Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
May-2021 Volume 23 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2021 Volume 23 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Potential role of microRNAs in the regulation of pyroptosis (Review)

  • Authors:
    • Xinli Hu
    • Chenyu Wu
    • Junsheng Lou
    • Haiwei Ma
    • Xingyu Wang
    • Yu Xu
    • Yijie Chen
    • Sunren Sheng
    • Hui Xu
    • Huazi Xu
    • Xiangyang Wang
    • Wenfei Ni
    • Kailiang Zhou
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
  • Article Number: 363
    |
    Published online on: March 16, 2021
       https://doi.org/10.3892/mmr.2021.12002
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

MicroRNAs (miRNAs) perform a variety of important cellular functions, including regulating the cell cycle, apoptosis and differentiation, amongst others. Recent research has demonstrated an essential function performed by miRNAs in regulating pyroptosis, which is a type of programmed cell death associated with inflammatory responses that plays a critical role in numerous diseases. Through direct or indirect action on proteins associated with the pyroptosis signaling pathway, miRNAs are involved in the pathological processes of cardiovascular, kidney and immune diseases, among others. The present review discusses the maturation process of miRNAs and the process of pyroptosis, with a specific focus on the transport of miRNAs to damaged cells via exosomes, shedding vesicles and protein stabilized complexes, as well as the role of different miRNAs in the regulation of pyroptosis through different gene and protein targets. The aim of the present review was to provide a novel insight into the regulatory role of miRNAs in pyroptosis and new treatment options for pyroptosis‑associated diseases.
View Figures

Figure 1

View References

1 

Lau NC, Lim LP, Weinstein EG and Bartel DP: An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 294:858–862. 2001. View Article : Google Scholar : PubMed/NCBI

2 

Wang X, Ye L, Zhang K, Gao L, Xiao J and Zhang Y: Upregulation of microRNA-200a in bone marrow mesenchymal stem cells enhances the repair of spinal cord injury in rats by reducing oxidative stress and regulating Keap1/Nrf2 pathway. Artif Organs. 44:744–752. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Wang D, Fei Z, Luo S and Wang H: MiR-335-5p inhibits β-Amyloid (Aβ) accumulation to attenuate cognitive deficits through targeting c-jun-N-terminal kinase 3 in Alzheimer's disease. Curr Neurovasc Res. 17:93–101. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Mirzadeh Azad F, Arabian M, Maleki M and Malakootian M: Small molecules with big impacts on cardiovascular diseases. Biochem Genet. 58:359–383. 2020. View Article : Google Scholar : PubMed/NCBI

5 

Cao Q, Wu J, Wang X and Song C: Noncoding RNAs in vascular aging. Oxid Med Cell Longev. 2020:79149572020. View Article : Google Scholar : PubMed/NCBI

6 

Jorgensen I and Miao EA: Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 265:130–142. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Zychlinsky A, Fitting C, Cavaillon JM and Sansonetti PJ: Interleukin 1 is released by murine macrophages during apoptosis induced by Shigella flexneri. J Clin Invest. 94:1328–1332. 1994. View Article : Google Scholar : PubMed/NCBI

8 

Sangiuliano B, Perez NM, Moreira DF and Belizario JE: Cell death-associated molecular-pattern molecules: Inflammatory signaling and control. Mediators Inflamm. 2014:8210432014. View Article : Google Scholar : PubMed/NCBI

9 

Zendedel A, Monnink F, Hassanzadeh G, Zaminy A, Ansar MM, Habib P, Slowik A, Kipp M and Beyer C: Estrogen attenuates local inflammasome expression and activation after spinal cord injury. Mol Neurobiol. 55:1364–1375. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Mortezaee K, Khanlarkhani N, Beyer C and Zendedel A: Inflammasome: Its role in traumatic brain and spinal cord injury. J Cell Physiol. 233:5160–5169. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Ning S and Li X: Non-coding RNA resources. Adv Exp Med Biol. 1094:1–7. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Lander ES: Initial impact of the sequencing of the human genome. Nature. 470:187–197. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Paukstelis PJ, Chen JH, Chase E, Lambowitz AM and Golden BL: Structure of a tyrosyl-tRNA synthetase splicing factor bound to a group I intron RNA. Nature. 451:94–97. 2008. View Article : Google Scholar : PubMed/NCBI

14 

International Human Genome Sequencing Consortium, . Finishing the euchromatic sequence of the human genome. Nature. 431:931–945. 2004. View Article : Google Scholar : PubMed/NCBI

15 

Batista PJ and Chang HY: Long noncoding RNAs: Cellular address codes in development and disease. Cell. 152:1298–1307. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Xiao MS, Ai Y and Wilusz JE: Biogenesis and functions of Circular RNAs come into focus. Trends Cell Biol. 30:226–240. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Veneziano D, Nigita G and Ferro A: Computational approaches for the analysis of ncRNA through deep sequencing techniques. Front Bioeng Biotechnol. 3:772015. View Article : Google Scholar : PubMed/NCBI

18 

Nie A, Sun B, Fu Z and Yu D: Roles of aminoacyl-tRNA synthetases in immune regulation and immune diseases. Cell Death Dis. 10:9012019. View Article : Google Scholar : PubMed/NCBI

19 

Nigita G, Marceca GP, Tomasello L, Distefano R, Calore F, Veneziano D, Romano G, Nana-Sinkam SP, Acunzo M and Croce CM: ncRNA editing: Functional characterization and computational resources. Methods Mol Biol. 1912:133–174. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Tielking K, Fischer S, Preissner KT, Vajkoczy P and Xu R: Extracellular RNA in Central Nervous System Pathologies. Front Mol Neurosci. 12:2542019. View Article : Google Scholar : PubMed/NCBI

21 

Yu AM, Batra N, Tu MJ and Sweeney C: Novel approaches for efficient in vivo fermentation production of noncoding RNAs. Appl Microbiol Biotechnol. 104:1927–1937. 2020. View Article : Google Scholar : PubMed/NCBI

22 

Zhang D, Zhou J, Gao J, Wu RY, Huang YL, Jin QW, Chen JS, Tang WZ and Yan LH: Targeting snoRNAs as an emerging method of therapeutic development for cancer. Am J Cancer Res. 9:1504–1516. 2019.PubMed/NCBI

23 

Ferlita A, Battaglia R, Andronico F, Caruso S, Cianci A, Purrello M and Pietro CD: Non-Coding RNAs in endometrial physiopathology. Int J Mol Sci. 19:21202018. View Article : Google Scholar

24 

Lu Q, Wu R, Zhao M, Garcia-Gomez A and Ballestar E: MiRNAs as therapeutic targets in inflammatory disease. Trends Pharmacol Sci. 40:853–865. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI

27 

Cummins JM and Velculescu VE: Implications of micro-RNA profiling for cancer diagnosis. Oncogene. 25:6220–6227. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Shendure J and Ji H: Next-generation DNA sequencing. Nat Biotechnol. 26:1135–1145. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Croce CM and Calin GA: MiRNAs, cancer, and stem cell division. Cell. 122:6–7. 2005. View Article : Google Scholar : PubMed/NCBI

30 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Gaudet AD, Fonken LK, Watkins LR, Nelson RJ and Popovich PG: MicroRNAs: Roles in regulating neuroinflammation. Neuroscientist. 24:221–245. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Chen X, Liang H, Zhang J, Zen K and Zhang CY: Secreted microRNAs: A new form of intercellular communication. Trends Cell Biol. 22:125–132. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Dai Y, Wang S, Chang S, Ren D, Shali S, Li C, Yang H, Huang Z and Ge J: M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-κB/NLRP3 inflammasome signaling pathway. J Mol Cell Cardiol. 142:65–79. 2020. View Article : Google Scholar : PubMed/NCBI

34 

Wang B, Wang ZM, Ji JL, Gan W, Zhang A, Shi HJ, Wang H, Lv L, Li Z, Tang T, et al: Macrophage-Derived Exosomal Mir-155 Regulating cardiomyocyte pyroptosis and hypertrophy in uremic cardiomyopathy. JACC Basic Transl Sci. 5:148–166. 2020. View Article : Google Scholar : PubMed/NCBI

35 

Ding X, Jing N, Shen A, Guo F, Song Y, Pan M, Ma X, Zhao L, Zhang H, Wu L, et al: MiR-21-5p in macrophage-derived extracellular vesicles affects podocyte pyroptosis in diabetic nephropathy by regulating A20. J Endocrinol Invest. Sep 15–2020.(Epub ahead of print). View Article : Google Scholar

36 

Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD and Remaley AT: MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 13:423–433. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Cheng F, Pan Y, Lu YM, Zhu L and Chen S: RNA-binding protein dnd1 promotes breast cancer apoptosis by stabilizing the Bim mRNA in a miR-221 binding site. Biomed Res Int. 2017:95961522017. View Article : Google Scholar : PubMed/NCBI

38 

Rong J, Xu J, Liu Q, Xu J, Mou T, Zhang X, Chi H and Zhou H: Anti-inflammatory effect of up-regulated microRNA-221-3p on coronary heart disease via suppressing NLRP3/ASC/pro-caspase-1 inflammasome pathway activation. Cell Cycle. 19:1478–1491. 2020. View Article : Google Scholar : PubMed/NCBI

39 

Akkoc Y and Gozuacik D: MicroRNAs as major regulators of the autophagy pathway. Biochim Biophys Acta Mol Cell Res. 1867:1186622020. View Article : Google Scholar : PubMed/NCBI

40 

Treiber T, Treiber N and Meister G: Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 20:5–20. 2019. View Article : Google Scholar : PubMed/NCBI

41 

Lee Y, Jeon K, Lee JT, Kim S and Kim VN: MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J. 21:4663–4670. 2002. View Article : Google Scholar : PubMed/NCBI

42 

Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S and Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature. 425:415–419. 2003. View Article : Google Scholar : PubMed/NCBI

43 

Bernstein E, Caudy AA, Hammond SM and Hannon GJ: Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 409:363–366. 2001. View Article : Google Scholar : PubMed/NCBI

44 

Marchese FP, Raimondi I and Huarte M: The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 18:2062017. View Article : Google Scholar : PubMed/NCBI

45 

Barrett SP and Salzman J: Circular RNAs: Analysis, expression and potential functions. Development. 143:1838–1847. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Filipowicz W, Bhattacharyya SN and Sonenberg N: Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat Rev Genet. 9:102–114. 2008. View Article : Google Scholar : PubMed/NCBI

47 

Santarpia L, Nicoloso M and Calin GA: MicroRNAs: A complex regulatory network drives the acquisition of malignant cell phenotype. Endocr Relat Cancer. 17:F51–F75. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS and Johnson JM: Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 433:769–773. 2005. View Article : Google Scholar : PubMed/NCBI

49 

Negrini M, Nicoloso MS and Calin GA: MicroRNAs and cancer-new paradigms in molecular oncology. Curr Opin Cell Biol. 21:470–479. 2009. View Article : Google Scholar : PubMed/NCBI

50 

Li G, Shen F, Fan Z, Wang Y, Kong X, Yu D, Zhi X, Lv G and Cao Y: Dynasore improves motor function recovery via inhibition of neuronal apoptosis and astrocytic proliferation after spinal cord injury in rats. Mol Neurobiol. 54:7471–7482. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Tang P, Hou H and Zhang L, Lan X, Mao Z, Liu D, He C, Du H and Zhang L: Autophagy reduces neuronal damage and promotes locomotor recovery via inhibition of apoptosis after spinal cord injury in rats. Mol Neurobiol. 49:276–287. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Bao Z, Fan L, Zhao L, Xu X, Liu Y, Chao H, Liu N, You Y, Liu Y, Wang X and Ji J: Silencing of A20 aggravates neuronal death and inflammation after traumatic brain injury: A potential trigger of necroptosis. Front Mol Neurosci. 12:2222019. View Article : Google Scholar : PubMed/NCBI

53 

Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI

54 

Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al: Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Zychlinsky A, Prevost MC and Sansonetti PJ: Shigella flexneri induces apoptosis in infected macrophages. Nature. 358:167–169. 1992. View Article : Google Scholar : PubMed/NCBI

56 

Cookson BT and Brennan MA: Pro-inflammatory programmed cell death. Trends Microbiol. 9:113–114. 2001. View Article : Google Scholar : PubMed/NCBI

57 

Fink SL and Cookson BT: Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 8:1812–1825. 2006. View Article : Google Scholar : PubMed/NCBI

58 

Lu F, Lan Z, Xin Z, He C, Guo Z, Xia X and Hu T: Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases. J Cell Physiol. 235:3207–3221. 2020. View Article : Google Scholar : PubMed/NCBI

59 

Johnson DC, Taabazuing CY, Okondo MC, Chui AJ, Rao SD, Brown FC, Reed C, Peguero E, de Stanchina E, Kentsis A and Bachovchin DA: DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat Med. 24:1151–1156. 2018. View Article : Google Scholar : PubMed/NCBI

60 

Wu C, Lu W, Zhang Y, Zhang G, Shi X, Hisada Y, Grover SP, Zhang X, Li L, Xiang B, et al: Inflammasome activation triggers blood clotting and host death through pyroptosis. Immunity. 50:1401–1411.e4. 2019. View Article : Google Scholar : PubMed/NCBI

61 

Bergsbaken T, Fink SL and Cookson BT: Pyroptosis: Host cell death and inflammation. Nat Rev Microbiol. 7:99–109. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F and Shao F: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 526:660–665. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Spel L and Martinon F: Inflammasomes contributing to inflammation in arthritis. Immunol Rev. 294:48–62. 2020. View Article : Google Scholar : PubMed/NCBI

64 

Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L and Shao F: Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 514:187–192. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Viganò E, Diamond CE, Spreafico R, Balachander A, Sobota RM and Mortellaro A: Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat Commun. 6:87612015. View Article : Google Scholar : PubMed/NCBI

66 

Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, et al: Non-canonical inflammasome activation targets caspase-11. Nature. 479:117–121. 2011. View Article : Google Scholar : PubMed/NCBI

67 

Broz P, Ruby T, Belhocine K, Bouley DM, Kayagaki N, Dixit VM and Monack DM: Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature. 490:288–291. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Vigano E and Mortellaro A: Caspase-11: The driving factor for noncanonical inflammasomes. Eur J Immunol. 43:2240–2245. 2013. View Article : Google Scholar : PubMed/NCBI

69 

Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL and Hornung V: NLRP3 inflammasome activity is negatively controlled by miR-223. J Immunol. 189:4175–4181. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Baek D, Villen J, Shin C, Camargo FD, Gygi SP and Bartel DP: The impact of microRNAs on protein output. Nature. 455:64–71. 2008. View Article : Google Scholar : PubMed/NCBI

71 

Guo H, Ingolia NT, Weissman JS and Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 466:835–840. 2010. View Article : Google Scholar : PubMed/NCBI

72 

Haneklaus M, Gerlic M, Kurowska-Stolarska M, Rainey AA, Pich D, McInnes IB, Hammerschmidt W, O'Neill LA and Masters SL: Cutting edge: MiR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1β production. J Immunol. 189:3795–3799. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Chen C, Zhou M, Ge Y and Wang X: SIRT1 and aging related signaling pathways. Mech Ageing Dev. 187:1112152020. View Article : Google Scholar : PubMed/NCBI

74 

Khan RS, Fonseca-Kelly Z, Callinan C, Zuo L, Sachdeva MM and Shindler KS: SIRT1 activating compounds reduce oxidative stress and prevent cell death in neuronal cells. Front Cell Neurosci. 6:632012. View Article : Google Scholar : PubMed/NCBI

75 

Wang Z, Sun L, Jia K, Wang H and Wang X: MiR-9-5p modulates the progression of Parkinson's disease by targeting SIRT1. Neurosci Lett. 701:226–233. 2019. View Article : Google Scholar : PubMed/NCBI

76 

Ding S, Liu D, Wang L, Wang G and Zhu Y: Inhibiting MicroRNA-29a protects myocardial ischemia-reperfusion injury by targeting SIRT1 and suppressing oxidative stress and NLRP3-mediated pyroptosis pathway. J Pharmacol Exp Ther. 372:128–135. 2020. View Article : Google Scholar : PubMed/NCBI

77 

Lu D, Liu J, Jiao J, Long B, Li Q, Tan W and Li P: Transcription factor Foxo3a prevents apoptosis by regulating calcium through the apoptosis repressor with caspase recruitment domain. J Biol Chem. 288:8491–8504. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Lee S, Choi E, Cha MJ and Hwang KC: Looking for pyroptosis-modulating miRNAs as a therapeutic target for improving myocardium survival. Mediators Inflamm. 2015:2548712015. View Article : Google Scholar : PubMed/NCBI

79 

Bergsbaken T and Cookson BT: Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog. 3:e1612007. View Article : Google Scholar : PubMed/NCBI

80 

Jin X, Jin H, Shi Y, Guo Y and Zhang H: Long Non-Coding RNA KCNQ1OT1 promotes cataractogenesis via miR-214 and activation of the caspase-1 pathway. Cell Physiol Biochem. 42:295–305. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Mezzaroma E, Toldo S, Farkas D, Seropian IM, Van Tassell BW, Salloum FN, Kannan HR, Menna AC, Voelkel NF and Abbate A: The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci USA. 108:19725–19730. 2011. View Article : Google Scholar : PubMed/NCBI

82 

Li A, Yu Y, Ding X, Qin Y, Jiang Y, Wang X, Liu G, Chen X, Yue E, Sun X, et al: MiR-135b protects cardiomyocytes from infarction through restraining the NLRP3/caspase-1/IL-1β pathway. Int J Cardiol. 307:137–145. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Yang F, Qin Y, Wang Y, Li A, Lv J, Sun X, Che H, Han T, Meng S, Bai Y and Wang L: LncRNA KCNQ1OT1 mediates pyroptosis in diabetic cardiomyopathy. Cell Physiol Biochem. 50:1230–1244. 2018. View Article : Google Scholar : PubMed/NCBI

84 

Li X, Du N, Zhang Q, Li J, Chen X, Liu X, Hu Y, Qin W, Shen N, Xu C, et al: MicroRNA-30d regulates cardiomyocyte pyroptosis by directly targeting foxo3a in diabetic cardiomyopathy. Cell Death Dis. 5:e14792014. View Article : Google Scholar : PubMed/NCBI

85 

Jeyabal P, Thandavarayan RA, Joladarashi D, Suresh Babu S, Krishnamurthy S, Bhimaraj A, Youker KA, Kishore R and Krishnamurthy P: MicroRNA-9 inhibits hyperglycemia-induced pyroptosis in human ventricular cardiomyocytes by targeting ELAVL1. Biochem Biophys Res Commun. 471:423–429. 2016. View Article : Google Scholar : PubMed/NCBI

86 

Hoseini Z, Sepahvand F, Rashidi B, Sahebkar A, Masoudifar A and Mirzaei H: NLRP3 inflammasome: Its regulation and involvement in atherosclerosis. J Cell Physiol. 233:2116–2132. 2018. View Article : Google Scholar : PubMed/NCBI

87 

Xu YJ, Zheng L, Hu YW and Wang Q: Pyroptosis and its relationship to atherosclerosis. Clin Chim Acta. 476:28–37. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Chang W, Lin J, Dong J and Li D: Pyroptosis: An inflammatory cell death implicates in atherosclerosis. Med Hypotheses. 81:484–486. 2013. View Article : Google Scholar : PubMed/NCBI

89 

Gao Y, Peng J, Ren Z, He NY, Li Q, Zhao XS, Wang MM, Wen HY, Tang ZH, Jiang ZS, et al: Functional regulatory roles of microRNAs in atherosclerosis. Clin Chim Acta. 460:164–171. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Li P, Zhong X, Li J, Liu H, Ma X, He R and Zhao Y: MicroRNA-30c-5p inhibits NLRP3 inflammasome-mediated endothelial cell pyroptosis through FOXO3 down-regulation in atherosclerosis. Biochem Biophys Res Commun. 503:2833–2840. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Song Y, Yang L, Guo R, Lu N, Shi Y and Wang X: Long noncoding RNA MALAT1 promotes high glucose-induced human endothelial cells pyroptosis by affecting NLRP3 expression through competitively binding miR-22. Biochem Biophys Res Commun. 509:359–366. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Peng J, Tang ZH, Ren Z, He B, Zeng Y, Liu LS, Wang Z, Wei DH, Zheng XL and Jiang ZS: TET2 protects against oxLDL-induced HUVEC dysfunction by upregulating the CSE/H2S system. Front Pharmacol. 8:4862017. View Article : Google Scholar : PubMed/NCBI

93 

Zhaolin Z, Jiaojiao C, Peng W, Yami L, Tingting Z, Jun T, Shiyuan W, Jinyan X, Dangheng W, Zhisheng J and Zuo W: OxLDL induces vascular endothelial cell pyroptosis through miR-125a-5p/TET2 pathway. J Cell Physiol. 234:7475–7491. 2019.PubMed/NCBI

94 

Tong R, Jia T, Shi R and Yan F: Inhibition of microRNA-15 protects H9c2 cells against CVB3-induced myocardial injury by targeting NLRX1 to regulate the NLRP3 inflammasome. Cell Mol Biol Lett. 25:62020. View Article : Google Scholar : PubMed/NCBI

95 

Liu X, Hong Q, Wang Z, Yu Y, Zou X and Xu L: MiR-21 inhibits autophagy by targeting Rab11a in renal ischemia/reperfusion. Exp Cell Res. 338:64–69. 2015. View Article : Google Scholar : PubMed/NCBI

96 

Ma N, Bai J, Zhang W, Luo H, Zhang X, Liu D and Qiao C: Trimetazidine protects against cardiac ischemia/reperfusion injury via effects on cardiac miRNA21 expression, Akt and the Bcl2/Bax pathway. Mol Med Rep. 14:4216–4222. 2016. View Article : Google Scholar : PubMed/NCBI

97 

An P, Xie J, Qiu S, Liu Y, Wang J, Xiu X, Li L and Tang M: Hispidulin exhibits neuroprotective activities against cerebral ischemia reperfusion injury through suppressing NLRP3-mediated pyroptosis. Life Sci. 232:1165992019. View Article : Google Scholar : PubMed/NCBI

98 

Wu H, Huang T, Ying L, Han C, Li D, Xu Y, Zhang M, Mou S and Dong Z: MiR-155 is involved in renal ischemia-reperfusion injury via direct targeting of FoxO3a and regulating renal tubular cell pyroptosis. Cell Physiol Biochem. 40:1692–1705. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Lin J, Lin H, Ma C, Dong F, Hu Y and Li H: MiR-149 aggravates pyroptosis in myocardial ischemia-reperfusion damage via silencing FoxO3. Med Sci Monit. 25:8733–8743. 2019. View Article : Google Scholar : PubMed/NCBI

100 

Corpas R, Revilla S, Ursulet S, Castro-Freire M, Kaliman P, Petegnief V, Giménez-Llort L, Sarkis C, Pallàs M and Sanfeliu C: SIRT1 overexpression in mouse hippocampus induces cognitive enhancement through proteostatic and neurotrophic mechanisms. Mol Neurobiol. 54:5604–5619. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Ran C, Wirdefeldt K, Brodin L, Ramezani M, Westerlund M, Xiang F, Anvret A, Willows T, Sydow O, Johansson A, et al: Genetic variations and mRNA expression of NRF2 in Parkinson's disease. Parkinsons Dis. 2017:40201982017.PubMed/NCBI

102 

Sharma S and Lu HC: MicroRNAs in neurodegeneration: Current findings and potential impacts. J Alzheimers Dis Parkinsonism. 8:4202018. View Article : Google Scholar : PubMed/NCBI

103 

Zeng R, Luo DX, Li HP, Zhang QS, Lei SS and Chen JH: MicroRNA-135b alleviates MPP+-mediated Parkinson's disease in in vitro model through suppressing FoxO1-induced NLRP3 inflammasome and pyroptosis. J Clin Neurosci. 65:125–133. 2019. View Article : Google Scholar : PubMed/NCBI

104 

Fan Z, Lu M, Qiao C, Zhou Y, Ding JH and Hu G: MicroRNA-7 enhances subventricular zone neurogenesis by inhibiting nLRP3/Caspase-1 axis in adult neural stem cells. Mol Neurobiol. 53:7057–7069. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Cao B, Wang T, Qu Q, Kang T and Yang Q: Long noncoding RNA SNHG1 promotes neuroinflammation in Parkinson's disease via regulating miR-7/NLRP3 pathway. Neuroscience. 388:118–127. 2018. View Article : Google Scholar : PubMed/NCBI

106 

Jiang Z, Yao L, Ma H, Xu P, Li Z, Guo M, Chen J, Bao H, Qiao S, Zhao Y, et al: MiRNA-214 inhibits cellular proliferation and migration in glioma cells targeting caspase 1 involved in pyroptosis. Oncol Res. 25:1009–1019. 2017. View Article : Google Scholar : PubMed/NCBI

107 

Tian BG, Hua Z, Wang ZJ and Li J: Knockdown of microRNA-181a inhibits osteosarcoma cells growth and invasion through triggering NLRP3-dependent pyroptosis. Eur Rev Med Pharmacol Sci. 24:1030–1040. 2020.PubMed/NCBI

108 

Xue Z, Xi Q, Liu H, Guo X, Zhang J, Zhang Z, Li Y, Yang G, Zhou D, Yang H, et al: MiR-21 promotes NLRP3 inflammasome activation to mediate pyroptosis and endotoxic shock. Cell Death Dis. 10:4612019. View Article : Google Scholar : PubMed/NCBI

109 

Ying Y, Mao Y and Yao M: NLRP3 inflammasome activation by MicroRNA-495 promoter methylation may contribute to the progression of acute lung injury. Mol Ther Nucleic Acids. 18:801–814. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Hu X, Wu C, Lou J, Ma H, Wang X, Xu Y, Chen Y, Sheng S, Xu H, Xu H, Xu H, et al: Potential role of microRNAs in the regulation of pyroptosis (Review). Mol Med Rep 23: 363, 2021.
APA
Hu, X., Wu, C., Lou, J., Ma, H., Wang, X., Xu, Y. ... Zhou, K. (2021). Potential role of microRNAs in the regulation of pyroptosis (Review). Molecular Medicine Reports, 23, 363. https://doi.org/10.3892/mmr.2021.12002
MLA
Hu, X., Wu, C., Lou, J., Ma, H., Wang, X., Xu, Y., Chen, Y., Sheng, S., Xu, H., Xu, H., Wang, X., Ni, W., Zhou, K."Potential role of microRNAs in the regulation of pyroptosis (Review)". Molecular Medicine Reports 23.5 (2021): 363.
Chicago
Hu, X., Wu, C., Lou, J., Ma, H., Wang, X., Xu, Y., Chen, Y., Sheng, S., Xu, H., Xu, H., Wang, X., Ni, W., Zhou, K."Potential role of microRNAs in the regulation of pyroptosis (Review)". Molecular Medicine Reports 23, no. 5 (2021): 363. https://doi.org/10.3892/mmr.2021.12002
Copy and paste a formatted citation
x
Spandidos Publications style
Hu X, Wu C, Lou J, Ma H, Wang X, Xu Y, Chen Y, Sheng S, Xu H, Xu H, Xu H, et al: Potential role of microRNAs in the regulation of pyroptosis (Review). Mol Med Rep 23: 363, 2021.
APA
Hu, X., Wu, C., Lou, J., Ma, H., Wang, X., Xu, Y. ... Zhou, K. (2021). Potential role of microRNAs in the regulation of pyroptosis (Review). Molecular Medicine Reports, 23, 363. https://doi.org/10.3892/mmr.2021.12002
MLA
Hu, X., Wu, C., Lou, J., Ma, H., Wang, X., Xu, Y., Chen, Y., Sheng, S., Xu, H., Xu, H., Wang, X., Ni, W., Zhou, K."Potential role of microRNAs in the regulation of pyroptosis (Review)". Molecular Medicine Reports 23.5 (2021): 363.
Chicago
Hu, X., Wu, C., Lou, J., Ma, H., Wang, X., Xu, Y., Chen, Y., Sheng, S., Xu, H., Xu, H., Wang, X., Ni, W., Zhou, K."Potential role of microRNAs in the regulation of pyroptosis (Review)". Molecular Medicine Reports 23, no. 5 (2021): 363. https://doi.org/10.3892/mmr.2021.12002
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team