|
1
|
Dagenais GR, Leong DP, Rangarajan S, Lanas
F, Lopez-Jaramillo P, Gupta R, Diaz R, Avezum A, Oliveira GBF,
Wielgosz A, et al: Variations in common diseases, hospital
admissions, and deaths in middle-aged adults in 21 countries from
five continents (PURE): A prospective cohort study. Lancet.
395:785–794. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Liu F, Zhang H, Xie F, Tao D, Xiao X,
Huang C, Wang M, Gu C, Zhang X and Jiang G: Hsa_circ_0001361
promotes bladder cancer invasion and metastasis through
miR-491-5p/MMP9 axis. Oncogene. 39:1696–1709. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Massari F, Di Nunno V, Ciccarese C, Graham
J, Porta C, Comito F, Cubelli M, Iacovelli R and Heng DYC: Adjuvant
therapy in renal cell carcinoma. Cancer Treat Rev. 60:152–157.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cai C, Zhi Y, Wang K, Zhang P, Ji Z, Xie C
and Sun F: CircHIPK3 overexpression accelerates the proliferation
and invasion of prostate cancer cells through regulating
miRNA-338-3p. Onco Targets Ther. 12:3363–3372. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Bi J, Liu H, Cai Z, Dong W, Jiang N, Yang
M, Huang J and Lin T: Circ-BPTF promotes bladder cancer progression
and recurrence through the miR-31-5p/RAB27A axis. Aging (Albany
NY). 10:1964–1976. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sun J, Zhang H, Tao D, Xie F, Liu F, Gu C,
Wang M, Wang L, Jiang G, Wang Z and Xiao X: CircCDYL inhibits the
expression of C-MYC to suppress cell growth and migration in
bladder cancer. Artif Cells Nanomed Biotechnol. 47:1349–1356. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhang M, Zhao K, Xu X, Yang Y, Yan S, Wei
P, Liu H, Xu J, Xiao F, Zhou H, et al: A peptide encoded by
circular form of LINC-PINT suppresses oncogenic transcriptional
elongation in glioblastoma. Nat Commun. 9:44752018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Dong R, Ma XK, Chen LL and Yang L:
Increased complexity of circRNA expression during species
evolution. RNA Biol. 14:1064–1074. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wei Y, Zhang Y, Meng Q, Cui L and Xu C:
Hypoxia-induced circular RNA has_circRNA_403658 promotes bladder
cancer cell growth through activation of LDHA. Am J Transl Res.
11:6838–6849. 2019.PubMed/NCBI
|
|
11
|
Wu G, Sun Y, Xiang Z, Wang K, Liu B, Xiao
G, Niu Y, Wu D and Chang C: Preclinical study using circular RNA 17
and micro RNA 181c-5p to suppress the enzalutamide-resistant
prostate cancer progression. Cell Death Dis. 10:372019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Guarnerio J, Bezzi M, Jeong JC, Paffenholz
SV, Berry K, Naldini MM, Lo-Coco F, Tay Y, Beck AH and Pandolfi PP:
Oncogenic role of fusion-circRNAs derived from cancer-associated
chromosomal translocations. Cell. 165:289–302. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Su Y, Feng W, Shi J, Chen L, Huang J and
Lin T: circRIP2 accelerates bladder cancer progression via
miR-1305/Tgf-β2/smad3 pathway. Mol Cancer. 19:232020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Shi YR, Wu Z, Xiong K, Liao QJ, Ye X, Yang
P and Zu XB: Circular RNA circKIF4A Sponges miR-375/1231 to promote
bladder cancer progression by upregulating NOTCH2 expression. Front
Pharmacol. 11:6052020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chen L, Yang X, Zhao J, Xiong M,
Almaraihah R, Chen Z and Hou T: Circ_0008532 promotes bladder
cancer progression by regulation of the miR-155-5p/miR-330-5p/MTGR1
axis. J Exp Clin Cancer Res. 39:942020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Mao W, Huang X, Wang L, Zhang Z, Liu M, Li
Y, Luo M, Yao X, Fan J and Geng J: Circular RNA hsa_circ_0068871
regulates FGFR3 expression and activates STAT3 by targeting
miR-181a-5p to promote bladder cancer progression. J Exp Clin
Cancer Res. 38:1692019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wu L, Zhang M, Qi L, Zu X, Li Y, Liu L,
Chen M, Li Y, He W, Hu X, et al: ERα-mediated alterations in
circ_0023642 and miR-490-5p signaling suppress bladder cancer
invasion. Cell Death Dis. 10:6352019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Topham CH and Taylor SS: Mitosis and
apoptosis: How is the balance set? Curr Opin Cell Biol. 25:780–785.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Yang C, Li Q, Chen X, Zhang Z, Mou Z, Ye
F, Jin S, Jun X, Tang F and Jiang H: Circular RNA circRGNEF
promotes bladder cancer progression via miR-548/KIF2C axis
regulation. Aging (Albany NY). 12:6865–6879. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Yang D, Qian H, Fang Z, Xu A, Zhao S, Liu
B and Li D: Silencing circular RNA VANGL1 inhibits progression of
bladder cancer by regulating miR-1184/IGFBP2 axis. Cancer Med.
9:700–710. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yang Z, Li C, Fan Z, Liu H, Zhang X, Cai
Z, Xu L, Luo J, Huang Y, He L, et al: Single-cell sequencing
reveals variants in ARID1A, GPRC5A and MLL2 driving self-renewal of
human bladder cancer stem cells. Eur Urol. 71:8–12. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Tao T, Yuan S, Liu J, Shi D, Peng M, Li C
and Wu S: Cancer stem cell-specific expression profiles reveal
emerging bladder cancer biomarkers and identify circRNA_103809 as
an important regulator in bladder cancer. Aging (Albany NY).
12:3354–3370. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Yao J, Qian K, Chen C, Liu X, Yu D, Yan X,
Liu T and Li S: ZNF139/circZNF139 promotes cell proliferation,
migration and invasion via activation of PI3K/AKT pathway in
bladder cancer. Aging (Albany NY). 12:9915–9934. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Francis R, Guo H, Streutker C, Ahmed M,
Yung T, Dirks PB, He HH and Kim TH: Gastrointestinal transcription
factors drive lineage-specific developmental programs in organ
specification and cancer. Sci Adv. 5:eaax88982019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Liu T, Lu Q, Liu J, Xie S, Feng B, Zhu W,
Liu M, Liu Y, Zhou X, Sun W, et al: Circular RNA FAM114A2
suppresses progression of bladder cancer via regulating ∆NP63 by
sponging miR-762. Cell Death Dis. 11:472020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Dong W, Bi J, Liu H, Yan D, He Q, Zhou Q,
Wang Q, Xie R, Su Y, Yang M, et al: Circular RNA ACVR2A suppresses
bladder cancer cells proliferation and metastasis through
miR-626/EYA4 axis. Mol Cancer. 18:952019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
He Q, Huang L, Yan D, Bi J, Yang M, Huang
J and Lin T: CircPTPRA acts as a tumor suppressor in bladder cancer
by sponging miR-636 and upregulating KLF9. Aging (Albany NY).
11:11314–11328. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
He Q, Yan D, Dong W, Bi J, Huang L, Yang
M, Huang J, Qin H and Lin T: circRNA circFUT8 upregulates
Krüpple-like Factor 10 to inhibit the metastasis of bladder cancer
via sponging miR-570-3p. Mol Ther Oncolytics. 16:172–187. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Chen Q, Yin Q, Mao Y, Zhang Z, Wu S, Cheng
Z, Chen X, Xu H, Jin S, Jiang H and Yang C: Hsa_circ_0068307
mediates bladder cancer stem cell-like properties via miR-147/c-Myc
axis regulation. Cancer Cell Int. 20:1512020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Abulizi R, Li B and Zhang CG:
Circ_0071662, a novel tumor biomarker, suppresses bladder cancer
cell proliferation and invasion by sponging miR-146b-3p. Oncol Res.
Nov 18–2019.(Epub ahead of print). doi:
10.3727/096504019X15740729375088. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lu Q, Liu T, Feng H, Yang R, Zhao X, Chen
W, Jiang B, Qin H, Guo X, Liu M, et al: Circular RNA circSLC8A1
acts as a sponge of miR-130b/miR-494 in suppressing bladder cancer
progression via regulating PTEN. Mol Cancer. 18:1112019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Su Y, Feng W, Zhong G, Ya Y, Du Z, Shi J,
Chen L, Dong W and Lin T: ciRs-6 upregulates March1 to suppress
bladder cancer growth by sponging miR-653. Aging (Albany NY).
11:11202–11223. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zheng F, Wang M, Li Y, Huang C, Tao D, Xie
F, Zhang H, Sun J, Zhang C, Gu C, et al: CircNR3C1 inhibits
proliferation of bladder cancer cells by sponging miR-27a-3p and
downregulating cyclin D1 expression. Cancer Lett. 460:139–151.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Bi J, Liu H, Dong W, Xie W, He Q, Cai Z,
Huang J and Lin T: Circular RNA circ-ZKSCAN1 inhibits bladder
cancer progression through miR-1178-3p/p21 axis and acts as a
prognostic factor of recurrence. Mol Cancer. 18:1332019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhang M, Du H, Wang L, Yue Y, Zhang P,
Huang Z, Lv W, Ma J, Shao Q, Ma M, et al: Thymoquinone suppresses
invasion and metastasis in bladder cancer cells by reversing EMT
through the Wnt/β-catenin signaling pathway. Chem Biol Interact.
320:1090222020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yan D, Dong W, He Q, Yang M, Huang L, Kong
J, Qin H, Lin T and Huang J: Circular RNA circPICALM sponges
miR-1265 to inhibit bladder cancer metastasis and influence FAK
phosphorylation. EBioMedicine. 48:316–331. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Su Y, Du Z, Zhong G, Ya Y, Bi J, Shi J,
Chen L, Dong W and Lin T: circ5912 suppresses cancer progression
via inducing MET in bladder cancer. Aging (Albany NY).
11:10826–10838. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Jin C, Zhao W, Zhang Z and Liu W:
Silencing circular RNA circZNF609 restrains growth, migration and
invasion by up-regulating microRNA-186-5p in prostate cancer. Artif
Cells Nanomed Biotechnol. 47:3350–3358. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Huang C, Deng H, Wang Y, Jiang H, Xu R,
Zhu X, Huang Z and Zhao X: Circular RNA circABCC4 as the ceRNA of
miR-1182 facilitates prostate cancer progression by promoting FOXP4
expression. J Cell Mol Med. 23:6112–6119. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ward CL, Boggio KJ, Johnson BN, Boyd JB,
Douthwright S, Shaffer SA, Landers JE, Glicksman MA and Bosco DA: A
loss of FUS/TLS function leads to impaired cellular proliferation.
Cell Death Dis. 5:e15722014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Feng Y, Yang Y, Zhao X, Fan Y, Zhou L,
Rong J and Yu Y: Circular RNA circ0005276 promotes the
proliferation and migration of prostate cancer cells by interacting
with FUS to transcriptionally activate XIAP. Cell Death Dis.
10:7922019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Liu F, Fan Y, Ou L, Li T, Fan J, Duan L,
Yang J, Luo C and Wu X: CircHIPK3 facilitates the G2/M transition
in prostate cancer cells by sponging miR-338-3p. Onco Targets Ther.
13:4545–4558. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Si-Tu J, Cai Y, Feng T, Yang D, Yuan S,
Yang X, He S, Li Z, Wang Y, Tang Y, et al: Upregulated circular RNA
circ-102004 that promotes cell proliferation in prostate cancer.
Int J Biol Macromol. 122:1235–1243. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kang HY, Huang KE, Chang SY, Ma WL, Lin WJ
and Chang C: Differential modulation of androgen receptor-mediated
transactivation by Smad3 and tumor suppressor Smad4. J Biol Chem.
277:43749–43756. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Song Z, Zhuo Z, Ma Z, Hou C, Chen G and Xu
G: Hsa_Circ_0001206 is downregulated and inhibits cell
proliferation, migration and invasion in prostate cancer. Artif
Cells Nanomed Biotechnol. 47:2449–2464. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yang Z, Qu CB, Zhang Y, Zhang WF, Wang DD,
Gao CC, Ma L, Chen JS, Liu KL, Zheng B, et al: Dysregulation of
p53-RBM25-mediated circAMOTL1L biogenesis contributes to prostate
cancer progression through the circAMOTL1L-miR-193a-5p-Pcdha
pathway. Oncogene. 38:2516–2532. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wang X, Wang R, Wu Z and Bai P: Circular
RNA ITCH suppressed prostate cancer progression by increasing
HOXB13 expression via spongy miR-17-5p. Cancer Cell Int.
19:3282019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Fantozzi A, Gruber DC, Pisarsky L, Heck C,
Kunita A, Yilmaz M, Meyer-Schaller N, Cornille K, Hopfer U,
Bentires-Alj M and Christofori G: VEGF-mediated angiogenesis links
EMT-induced cancer stemness to tumor initiation. Cancer Res.
74:1566–1575. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhou B, Zheng P, Li Z, Li H, Wang X, Shi Z
and Han Q: CircPCNXL2 sponges miR-153 to promote the proliferation
and invasion of renal cancer cells through upregulating ZEB2. Cell
Cycle. 17:2644–2654. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Li W, Yang FQ, Sun CM, Huang JH, Zhang HM,
Li X, Wang GC, Zhang N, Che JP, Zhang WT, et al: circPRRC2A
promotes angiogenesis and metastasis through epithelial-mesenchymal
transition and upregulates TRPM3 in renal cell carcinoma.
Theranostics. 10:4395–4409. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Li J, Huang C, Zou Y, Yu J and Gui Y:
Circular RNA MYLK promotes tumour growth and metastasis via
modulating miR-513a-5p/VEGFC signalling in renal cell carcinoma. J
Cell Mol Med. 24:6609–6621. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Li J, Huang C, Zou Y, Ye J, Yu J and Gui
Y: CircTLK1 promotes the proliferation and metastasis of renal cell
carcinoma by sponging miR-136-5p. Mol Cancer. 19:1032020.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Chen Z, Xiao K, Chen S, Huang Z, Ye Y and
Chen T: Circular RNA hsa_circ_001895 serves as a sponge of
microRNA-296-5p to promote clear cell renal cell carcinoma
progression by regulating SOX12. Cancer Sci. 111:713–726. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Thompson CD, Matta B and Barnes BJ:
Therapeutic targeting of IRFs: Pathway-dependence or
structure-based? Front Immunol. 9:26222018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lin L and Cai J: Circular RNA circ-EGLN3
promotes renal cell carcinoma proliferation and aggressiveness via
miR-1299-mediated IRF7 activation. J Cell Biochem. 121:4377–4385.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chen T, Yu Q, Xin L and Guo L: Circular
RNA circC3P1 restrains kidney cancer cell activity by regulating
miR-21/PTEN axis and inactivating PI3K/AKT and NF-kB pathways. J
Cell Physiol. 235:4001–4010. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sun J, Yin A, Zhang W, Lv J, Liang Y, Li
H, Li Y and Li X: CircUBAP2 inhibits proliferation and metastasis
of clear cell renal cell carcinoma via targeting miR-148a-3p/FOXK2
pathway. Cell Transplant. 29:9636897209257512020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Xue D, Wang H, Chen Y, Shen D, Lu J, Wang
M, Zebibula A, Xu L, Wu H, Li G and Xia L: Circ-AKT3 inhibits clear
cell renal cell carcinoma metastasis via altering
miR-296-3p/E-cadherin signals. Mol Cancer. 18:1512019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Chen Q, Liu T, Bao Y, Zhao T, Wang J, Wang
H, Wang A, Gan X, Wu Z and Wang L: circRNA cRAPGEF5 inhibits the
growth and metastasis of renal cell carcinoma via the
miR-27a-3p/TXNIP pathway. Cancer Lett. 469:68–77. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Franz A, Ralla B, Weickmann S, Jung M,
Rochow H, Stephan C, Erbersdobler A, Kilic E, Fendler A and Jung K:
Circular RNAs in clear cell renal cell carcinoma: Their
microarray-based identification, analytical validation, and
potential use in a clinico-genomic model to improve prognostic
accuracy. Cancers. 11:14732019. View Article : Google Scholar
|
|
61
|
Xu ZQ, Yang MG, Liu HJ and Su CQ: Circular
RNA hsa_circ_0003221 (circPTK2) promotes the proliferation and
migration of bladder cancer cells. J Cell Biochem. 119:3317–3325.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Li T, Sun X and Chen L: Exosome
circ_0044516 promotes prostate cancer cell proliferation and
metastasis as a potential biomarker. J Cell Biochem. 121:2118–2126.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kong Z, Wan X, Lu Y, Zhang Y, Huang Y, Xu
Y, Liu Y, Zhao P, Xiang X, Li L and Li Y: Circular RNA circFOXO3
promotes prostate cancer progression through sponging miR-29a-3p. J
Cell Mol Med. 24:799–813. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Shan G, Shao B, Liu Q, Zeng Y, Fu C, Chen
A and Chen Q: circFMN2 Sponges miR-1238 to promote the expression
of LIM-homeobox Gene 2 in prostate cancer cells. Mol Ther Nucleic
Acids. 21:133–146. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chen X, Chen RX, Wei WS, Li YH, Feng ZH,
Tan L, Chen JW, Yuan GJ, Chen SL, Guo SJ, et al: PRMT5 circular RNA
promotes metastasis of urothelial carcinoma of the bladder through
sponging miR-30c to induce epithelial-mesenchymal transition. Clin
Cancer Res. 24:6319–6330. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Su H, Tao T, Yang Z, Kang X, Zhang X, Kang
D, Wu S and Li C: Circular RNA cTFRC acts as the sponge of
MicroRNA-107 to promote bladder carcinoma progression. Mol Cancer.
18:272019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Liu G, Zhou J, Piao Y, Zhao X, Zuo Y and
Ji Z: Hsa_circ_0085576 promotes clear cell renal cell carcinoma
tumorigenesis and metastasis through the miR-498/YAP1 axis. Aging
(Albany NY). 12:11530–11549. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Shen C, Wu Z, Wang Y, Gao S, Da L, Xie L,
Qie Y, Tian D and Hu H: Downregulated hsa_circ_0077837 and
hsa_circ_0004826, facilitate bladder cancer progression and predict
poor prognosis for bladder cancer patients. Cancer Med.
9:3885–3903. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Greene J, Baird AM, Casey O, Brady L,
Blackshields G, Lim M, O'Brien O, Gray SG, McDermott R and Finn SP:
Circular RNAs are differentially expressed in prostate cancer and
are potentially associated with resistance to enzalutamide. Sci
Rep. 9:107392019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chen J, Sun Y, Ou Z, Yeh S, Huang CP, You
B, Tsai YC, Sheu TJ, Zu X and Chang C: Androgen receptor-regulated
circFNTA activates KRAS signaling to promote bladder cancer
invasion. EMBO Rep. 32:e484672020.
|
|
71
|
Su Y, Yang W, Jiang N, Shi J, Chen L,
Zhong G, Bi J, Dong W, Wang Q, Wang C and Lin T: Hypoxia-elevated
circELP3 contributes to bladder cancer progression and cisplatin
resistance. Int J Biol Sci. 15:441–452. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Jin C, Shi L, Li Z, Liu W, Zhao B, Qiu Y,
Zhao Y, Li K, Li Y and Zhu Q: Circ_0039569 promotes renal cell
carcinoma growth and metastasis by regulating miR-34a-5p/CCL22. Am
J Transl Res. 11:4935–4945. 2019.PubMed/NCBI
|
|
73
|
Wang C, Tao W, Ni S and Chen Q: Circular
RNA circ-Foxo3 induced cell apoptosis in urothelial carcinoma via
interaction with miR-191-5p. Onco Targets Ther. 12:8085–8094. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yuan W, Zhou R, Wang J, Han J, Yang X, Yu
H, Lu H, Zhang X, Li P, Tao J, et al: Circular RNA Cdr1as
sensitizes bladder cancer to cisplatin by upregulating APAF1
expression through miR-1270 inhibition. Mol Oncol. 13:1559–1576.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Xie F, Zhao N, Zhang H and Xie D: Circular
RNA CircHIPK3 promotes gemcitabine sensitivity in bladder cancer. J
Cancer. 11:1907–1912. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Shen Z, Zhou L, Zhang C and Xu J:
Reduction of circular RNA Foxo3 promotes prostate cancer
progression and chemoresistance to docetaxel. Cancer Lett.
468:88–101. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wei Y, Chen X, Liang C, Ling Y, Yang X, Ye
X, Zhang H, Yang P, Cui X, Ren Y, et al: A noncoding regulatory
RNAs network driven by Circ-CDYL acts specifically in the early
stages hepatocellular carcinoma. Hepatology. 71:130–147. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Garikipati VNS, Verma SK, Cheng Z, Liang
D, Truongcao MM, Cimini M, Yue Y, Huang G, Wang C, Benedict C, et
al: Circular RNA CircFndc3b modulates cardiac repair after
myocardial infarction via FUS/VEGF-A axis. Nat Commun. 10:43172019.
View Article : Google Scholar : PubMed/NCBI
|