|
1
|
Jabbar A, Pingitore A, Pearce SH, Zaman A,
Iervasi G and Razvi S: Thyroid hormones and cardiovascular disease.
Nat Rev Cardiol. 14:39–55. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Garmendia Madariaga A, Santos Palacios S,
Guillén-Grima F and Galofre JC: The incidence and prevalence of
thyroid dysfunction in Europe: A meta-analysis. J Clin Endocrinol
Metab. 99:923–931. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
UE: Regulation (EC) No 1907/2006 of the
european parliament and of the council of 18 december 2006
concerning the registration, evaluation, authorisation and
restriction of chemicals (REACH). 2006, https://eur-lex.europa.eu/eli/reg/2006/1907/2014-04-10
|
|
4
|
Chaker L, Bianco AC, Jonklaas J and
Peeters RP: Hypothyroidism. Lancet. 390:1550–1562. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Colella M, Cuomo D, Giacco A, Mallardo M,
De Felice M and Ambrosino C: Thyroid hormones and functional
ovarian reserve: Systemic vs. Peripheral dysfunctions. J Clin Med.
9:16792020. View Article : Google Scholar
|
|
6
|
Tomer Y: Genetic susceptibility to
autoimmune thyroid disease: Past, present, and future. Thyroid.
20:715–725. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Brent GA: Environmental exposures and
autoimmune thyroid disease. Thyroid. 20:755–761. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lamb JC IV, Boffetta P, Foster WG, Goodman
JE, Hentz KL, Rhomberg LR, Staveley J, Swaen G, Van Der Kraak G,
Williams AL; Comments on the opinions published by Bergman, ; et
al: (2015) on critical comments on the WHO-UNEP state of the
science of endocrine disrupting chemicals (Lamb et al.,
2014). Regul Toxicol Pharmacol. 73:754–757. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ema M and Miyawaki E: Adverse effects on
development of the reproductive system in male offspring of rats
given monobutyl phthalate, a metabolite of dibutyl phthalate,
during late pregnancy. Reprod Toxicol. 15:189–194. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Pan G, Hanaoka T, Yoshimura M, Zhang S,
Wang P, Tsukino H, Inoue K, Nakazawa H, Tsugane S and Takahashi K:
Decreased serum free testosterone in workers exposed to high levels
of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP):
A cross-sectional study in China. Environ Health Perspect.
114:1643–1648. 2006. View
Article : Google Scholar : PubMed/NCBI
|
|
11
|
Api AM: Toxicological profile of diethyl
phthalate: A vehicle for fragrance and cosmetic ingredients. Food
Chem Toxicol. 39:97–108. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kavlock R, Boekelheide K, Chapin R,
Cunningham M, Faustman E, Foster P, Golub M, Henderson R, Hinberg
I, Little R, et al: NTP center for the evaluation of risks to human
reproduction: Phthalates expert panel report on the reproductive
and developmental toxicity of di-n-butyl phthalate. Reprod Toxicol.
16:489–527. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Howarth JA, Price SC, Dobrota M, Kentish
PA and Hinton RH: Effects on male rats of di-(2-ethylhexyl)
phthalate and di-n-hexylphthalate administered alone or in
combination. Toxicol Lett. 121:35–43. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Boas M, Feldt-Rasmussen U and Main KM:
Thyroid effects of endocrine disrupting chemicals. Mol Cell
Endocrinol. 355:240–248. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Weuve J, Sánchez BN, Calafat AM, Schettler
T, Green RA, Hu H and Hauser R: Exposure to phthalates in neonatal
intensive care unit infants: Urinary concentrations of monoesters
and oxidative metabolites. Environ Health Perspect. 114:1424–1431.
2006. View
Article : Google Scholar : PubMed/NCBI
|
|
16
|
McLeod DS and Cooper DS: The incidence and
prevalence of thyroid autoimmunity. Endocrine. 42:252–265. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Earls AO, Axford IP and Braybrook JH: Gas
chromatography-mass spectrometry determination of the migration of
phthalate plasticisers from polyvinyl chloride toys and childcare
articles. J Chromatogr A. 983:237–246. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Gimeno P, Thomas S, Bousquet C, Maggio AF,
Civade C, Brenier C and Bonnet PA: Identification and
quantification of 14 phthalates and 5 non-phthalate plasticizers in
PVC medical devices by GC-MS. J Chromatogr B Analyt Technol Biomed
Life Sci. 949-950:99–108. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kambia K, Dine T, Gressier B, Dupin-Spriet
T, Luyckx M and Brunet C: Evaluation of the direct toxicity of
trioctyltrimellitate (TOTM), di(2-ethylhexyl) phthalate (DEHP) and
their hydrolysis products on isolated rat hepatocytes. Int J Artif
Organs. 27:971–978. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Sampson J and de Korte D: DEHP-plasticised
PVC: Relevance to blood services. Transfus Med. 21:73–83. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Heudorf U, Mersch-Sundermann V and Angerer
J: Phthalates: Toxicology and exposure. Int J Hyg Environ Health.
210:623–634. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ghisari M and Bonefeld-Jorgensen EC:
Effects of plasticizers and their mixtures on estrogen receptor and
thyroid hormone functions. Toxicol Lett. 189:67–77. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hauser R and Calafat AM: Phthalates and
human health. Occup Environ Med. 62:806–818. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Meeker JD and Ferguson KK: Relationship
between urinary phthalate and bisphenol A concentrations and serum
thyroid measures in U.S. adults and adolescents from the national
health and nutrition examination survey (NHANES) 2007–2008. Environ
Health Perspect. 119:1396–1402. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Marotta V, Russo G, Gambardella C, Grasso
M, Sala DL, Chiofalo MG, D'Anna R, Puzziello A, Docimo G, Masone S,
et al: Human exposure to bisphenol AF and diethylhexylphthalate
increases susceptibility to develop differentiated thyroid cancer
in patients with thyroid nodules. Chemosphere. 218:885–894. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Rais-Bahrami K, Nunez S, Revenis ME, Luban
NL and Short BL: Follow-up study of adolescents exposed to
di(2-ethylhexyl) phthalate (DEHP) as neonates on extracorporeal
membrane oxygenation (ECMO) support. Environ Health Perspect.
112:1339–1340. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Engel SM, Villanger GD, Nethery RC,
Thomsen C, Sakhi AK, Drover SSM, Hoppin JA, Zeiner P, Knudsen GP,
Reichborn-Kjennerud T, et al: Prenatal phthalates, maternal thyroid
function, and risk of attention-deficit hyperactivity disorder in
the norwegian mother and child cohort. Environ Health Perspect.
126:0570042018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Gore AC, Chappell VA, Fenton SE, Flaws JA,
Nadal A, Prins GS, Toppari J and Zoeller RT: EDC-2: The endocrine
society's second scientific statement on endocrine-disrupting
chemicals. Endocr Rev. 36:E1–E150. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
O'Shea PJ and Williams GR: Insight into
the physiological actions of thyroid hormone receptors from
genetically modified mice. J Endocrinol. 175:553–570. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ravera S, Reyna-Neyra A, Ferrandino G,
Amzel LM and Carrasco N: The sodium/iodide symporter (NIS):
Molecular physiology and preclinical and clinical applications.
Annu Rev Physiol. 79:261–289. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Postiglione MP, Parlato R,
Rodriguez-Mallon A, Rosica A, Mithbaokar P, Maresca M, Marians RC,
Davies TF, Zannini MS, De Felice M and Di Lauro R: Role of the
thyroid-stimulating hormone receptor signaling in development and
differentiation of the thyroid gland. Proc Natl Acad Sci USA.
99:15462–15467. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Dohán O, De la Vieja A, Paroder V, Riedel
C, Artani M, Reed M, Ginter CS and Carrasco N: The sodium/iodide
symporter (NIS): Characterization, regulation, and medical
significance. Endocr Rev. 24:48–77. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Liu C, Zhao L, Wei L and Li L: DEHP
reduces thyroid hormones via interacting with hormone
synthesis-related proteins, deiodinases, transthyretin, receptors,
and hepatic enzymes in rats. Environ Sci Pollut Res Int.
22:12711–12719. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Breous E, Wenzel A and Loos U: The
promoter of the human sodium/iodide symporter responds to certain
phthalate plasticisers. Mol Cell Endocrinol. 244:75–78. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Shen O, Du G, Sun H, Wu W, Jiang Y, Song L
and Wang X: Comparison of in vitro hormone activities of selected
phthalates using reporter gene assays. Toxicol Lett. 191:9–14.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wenzel A, Franz C, Breous E and Loos U:
Modulation of iodide uptake by dialkyl phthalate plasticisers in
FRTL-5 rat thyroid follicular cells. Mol Cell Endocrinol.
244:63–71. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Johns LE, Ferguson KK, McElrath TF,
Mukherjee B and Meeker JD: Associations between repeated measures
of maternal urinary phthalate metabolites and thyroid hormone
parameters during pregnancy. Environ Health Perspect.
124:1808–1815. 2016. View
Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yao HY, Han Y, Gao H, Huang K, Ge X, Xu
YY, Xu YQ, Jin ZX, Sheng J, Yan SQ, et al: Maternal phthalate
exposure during the first trimester and serum thyroid hormones in
pregnant women and their newborns. Chemosphere. 157:42–48. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Huang HB, Pan WH, Chang JW, Chiang HC, Guo
YL, Jaakkola JJK and Huang PC: Does exposure to phthalates
influence thyroid function and growth hormone homeostasis? The
Taiwan environmental survey for toxicants (TEST) 2013. Environ Res.
153:63–72. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Luongo C, Dentice M and Salvatore D:
Deiodinases and their intricate role in thyroid hormone
homeostasis. Nat Rev Endocrinol. 15:479–488. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
David RM, Moore MR, Finney DC and Guest D:
Chronic toxicity of di(2-ethylhexyl)phthalate in rats. Toxicol Sci.
55:433–443. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Reagan-Shaw S, Nihal M and Ahmad N: Dose
translation from animal to human studies revisited. FASEB J.
22:659–661. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Pisoschi AM and Pop A: The role of
antioxidants in the chemistry of oxidative stress: A review. Eur J
Med Chem. 97:55–74. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yaping Z, Dongxing Y, Jixiang C, Tianshiu
L and Huiqin C: Spectrophotometric determination of urinary iodine
by flow-injection analysis with on-line catalytic digestion. Clin
Chem. 42:2021–2027. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhang H, Wu M, Yang L, Wu J, Hu Y, Han J,
Gu Y, Li X, Wang H, Ma L and Yang X: Evaluation of median urinary
iodine concentration cut-off for defining iodine deficiency in
pregnant women after a long term USI in China. Nutr Metab (Lond).
16:622019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ma K, Wu H, Li P and Li B: LC3-II may
mediate ATR-induced mitophagy in dopaminergic neurons through
SQSTM1/p62 pathway. Acta Biochim Biophys Sin (Shanghai).
50:1047–1061. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ortiga-Carvalho TM, Chiamolera MI,
Pazos-Moura CC and Wondisford FE: Hypothalamus-pituitary-thyroid
axis. Compr Physiol. 6:1387–1428. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yilmaz B, Terekeci H, Sandal S and
Kelestimur F: Endocrine disrupting chemicals: Exposure, effects on
human health, mechanism of action, models for testing and
strategies for prevention. Rev Endocr Metab Disord. 21:127–147.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Boas M, Feldt-Rasmussen U, Skakkebaek NE
and Main KM: Environmental chemicals and thyroid function. Eur J
Endocrinol. 154:599–611. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ye H, Ha M, Yang M, Yue P, Xie Z and Liu
C: Di2-ethylhexyl phthalate disrupts thyroid hormone homeostasis
through activating the Ras/Akt/TRHr pathway and inducing hepatic
enzymes. Sci Rep. 7:401532017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Vander JA, Luciano DS and Sherman JH:
Human physiology: The Mechanism of Body Function. William C Brown
Pub. Subsequent Edition (January 1, 1998).
|
|
53
|
Moog NK, Entringer S, Heim C, Wadhwa PD,
Kathmann N and Buss C: Influence of maternal thyroid hormones
during gestation on fetal brain development. Neuroscience.
342:68–100. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
McLanahan ED, Andersen ME and Fisher JW: A
biologically based dose-response model for dietary iodide and the
hypothalamic-pituitary-thyroid axis in the adult rat: Evaluation of
iodide deficiency. Toxicol Sci. 102:241–253. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Mondal S, Raja K, Schweizer U and Mugesh
G: Chemistry and biology in the biosynthesis and action of thyroid
hormones. Angew Chem Int Ed Engl. 55:7606–7630. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Citterio CE, Targovnik HM and Arvan P: The
role of thyroglobulin in thyroid hormonogenesis. Nat Rev
Endocrinol. 15:323–338. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yamauchi I, Sakane Y, Yamashita T, Hirota
K, Ueda Y, Kanai Y, Yamashita Y, Kondo E, Fujii T, Taura D, et al:
Effects of growth hormone on thyroid function are mediated by type
2 iodothyronine deiodinase in humans. Endocrine. 59:353–363. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Maia AL, Kim BW, Huang SA, Harney JW and
Larsen PR: Type 2 iodothyronine deiodinase is the major source of
plasma T3 in euthyroid humans. J Clin Invest. 115:2524–2533. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Bianco AC, Salvatore D, Gereben B, Berry
MJ and Larsen PR: Biochemistry, cellular and molecular biology, and
physiological roles of the iodothyronine selenodeiodinases. Endocr
Rev. 23:38–89. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Salvatore D, Simonides WS, Dentice M,
Zavacki AM and Larsen PR: Thyroid hormones and skeletal muscle-new
insights and potential implications. Nat Rev Endocrinol.
10:206–214. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Portulano C, Paroder-Belenitsky M and
Carrasco N: The Na+/I-symporter (NIS): Mechanism and medical
impact. Endocr Rev. 35:106–149. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ferrandino G, Kaspari RR, Reyna-Neyra A,
Boutagy NE, Sinusas AJ and Carrasco N: An extremely high dietary
iodide supply forestalls severe hypothyroidism in Na(+)/I(−)
symporter (NIS) knockout mice. Sci Rep. 7:53292017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ji C, Jin X, He J and Yin Z: Use of
TSHβ:EGFP transgenic zebrafish as a rapid in vivo model for
assessing thyroid-disrupting chemicals. Toxicol Appl Pharmacol.
262:149–155. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kim MJ, Moon S, Oh BC, Jung D, Choi K and
Park YJ: Association between diethylhexyl phthalate exposure and
thyroid function: A meta-analysis. Thyroid. 29:183–192. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chiamolera MI and Wondisford FE:
Minireview: Thyrotropin-releasing hormone and the thyroid hormone
feedback mechanism. Endocrinology. 150:1091–1096. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
De Felice M, Postiglione MP and Di Lauro
R: Minireview: Thyrotropin receptor signaling in development and
differentiation of the thyroid gland: Insights from mouse models
and human diseases. Endocrinology. 145:4062–4067. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Taylor PN, Albrecht D, Scholz A,
Gutierrez-Buey G, Lazarus JH, Dayan CM and Okosieme OE: Global
epidemiology of hyperthyroidism and hypothyroidism. Nat Rev
Endocrinol. 14:301–316. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kortenkamp A: Low dose mixture effects of
endocrine disrupters and their implications for regulatory
thresholds in chemical risk assessment. Curr Opin Pharmacol.
19:105–111. 2014. View Article : Google Scholar : PubMed/NCBI
|