Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
May-2021 Volume 23 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2021 Volume 23 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Advances in the study of the role and molecular mechanism of with‑no‑lysine kinase 3 in nervous system diseases (Review)

  • Authors:
    • Ya-Ting Gong
    • Mu-Yao Wu
    • Jia-Feng Tang
    • Jin-Chao Shen
    • Jie  Li
    • Rong Gao
    • Bao-Qi Dang
    • Gang Chen
  • View Affiliations / Copyright

    Affiliations: Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China, Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China, Department of Intensive Care Unit, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China, Department of Neurosurgery, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China, Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
  • Article Number: 393
    |
    Published online on: March 22, 2021
       https://doi.org/10.3892/mmr.2021.12032
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

With‑no‑lysine kinase 3 (WNK3) is a serine/threonine kinase that functions by regulating downstream signaling molecules. WNK3 mainly regulates intracellular and extracellular Na+, Cl‑ and K+ levels by regulating downstream ion transporters, the disruption of which has been associated with cerebral ischemia, epilepsy, glioma and other diseases. In addition, WNK3 was demonstrated to regulate neuronal splicing factor RNA binding fox‑1 homolog‑1 to influence autism. Over the past 20 years, accumulating evidence has reported that dysfunctional WNK3 signaling was involved in the pathologies of various neurological disorders; therefore, WNK3 has become a promising therapeutic target for ameliorating the corresponding symptoms of such disorders. The present review aimed to provide a general overview of the expression patterns and physiological functions of WNK3 signaling and its pathophysiological roles in neurological diseases, such as epilepsy, ischemic brain injury, intracerebral hemorrhage, autism, glioma and schizophrenia.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Siew K and O'Shaughnessy KM: Extrarenal roles of the with-no-lysine[K] kinases (WNKs). Clin Exp Pharmacol Physiol. 40:885–894. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Xu B, English JM, Wilsbacher JL, Stippec S, Goldsmith EJ and Cobb MH: WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J Biol Chem. 275:16795–16801. 2000. View Article : Google Scholar : PubMed/NCBI

3 

Akella R, Drozdz MA, Humphreys JM, Jiou J, Durbacz MZ, Mohammed ZJ, He H, Liwocha J, Sekulski K and Goldsmith EJ: A phosphorylated intermediate in the activation of WNK kinases. Biochemistry. 59:1747–1755. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Thomson MN, Cuevas CA, Bewarder TM, Dittmayer C, Miller LN, Si J, Cornelius RJ, Su XT, Yang CL, McCormick JA, et al: WNK bodies cluster WNK4 and SPAK/OSR1 to promote NCC activation in hypokalemia. Am J Physiol Renal Physiol. 318:F216–F228. 2020. View Article : Google Scholar : PubMed/NCBI

5 

Gao JL, Peng K, Shen MW, Hou YH, Qian XB, Meng XW, Ji FH, Wang LN and Yang JP: Suppression of WNK1-SPAK/OSR1 attenuates bone cancer pain by regulating NKCC1 and KCC2. J Pain. 20:1416–1428. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Bergaya S, Vidal-Petiot E, Jeunemaitre X and Hadchouel J: Pathogenesis of pseudohypoaldosteronism type 2 by WNK1 mutations. Curr Opin Nephrol Hypertens. 21:39–45. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Naray-Fejes-Toth A, Snyder PM and Fejes-Toth G: The kidney-specific WNK1 isoform is induced by aldosterone and stimulates epithelial sodium channel-mediated Na+ transport. Proc Natl Acad Sci USA. 101:17434–17439. 2004. View Article : Google Scholar : PubMed/NCBI

8 

Huang CL, Jian X and Yuh CH: Wnk1-Osr1/spak kinase cascade is important for angiogenesis. Trans Am Clin Climatol Assoc. 131:140–146. 2020.PubMed/NCBI

9 

Liu Z, Yoon J, Wichaidit C, Jaykumar AB, Dbouk HA, Embry AE, Liu L, Henderson JM, Chang AN, Cobb MH and Miller RT: Control of podocyte and glomerular capillary wall structure and elasticity by WNK1 kinase. Front Cell Dev Biol. 8:6188982020. View Article : Google Scholar : PubMed/NCBI

10 

Chi RA, Wang T, Huang CL, Wu SP, Young SL, Lydon JP and DeMayo FJ: WNK1 regulates uterine homeostasis and its ability to support pregnancy. JCI Insight. 5:e1418322020. View Article : Google Scholar

11 

Zhao X, Lai G, Tu J, Liu S and Zhao Y: Crosstalk between phosphorylation and ubiquitination is involved in high salt-induced WNK4 expression. Exp Ther Med. 21:1332021. View Article : Google Scholar : PubMed/NCBI

12 

Sie ZL, Li RY, Sampurna BP, Hsu PJ, Liu SC, Wang HD, Huang CL and Yuh CH: WNK1 kinase stimulates angiogenesis to promote tumor growth and metastasis. Cancers (Basel). 12:5752020. View Article : Google Scholar

13 

Rafael C, Chavez-Canales M and Hadchouel J: New perspective on the role of WNK1 and WNK4 in the regulation of NaCl reabsorption and K(+) secretion by the distal nephron. Med Sci (Paris). 32:274–280. 2016.(In French). View Article : Google Scholar : PubMed/NCBI

14 

Delaloy C, Lu J, Houot AM, Disse-Nicodeme S, Gasc JM, Corvol P and Jeunemaitre X: Multiple promoters in the WNK1 gene: One controls expression of a kidney-specific kinase-defective isoform. Mol Cell Biol. 23:9208–9221. 2003. View Article : Google Scholar : PubMed/NCBI

15 

Furusho T, Uchida S and Sohara E: The WNK signaling pathway and salt-sensitive hypertension. Hypertens Res. 43:733–743. 2020. View Article : Google Scholar : PubMed/NCBI

16 

Anderegg MA, Albano G, Hanke D, Deisl C, Uehlinger DE, Brandt S, Bhardwaj R, Hediger MA and Fuster DG: The sodium/proton exchanger NHA2 regulates blood pressure through a WNK4-NCC dependent pathway in the kidney. Kidney Int. 99:350–363. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Klebe D, Iniaghe L, Burchell S, Reis C, Akyol O, Tang J and Zhang JH: Intracerebral hemorrhage in mice. Methods Mol Biol. 1717:83–91. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Rinehart J, Vazquez N, Kahle KT, Hodson CA, Ring AM, Gulcicek EE, Louvi A, Bobadilla NA, Gamba G and Lifton RP: WNK2 kinase is a novel regulator of essential neuronal cation-chloride cotransporters. J Biol Chem. 286:30171–30180. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Costa AM, Pinto F, Martinho O, Oliveira MJ, Jordan P and Reis RM: Silencing of the tumor suppressor gene WNK2 is associated with upregulation of MMP2 and JNK in gliomas. Oncotarget. 6:1422–1434. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Alves ALV, Costa AM, Martinho O, da Silva VD, Jordan P, Silva VAO and Reis RM: WNK2 inhibits autophagic flux in human glioblastoma cell line. Cells. 9:4852020. View Article : Google Scholar

21 

Moniz S, Martinho O, Pinto F, Sousa B, Loureiro C, Oliveira MJ, Moita LF, Honavar M, Pinheiro C, Pires M, et al: Loss of WNK2 expression by promoter gene methylation occurs in adult gliomas and triggers Rac1-mediated tumour cell invasiveness. Hum Mol Genet. 22:84–95. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Holden S, Cox J and Raymond FL: Cloning, genomic organization, alternative splicing and expression analysis of the human gene WNK3 (PRKWNK3). Gene. 335:109–119. 2004. View Article : Google Scholar : PubMed/NCBI

23 

Moniz S and Jordan P: Emerging roles for WNK kinases in cancer. Cell Mol Life Sci. 67:1265–1276. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Kahle KT, Ring AM and Lifton RP: Molecular physiology of the WNK kinases. Annu Rev Physiol. 70:329–355. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Verissimo F, Silva E, Morris JD, Pepperkok R and Jordan P: Protein kinase WNK3 increases cell survival in a caspase-3-dependent pathway. Oncogene. 25:4172–4182. 2006. View Article : Google Scholar : PubMed/NCBI

26 

de Los Heros P, Pacheco-Alvarez D and Gamba G: Role of WNK kinases in the modulation of cell volume. Curr Top Membr. 81:207–235. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Wu D, Lai N, Deng R, Liang T, Pan P, Yuan G, Li X, Li H, Shen H, Wang Z and Chen G: Activated WNK3 induced by intracerebral hemorrhage deteriorates brain injury maybe via WNK3/SPAK/NKCC1 pathway. Exp Neurol. 332:1133862020. View Article : Google Scholar : PubMed/NCBI

28 

Pacheco-Alvarez D and Gamba G: WNK3 is a putative chloride-sensing kinase. Cell Physiol Biochem. 28:1123–1134. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Begum G, Yuan H, Kahle KT, Li L, Wang S, Shi Y, Shmukler BE, Yang SS, Lin SH, Alper SL and Sun D: Inhibition of WNK3 kinase signaling reduces brain damage and accelerates neurological recovery after stroke. Stroke. 46:1956–1965. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Tang BL: (WNK)ing at death: With-no-lysine (Wnk) kinases in neuropathies and neuronal survival. Brain Res Bull. 125:92–98. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Haas BR, Cuddapah VA, Watkins S, Rohn KJ, Dy TE and Sontheimer H: With-no-lysine kinase 3 (WNK3) stimulates glioma invasion by regulating cell volume. Am J Physiol Cell Physiol. 301:C1150–C1160. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Shekarabi M, Zhang J, Khanna AR, Ellison DH, Delpire E and Kahle KT: WNK kinase signaling in ion homeostasis and human disease. Cell Metab. 25:285–299. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Schreck KA and Richdale AL: Sleep problems, behavior, and psychopathology in autism: inter-relationships across the lifespan. Curr Opin Psychol. 34:105–111. 2020. View Article : Google Scholar : PubMed/NCBI

34 

Fakhoury M: Autistic spectrum disorders: A review of clinical features, theories and diagnosis. Int J Dev Neurosci. 43:70–77. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Richdale AL and Schreck KA: Sleep problems in autism spectrum disorders: Prevalence, nature, and possible biopsychosocial aetiologies. Sleep Med Rev. 13:403–411. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Horvath GA, Stowe RM, Ferreira CR and Blau N: Clinical and biochemical footprints of inherited metabolic diseases. III. Psychiatric presentations. Mol Genet Metab. 130:1–6. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Fogel BL, Wexler E, Wahnich A, Friedrich T, Vijayendran C, Gao F, Parikshak N, Konopka G and Geschwind DH: RBFOX1 regulates both splicing and transcriptional networks in human neuronal development. Hum Mol Genet. 21:4171–4186. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Wen M, Yan Y, Yan N, Chen XS, Liu SY and Feng ZH: Upregulation of RBFOX1 in the malformed cortex of patients with intractable epilepsy and in cultured rat neurons. Int J Mol Med. 35:597–606. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, Mill J, Cantor RM, Blencowe BJ and Geschwind DH: Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature. 474:380–384. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J, et al: Strong association of de novo copy number mutations with autism. Science. 316:445–449. 2007. View Article : Google Scholar : PubMed/NCBI

41 

Qiao Y, Liu X, Harvard C, Hildebrand MJ, Rajcan-Separovic E, Holden JJ and Lewis ME: Autism-associated familial microdeletion of Xp11.22. Clin Genet. 74:134–144. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Edens AC, Lyons MJ, Duron RM, Dupont BR and Holden KR: Autism in two females with duplications involving Xp11.22-p11.23. Dev Med Child Neurol. 53:463–466. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Lee AY, Chen W, Stippec S, Self J, Yang F, Ding X, Chen S, Juang YC and Cobb MH: Protein kinase WNK3 regulates the neuronal splicing factor Fox-1. Proc Natl Acad Sci USA. 109:16841–16846. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Chung BH, Drmic I, Marshall CR, Grafodatskaya D, Carter M, Fernandez BA, Weksberg R, Roberts W and Scherer SW: Phenotypic spectrum associated with duplication of Xp11.22-p11.23 includes autism spectrum disorder. Eur J Med Genet. 54:e516–e520. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Gehman LT, Stoilov P, Maguire J, Damianov A, Lin CH, Shiue L, Ares M Jr, Mody I and Black DL: The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain. Nat Genet. 43:706–711. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Piton A, Gauthier J, Hamdan FF, Lafrenière RG, Yang Y, Henrion E, Laurent S, Noreau A, Thibodeau P, Karemera L, et al: Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Mol Psychiatry. 16:867–880. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Navidhamidi M, Ghasemi M and Mehranfard N: Epilepsy- associated alterations in hippocampal excitability. Rev Neurosci. 28:307–334. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Zhou Y, Liu M and Liang WN: Progress on the epidemiological study of epilepsy. Zhonghua Liu Xing Bing Xue Za Zhi. 28:92–94. 2007.(In Chinese). PubMed/NCBI

49 

Thurman DJ, Hesdorffer DC and French JA: Sudden unexpected death in epilepsy: Assessing the public health burden. Epilepsia. 55:1479–1485. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Devinsky O, Vezzani A, O'Brien TJ, Jette N, Scheffer IE, de Curtis M and Perucca P: Epilepsy. Nat Rev Dis Primers. 4:180242018. View Article : Google Scholar : PubMed/NCBI

51 

Chen Z, Brodie MJ, Liew D and Kwan P: Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: A 30-year longitudinal cohort study. JAMA Neurol. 75:279–286. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Shima A, Nitta N, Suzuki F, Laharie AM, Nozaki K and Depaulis A: Activation of mTOR signaling pathway is secondary to neuronal excitability in a mouse model of mesio-temporal lobe epilepsy. Eur J Neurosci. 41:976–988. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Schmeiser B, Zentner J, Prinz M, Brandt A and Freiman TM: Extent of mossy fiber sprouting in patients with mesiotemporal lobe epilepsy correlates with neuronal cell loss and granule cell dispersion. Epilepsy Res. 129:51–58. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Jeong KH, Kim SH, Choi YH, Cho I and Kim WJ: Increased expression of WNK3 in dispersed granule cells in hippocampal sclerosis of mesial temporal lobe epilepsy patients. Epilepsy Res. 147:58–61. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Kahle KT, Rinehart J, de Los Heros P, Louvi A, Meade P, Vazquez N, Hebert SC, Gamba G, Gimenez I and Lifton RP: WNK3 modulates transport of Cl- in and out of cells: Implications for control of cell volume and neuronal excitability. Proc Natl Acad Sci USA. 102:16783–16788. 2005. View Article : Google Scholar : PubMed/NCBI

56 

Huberfeld G, Blauwblomme T and Miles R: Hippocampus and epilepsy: Findings from human tissues. Rev Neurol (Paris). 171:236–251. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Eftekhari S, Mehvari Habibabadi J, Najafi Ziarani M, Hashemi Fesharaki SS, Gharakhani M, Mostafavi H, Joghataei MT, Beladimoghadam N, Rahimian E and Hadjighassem MR: Bumetanide reduces seizure frequency in patients with temporal lobe epilepsy. Epilepsia. 54:e9–e12. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Loscher W, Puskarjov M and Kaila K: Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments. Neuropharmacology. 69:62–74. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Silayeva L, Deeb TZ, Hines RM, Kelley MR, Munoz MB, Lee HH, Brandon NJ, Dunlop J, Maguire J, Davies PA and Moss SJ: KCC2 activity is critical in limiting the onset and severity of status epilepticus. Proc Natl Acad Sci USA. 112:3523–3528. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Chen Y, Zhou H, Jin T, Ye T and Xie W: Clinical observation of the phased acupuncture for ischemic stroke hemiplegia. Zhongguo Zhen Jiu. 38:1027–1034. 2018.(In Chinese). PubMed/NCBI

61 

Hu YY, Li L, Xian XH, Zhang M, Sun XC, Li SQ, Cui X, Qi J and Li WB: GLT-1 upregulation as a potential therapeutic target for ischemic brain injury. Curr Pharm Des. 23:5045–5055. 2017.PubMed/NCBI

62 

Tuttolomondo A, Puleo MG, Velardo MC, Corpora F, Daidone M and Pinto A: Molecular biology of atherosclerotic ischemic strokes. Int J Mol Sci. 21:93722020. View Article : Google Scholar

63 

Zhao H, Nepomuceno R, Gao X, Foley LM, Wang S, Begum G, Zhu W, Pigott VM, Falgoust LM, Kahle KT, et al: Deletion of the WNK3-SPAK kinase complex in mice improves radiographic and clinical outcomes in malignant cerebral edema after ischemic stroke. J Cereb Blood Flow Metab. 37:550–563. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Demian WL, Persaud A, Jiang C, Coyaud É, Liu S, Kapus A, Kafri R, Raught B and Rotin D: The ion transporter NKCC1 links cell volume to cell mass regulation by suppressing mTORC1. Cell Rep. 27:1886–1896.e6. 2019. View Article : Google Scholar : PubMed/NCBI

65 

Yan Y, Dempsey RJ, Flemmer A, Forbush B and Sun D: Inhibition of Na(+)-K(+)-Cl(−) cotransporter during focal cerebral ischemia decreases edema and neuronal damage. Brain Res. 961:22–31. 2003. View Article : Google Scholar : PubMed/NCBI

66 

Chen H, Luo J, Kintner DB, Shull GE and Sun D: Na(+)-dependent chloride transporter (NKCC1)-null mice exhibit less gray and white matter damage after focal cerebral ischemia. J Cereb Blood Flow Metab. 25:54–66. 2005. View Article : Google Scholar : PubMed/NCBI

67 

Krueger M, Hartig W, Reichenbach A, Bechmann I and Michalski D: Blood-brain barrier breakdown after embolic stroke in rats occurs without ultrastructural evidence for disrupting tight junctions. PLoS One. 8:e564192013. View Article : Google Scholar : PubMed/NCBI

68 

Chen H, Kintner DB, Jones M, Matsuda T, Baba A, Kiedrowski L and Sun D: AMPA-mediated excitotoxicity in oligodendrocytes: Role for Na(+)-K(+)-Cl(−) co-transport and reversal of Na(+)/Ca(2+) exchanger. J Neurochem. 102:1783–1795. 2007. View Article : Google Scholar : PubMed/NCBI

69 

Hossain Khan MZ, Sohara E, Ohta A, Chiga M, Inoue Y, Isobe K, Wakabayashi M, Oi K, Rai T, Sasaki S and Uchida S: Phosphorylation of Na-Cl cotransporter by OSR1 and SPAK kinases regulates its ubiquitination. Biochem Biophys Res Commun. 425:456–461. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Zhang J, Gao G, Begum G, Wang J, Khanna AR, Shmukler BE, Daubner GM, de Los Heros P, Davies P, Varghese J, et al: Functional kinomics establishes a critical node of volume-sensitive cation-Cl-cotransporter regulation in the mammalian brain. Sci Rep. 6:359862016. View Article : Google Scholar : PubMed/NCBI

71 

Zhang P, Wang T, Zhang D, Zhang Z, Yuan S, Zhang J, Cao J, Li H, Li X, Shen H and Chen G: Exploration of MST1-mediated secondary brain injury induced by intracerebral hemorrhage in rats via hippo signaling pathway. Transl Stroke Res. 10:729–743. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Kamel H and Hemphill JC III: Characteristics and sequelae of intracranial hypertension after intracerebral hemorrhage. Neurocrit Care. 17:172–176. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Honner SK, Singh A, Cheung PT, Alter HJ, Dutaret CG, Patel AK and Acharya A: Emergency department control of blood pressure in intracerebral hemorrhage. J Emerg Med. 41:355–361. 2011. View Article : Google Scholar : PubMed/NCBI

74 

Zheng H, Chen C, Zhang J and Hu Z: Mechanism and therapy of brain edema after intracerebral hemorrhage. Cerebrovasc Dis. 42:155–169. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Dang G, Yang Y, Wu G, Hua Y, Keep RF and Xi G: Early erythrolysis in the hematoma after experimental intracerebral hemorrhage. Transl Stroke Res. 8:174–182. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Hemphill JC III, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, Fung GL, Goldstein JN, Macdonald RL, Mitchell PH, et al: Guidelines for the management of spontaneous intracerebral hemorrhage: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 46:2032–2060. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Zhang X, Gu Y, Li P, Jiang A, Sheng X, Jin X, Shi Y and Li G: Matrix metalloproteases-mediated cleavage on β-dystroglycan may play a key role in the blood-brain barrier after intracerebral hemorrhage in rats. Med Sci Monit. 25:794–800. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Mracsko E and Veltkamp R: Neuroinflammation after intracerebral hemorrhage. Front Cell Neurosci. 8:3882014. View Article : Google Scholar : PubMed/NCBI

79 

Wu X, Fu S, Liu Y, Luo H, Li F, Wang Y, Gao M, Cheng Y and Xie Z: NDP-MSH binding melanocortin-1 receptor ameliorates neuroinflammation and BBB disruption through CREB/Nr4a1/NF-κB pathway after intracerebral hemorrhage in mice. J Neuroinflammation. 16:1922019. View Article : Google Scholar : PubMed/NCBI

80 

Tian Y, Guo SX, Li JR, Du HG, Wang CH, Zhang JM and Wu Q: Topiramate attenuates early brain injury following subarachnoid haemorrhage in rats via duplex protection against inflammation and neuronal cell death. Brain Res. 1622:174–185. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Digregorio M, Lombard A, Lumapat PN, Scholtes F, Rogister B and Coppieters N: Relevance of translation initiation in diffuse glioma biology and its therapeutic potential. Cells. 8:15422019. View Article : Google Scholar

82 

Giese A and Westphal M: Glioma invasion in the central nervous system. Neurosurgery. 39:232–250. 1996.

83 

de Paula LB, Primo FL and Tedesco AC: Nanomedicine associated with photodynamic therapy for glioblastoma treatment. Biophys Rev. 9:761–773. 2017. View Article : Google Scholar : PubMed/NCBI

84 

Sontheimer H: Ion channels and amino acid transporters support the growth and invasion of primary brain tumors. Mol Neurobiol. 29:61–71. 2004. View Article : Google Scholar : PubMed/NCBI

85 

Sontheimer H: An unexpected role for ion channels in brain tumor metastasis. Exp Biol Med (Maywood). 233:779–791. 2008. View Article : Google Scholar : PubMed/NCBI

86 

Garzon-Muvdi T, Schiapparelli P, ap Rhys C, Guerrero-Cazares H, Smith C, Kim DH, Kone L, Farber H, Lee DY, An SS, et al: Regulation of brain tumor dispersal by NKCC1 through a novel role in focal adhesion regulation. PLoS Biol. 10:e10013202012. View Article : Google Scholar : PubMed/NCBI

87 

Zhou B, Lu X, Hao Y and Yang P: Real-time monitoring of the regulatory volume decrease of cancer cells: A model for the evaluation of cell migration. Anal Chem. 91:8078–8084. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Algharabil J, Kintner DB, Wang Q, Begum G, Clark PA, Yang SS, Lin SH, Kahle KT, Kuo JS and Sun D: Inhibition of Na(+)-K(+)-2Cl(−) cotransporter isoform 1 accelerates temozolomide-mediated apoptosis in glioblastoma cancer cells. Cell Physiol Biochem. 30:33–48. 2012. View Article : Google Scholar : PubMed/NCBI

89 

Ernest NJ and Sontheimer H: Extracellular glutamine is a critical modulator for regulatory volume increase in human glioma cells. Brain Res. 1144:231–238. 2007. View Article : Google Scholar : PubMed/NCBI

90 

Haas BR and Sontheimer H: Inhibition of the sodium-potassium-chloride cotransporter isoform-1 reduces glioma invasion. Cancer Res. 70:5597–5606. 2010. View Article : Google Scholar : PubMed/NCBI

91 

Hamann S, Herrera-Perez JJ, Zeuthen T and Alvarez-Leefmans FJ: Cotransport of water by the Na+-K+−2Cl(−) cotransporter NKCC1 in mammalian epithelial cells. J Physiol. 588:4089–4101. 2010. View Article : Google Scholar : PubMed/NCBI

92 

Mach C and Dollfus S: Scale for assessing negative symptoms in schizophrenia: A systematic review. Encephale. 42:165–171. 2016.(In French). View Article : Google Scholar : PubMed/NCBI

93 

Tandon R, Gaebel W, Barch DM, Bustillo J, Gur RE, Heckers S, Malaspina D, Owen MJ, Schultz S, Tsuang M, et al: Definition and description of schizophrenia in the DSM-5. Schizophr Res. 150:3–10. 2013. View Article : Google Scholar : PubMed/NCBI

94 

Guessoum SB, Le Strat Y, Dubertret C and Mallet J: A transnosographic approach of negative symptoms pathophysiology in schizophrenia and depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry. 99:1098622020. View Article : Google Scholar : PubMed/NCBI

95 

Gonzalez-Burgos G and Lewis DA: GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr Bull. 34:944–961. 2008. View Article : Google Scholar : PubMed/NCBI

96 

Lewis DA, Hashimoto T and Volk DW: Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 6:312–324. 2005. View Article : Google Scholar : PubMed/NCBI

97 

Arion D and Lewis DA: Altered expression of regulators of the cortical chloride transporters NKCC1 and KCC2 in schizophrenia. Arch Gen Psychiatry. 68:21–31. 2011. View Article : Google Scholar : PubMed/NCBI

98 

Blanquie O, Liebmann L, Hubner CA, Luhmann HJ and Sinning A: NKCC1-mediated GABAergic signaling promotes postnatal cell death in neocortical cajal-retzius cells. Cereb Cortex. 27:1644–1659. 2017.PubMed/NCBI

99 

Lewis DA and Sweet RA: Schizophrenia from a neural circuitry perspective: Advancing toward rational pharmacological therapies. J Clin Invest. 119:706–716. 2009. View Article : Google Scholar : PubMed/NCBI

100 

de Los Heros P, Kahle KT, Rinehart J, Bobadilla NA, Vázquez N, San Cristobal P, Mount DB, Lifton RP, Hebert SC and Gamba G: WNK3 bypasses the tonicity requirement for K-Cl cotransporter activation via a phosphatase-dependent pathway. Proc Natl Acad Sci USA. 103:1976–1981. 2006. View Article : Google Scholar : PubMed/NCBI

101 

de Los Heros P, Alessi DR, Gourlay R, Campbell DG, Deak M, Macartney TJ, Kahle KT and Zhang J: The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+-Cl− co-transporters. Biochem J. 458:559–573. 2014. View Article : Google Scholar : PubMed/NCBI

102 

Vorontsova I, Donaldson PJ, Kong Z, Wickremesinghe C, Lam L and Lim JC: The modulation of the phosphorylation status of NKCC1 in organ cultured bovine lenses: Implications for the regulation of fiber cell and overall lens volume. Exp Eye Res. 165:164–174. 2017. View Article : Google Scholar : PubMed/NCBI

103 

Alessi DR, Zhang J, Khanna A, Hochdorfer T, Shang Y and Kahle KT: The WNK-SPAK/OSR1 pathway: Master regulator of cation-chloride cotransporters. Sci Signal. 7:re32014. View Article : Google Scholar : PubMed/NCBI

104 

Conway LC, Cardarelli RA, Moore YE, Jones K, McWilliams LJ, Baker DJ, Burnham MP, Bürli RW, Wang Q, Brandon NJ, et al: N-Ethylmaleimide increases KCC2 cotransporter activity by modulating transporter phosphorylation. J Biol Chem. 292:21253–21263. 2017. View Article : Google Scholar : PubMed/NCBI

105 

Glover M, Zuber AM and O'Shaughnessy KM: Renal and brain isoforms of WNK3 have opposite effects on NCCT expression. J Am Soc Nephrol. 20:1314–1322. 2009. View Article : Google Scholar : PubMed/NCBI

106 

Lu DC, Hannemann A, Wadud R, Rees DC, Brewin JN, Low PS and Gibson JS: The role of WNK in modulation of KCl cotransport activity in red cells from normal individuals and patients with sickle cell anaemia. Pflugers Arch. 471:1539–1549. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gong Y, Wu M, Tang J, Shen J, Li J, Gao R, Dang B and Chen G: Advances in the study of the role and molecular mechanism of with‑no‑lysine kinase 3 in nervous system diseases (Review). Mol Med Rep 23: 393, 2021.
APA
Gong, Y., Wu, M., Tang, J., Shen, J., Li, J., Gao, R. ... Chen, G. (2021). Advances in the study of the role and molecular mechanism of with‑no‑lysine kinase 3 in nervous system diseases (Review). Molecular Medicine Reports, 23, 393. https://doi.org/10.3892/mmr.2021.12032
MLA
Gong, Y., Wu, M., Tang, J., Shen, J., Li, J., Gao, R., Dang, B., Chen, G."Advances in the study of the role and molecular mechanism of with‑no‑lysine kinase 3 in nervous system diseases (Review)". Molecular Medicine Reports 23.5 (2021): 393.
Chicago
Gong, Y., Wu, M., Tang, J., Shen, J., Li, J., Gao, R., Dang, B., Chen, G."Advances in the study of the role and molecular mechanism of with‑no‑lysine kinase 3 in nervous system diseases (Review)". Molecular Medicine Reports 23, no. 5 (2021): 393. https://doi.org/10.3892/mmr.2021.12032
Copy and paste a formatted citation
x
Spandidos Publications style
Gong Y, Wu M, Tang J, Shen J, Li J, Gao R, Dang B and Chen G: Advances in the study of the role and molecular mechanism of with‑no‑lysine kinase 3 in nervous system diseases (Review). Mol Med Rep 23: 393, 2021.
APA
Gong, Y., Wu, M., Tang, J., Shen, J., Li, J., Gao, R. ... Chen, G. (2021). Advances in the study of the role and molecular mechanism of with‑no‑lysine kinase 3 in nervous system diseases (Review). Molecular Medicine Reports, 23, 393. https://doi.org/10.3892/mmr.2021.12032
MLA
Gong, Y., Wu, M., Tang, J., Shen, J., Li, J., Gao, R., Dang, B., Chen, G."Advances in the study of the role and molecular mechanism of with‑no‑lysine kinase 3 in nervous system diseases (Review)". Molecular Medicine Reports 23.5 (2021): 393.
Chicago
Gong, Y., Wu, M., Tang, J., Shen, J., Li, J., Gao, R., Dang, B., Chen, G."Advances in the study of the role and molecular mechanism of with‑no‑lysine kinase 3 in nervous system diseases (Review)". Molecular Medicine Reports 23, no. 5 (2021): 393. https://doi.org/10.3892/mmr.2021.12032
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team