformation of radial glia to astrocytes in the cortex. J Comp Neurol. 337:253–266. 1993. View Article : Google Scholar : PubMed/NCBI

30 

Rubert G, Miñana R, Pascual M and Guerri C: Ethanol exposure during embryogenesis decreases the radial glial progenitorpool and affects the generation of neurons and astrocytes. J Neurosci Res. 84:483–496. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Vallés S, Pitarch J, Renau-Piqueras J and Guerri C: Ethanol exposure affects glial fibrillary acidic protein gene expression and transcription during rat brain development. J Neurochem. 69:2484–2493. 1997. View Article : Google Scholar : PubMed/NCBI

32 

Nash R, Krishnamoorthy M, Jenkins A and Csete M: Human embryonic stem cell model of ethanol-mediated early developmental toxicity. Exp Neurol. 234:127–135. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Johansson PA, Cappello S and Götz M: Stem cells niches during development-lessons from the cerebral cortex. Curr Opin Neurobiol. 20:400–407. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Götz M, Hartfuss E and Malatesta P: Radial glial cells as neuronal precursors: A new perspective on the correlation of morphology and lineage restriction in the developing cerebral cortex of mice. Brain Res Bull. 57:777–788. 2002. View Article : Google Scholar : PubMed/NCBI

35 

Malatesta P, Appolloni I and Calzolari F: Radial glia and neural stem cells. Cell Tissue Res. 331:165–178. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Jinnou H, Sawada M, Kawase K, Kaneko N, Herranz-Pérez V, Miyamoto T, Kawaue T, Miyata T, Tabata Y, Akaike T, et al: Radial glial fibers promote neuronal migration and functional recovery after neonatal brain injury. Cell Stem Cell. 22:128–137.e9. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Nowakowski TJ, Pollen AA, Sandoval-Espinosa C and Kriegstein AR: Transformation of the radial glia scaffold demarcates two stages of human cerebral cortex development. Neuron. 91:1219–1227. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Barry DS, Pakan JM and McDermott KW: Radial glial cells: Key organisers in CNS development. Int J Biochem Cell Biol. 46:76–79. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Garcia AD, Doan NB, Imura T, Bush TG and Sofroniew MV: GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci. 7:1233–1241. 2004. View Article : Google Scholar : PubMed/NCBI

40 

Johnson K, Barragan J, Bashiruddin S, Smith CJ, Tyrrell C, Parsons MJ, Doris R, Kucenas S, Downes GB, Velez CM, et al: Gfap-positive radial glial cells are an essential progenitor population for later-born neurons and glia in the zebrafish spinal cord. Glia. 64:1170–1189. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Middeldorp J, Boer K, Sluijs JA, De Filippis L, Encha-Razavi F, Vescovi AL, Swaab DF, Aronica E and Hol EM: GFAPdelta in radial glia and subventricular zone progenitors in the developing human cortex. Development. 137:313–321. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Gotoh H, Nomura T and Ono K: Glycogen serves as an energy source that maintains astrocyte cell proliferation in the neonatal telencephalon. J Cereb Blood Flow Metab. 37:2294–2307. 2017. View Article : Google Scholar : PubMed/NCBI

43 

National Research Council, . Guide for the Care and Use of Laboratory Animals. 8th edition. The National Academies Press; Washington, DC: 2011

44 

Parnell SE, Chen SY, Charness ME, Hodge CW, Dehart DB and Sulik KK: Concurrent dietary administration of D-SAL and ethanol diminishes ethanol's teratogenesis. Alcohol Clin Exp Res. 31:2059–2064. 2007. View Article : Google Scholar : PubMed/NCBI

45 

Parnell SE, Dehart DB, Wills TA, Chen SY, Hodge CW, Besheer J, Waage-Baudet HG, Charness ME and Sulik KK: Maternal oral intake mouse model for fetal alcohol spectrum disorders: Ocular defects as a measure of effect. Alcohol Clin Exp Res. 30:1791–1798. 2006. View Article : Google Scholar : PubMed/NCBI

46 

Dunn KW, Kamocka MM and McDonald JH: A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol. 300:C723–C742. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Pekny M and Pekna M: Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol. 204:428–437. 2004. View Article : Google Scholar : PubMed/NCBI

48 

Raponi E, Agenes F, Delphin C, Assard N, Baudier J, Legraverend C and Deloulme JC: S100B expression defines a state in which GFAP-expressing cells lose their neural stem cell potential and acquire a more mature developmental stage. Glia. 55:165–177. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Hutton SR and Pevny LH: SOX2 expression levels distinguish between neural progenitor populations of the developing dorsal telencephalon. Dev Biol. 352:40–47. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Kamachi Y and Kondoh H: Sox proteins: Regulators of cell fate specification and differentiation. Development. 140:4129–4144. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Bani-Yaghoub M, Tremblay RG, Lei JX, Zhang D, Zurakowski B, Sandhu JK, Smith B, Ribecco-Lutkiewicz M, Kennedy J, Walker PR and Sikorska M: Role of Sox2 in the development of the mouse neocortex. Dev Biol. 295:52–66. 2006. View Article : Google Scholar : PubMed/NCBI

52 

Ferri A, Favaro R, Beccari L, Bertolini J, Mercurio S, Nieto-Lopez F, Verzeroli C, La Regina F, De Pietri Tonelli D, Ottolenghi S, et al: Sox2 is required for embryonic development of the ventral telencephalon through the activation of the ventral determinants Nkx2.1 and Shh. Development. 140:1250–1261. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Hagey DW and Muhr J: Sox2 acts in a dose-dependent fashion to regulate proliferation of cortical progenitors. Cell Rep. 9:1908–1920. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Wang S, Chandler-Militello D, Lu G, Roy NS, Zielke A, Auvergne R, Stanwood N, Geschwind D, Coppola G, Nicolis SK, et al: Prospective identification, isolation, and profiling of a telomerase-expressing subpopulation of human neural stem cells, using sox2 enhancer-directed fluorescence-activated cell sorting. J Neurosci. 30:14635–14648. 2010. View Article : Google Scholar : PubMed/NCBI

55 

Mamber C, Kamphuis W, Haring NL, Peprah N, Middeldorp J and Hol EM: GFAPδ expression in glia of the developmental and adolescent mouse brain. PLoS One. 7:e526592012. View Article : Google Scholar : PubMed/NCBI

56 

Kamphuis W, Mamber C, Moeton M, Kooijman L, Sluijs JA, Jansen AH, Verveer M, de Groot LR, Smith VD, Rangarajan S, et al: GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease. PLoS One. 7:e428232012. View Article : Google Scholar : PubMed/NCBI

57 

Yang Z and Wang KK: Glial fibrillary acidic protein: From intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 38:364–374. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Howard BM, Zhicheng M, Filipovic R, Moore AR, Antic SD and Zecevic N: Radial glia cells in the developing human brain. Neuroscientist. 14:459–473. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Sullivan SM: GFAP variants in health and disease: Stars of the brain… and gut. J Neurochem. 130:729–732. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Zalfa C, Grasselli C, Santilli G, Ferrari D, Lamorte G, Vescovi AL and De Filippis L: GFAP delta as divergent marker of human glial progenitors. J Stem Cell Res Ther. 8:92018. View Article : Google Scholar

61 

Rezaie P, Ulfig N and Male D: Distribution and morphology of GFAP-positive astrocytes in the human fetal brain at second trimester. Neuroembryology. 2:50–63. 2003. View Article : Google Scholar

62 

Sunabori T, Tokunaga A, Nagai T, Sawamoto K, Okabe M, Miyawaki A, Matsuzaki Y, Miyata T and Okano H: Cell-cycle-specific nestin expression coordinates with morphological changes in embryonic cortical neural progenitors. J Cell Sci. 121:1204–1212. 2008. View Article : Google Scholar : PubMed/NCBI

63 

Wilhelmsson U, Lebkuechner I, Leke R, Marasek P, Yang X, Antfolk D, Chen M, Mohseni P, Lasič E, Bobnar ST, et al: Nestin regulates neurogenesis in mice through notch signaling from astrocytes to neural stem cells. Cereb Cortex. 29:4050–4066. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Messam CA, Hou J and Major EO: Coexpression of nestin in neural and glial cells in the developing human CNS defined by a human-specific anti-nestin antibody. Exp Neurol. 161:585–596. 2000. View Article : Google Scholar : PubMed/NCBI

65 

Vukojevic K, Petrovic D and Saraga-Babic M: Nestin expression in glial and neuronal progenitors of the developing human spinal ganglia. Gene Expr Patterns. 10:144–151. 2010. View Article : Google Scholar : PubMed/NCBI

66 

Eriksson JE, He T, Trejo-Skalli AV, Härmälä-Braskén AS, Hellman J, Chou YH and Goldman RD: Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. J Cell Sci. 117:919–932. 2004. View Article : Google Scholar : PubMed/NCBI

67 

Chen M, Puschmann TB, Marasek P, Inagaki M, Pekna M, Wilhelmsson U and Pekny M: Increased neuronal differentiation of neural progenitor cells derived from phosphovimentin-deficient mice. Mol Neurobiol. 55:5478–5489. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Chou YH, Khuon S, Herrmann H and Goldman RD: Nestin promotes the phosphorylation-dependent disassembly of vimentin intermediate filaments during mitosis. Mol Biol Cell. 14:1468–1478. 2003. View Article : Google Scholar : PubMed/NCBI

69 

Widestrand A, Faijerson J, Wilhelmsson U, Smith PL, Li L, Sihlbom C, Eriksson PS and Pekny M: Increased neurogenesis and astrogenesis from neural progenitor cells grafted in the hippocampus of GFAP−/− Vim−/− mice. Stem Cells. 25:2619–2627. 2007. View Article : Google Scholar : PubMed/NCBI

70 

Cunningham CL, Martinez-Cerdeno V and Noctor SC: Diversity of neural precursor cell types in the prenatal macaque cerebral cortex exists largely within the astroglial cell lineage. PLoS One. 8:e638482013. View Article : Google Scholar : PubMed/NCBI

71 

Li D, Takeda N, Jain R, Manderfield LJ, Liu F, Li L, Anderson SA and Epstein JA: Hopx distinguishes hippocampal from lateral ventricle neural stem cells. Stem Cell Res. 15:522–529. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Braun SM and Jessberger S: Adult neurogenesis: Mechanisms and functional significance. Development. 141:1983–1986. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Patro N, Naik A and Patro IK: Differential temporal expression of S100β in developing rat brain. Front Cell Neurosci. 9:872015. View Article : Google Scholar : PubMed/NCBI

74 

Docampo-Seara A, Santos-Durán GN, Candal E and Rodríguez Díaz MÁ: Expression of radial glial markers (GFAP, BLBP and GS) during telencephalic development in the catshark (Scyliorhinus canicula). Brain Struct Funct. 224:33–56. 2019. View Article : Google Scholar : PubMed/NCBI

75 

Aronne MP, Guadagnoli T, Fontanet P, Evrard SG and Brusco A: Effects of prenatal ethanol exposure on rat brain radial glia and neuroblast migration. Exp Neurol. 229:364–371. 2011. View Article : Google Scholar : PubMed/NCBI

76 

Malik S, Vinukonda G, Vose LR, Diamond D, Bhimavarapu BB, Hu F, Zia MT, Hevner R, Zecevic N and Ballabh P: Neurogenesis continues in the third trimester of pregnancy and is suppressed by premature birth. J Neurosci. 33:411–423. 2013. View Article : Google Scholar : PubMed/NCBI

77 

Zhang J and Jiao J: Molecular biomarkers for embryonic and adult neural stem cell and neurogenesis. Biomed Res Int. 2015:7275422015.PubMed/NCBI

78 

van den Berge SA, van Strien ME, Korecka JA, Dijkstra AA, Sluijs JA, Kooijman L, Eggers R, De Filippis L, Vescovi AL, Verhaagen J, et al: The proliferative capacity of the subventricular zone is maintained in the parkinsonian brain. Brain. 134:3249–3263. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li Y, Zhang L, Chong L, Liu Y, Xi F, Zhang H and Duan X: Prenatal ethanol exposure impairs the formation of radial glial fibers and promotes the transformation of GFAPδ‑positive radial glial cells into astrocytes. Mol Med Rep 23: 274, 2021.
APA
Li, Y., Zhang, L., Chong, L., Liu, Y., Xi, F., Zhang, H., & Duan, X. (2021). Prenatal ethanol exposure impairs the formation of radial glial fibers and promotes the transformation of GFAPδ‑positive radial glial cells into astrocytes. Molecular Medicine Reports, 23, 274. https://doi.org/10.3892/mmr.2021.11913
MLA
Li, Y., Zhang, L., Chong, L., Liu, Y., Xi, F., Zhang, H., Duan, X."Prenatal ethanol exposure impairs the formation of radial glial fibers and promotes the transformation of GFAPδ‑positive radial glial cells into astrocytes". Molecular Medicine Reports 23.4 (2021): 274.
Chicago
Li, Y., Zhang, L., Chong, L., Liu, Y., Xi, F., Zhang, H., Duan, X."Prenatal ethanol exposure impairs the formation of radial glial fibers and promotes the transformation of GFAPδ‑positive radial glial cells into astrocytes". Molecular Medicine Reports 23, no. 4 (2021): 274. https://doi.org/10.3892/mmr.2021.11913
Copy and paste a formatted citation
x
Spandidos Publications style
Li Y, Zhang L, Chong L, Liu Y, Xi F, Zhang H and Duan X: Prenatal ethanol exposure impairs the formation of radial glial fibers and promotes the transformation of GFAPδ‑positive radial glial cells into astrocytes. Mol Med Rep 23: 274, 2021.
APA
Li, Y., Zhang, L., Chong, L., Liu, Y., Xi, F., Zhang, H., & Duan, X. (2021). Prenatal ethanol exposure impairs the formation of radial glial fibers and promotes the transformation of GFAPδ‑positive radial glial cells into astrocytes. Molecular Medicine Reports, 23, 274. https://doi.org/10.3892/mmr.2021.11913
MLA
Li, Y., Zhang, L., Chong, L., Liu, Y., Xi, F., Zhang, H., Duan, X."Prenatal ethanol exposure impairs the formation of radial glial fibers and promotes the transformation of GFAPδ‑positive radial glial cells into astrocytes". Molecular Medicine Reports 23.4 (2021): 274.
Chicago
Li, Y., Zhang, L., Chong, L., Liu, Y., Xi, F., Zhang, H., Duan, X."Prenatal ethanol exposure impairs the formation of radial glial fibers and promotes the transformation of GFAPδ‑positive radial glial cells into astrocytes". Molecular Medicine Reports 23, no. 4 (2021): 274. https://doi.org/10.3892/mmr.2021.11913
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team