|
1
|
Checkoway H, Lundin JI and Kelada SN:
Neurodegenerative diseases. IARC Sci Publ. 407–419. 2011.PubMed/NCBI
|
|
2
|
Blanchet PJ and Brefel-Courbon C: Chronic
pain and pain processing in Parkinson's disease. Prog
Neuropsychopharmacol Biol Psychiatry. 87:200–206. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
de Tommaso M, Arendt-Nielsen L, Defrin R,
Kunz M, Pickering G and Valeriani M: Pain assessment in
neurodegenerative diseases. Behav Neurol. 2016:29493582016.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Nayak D, Roth TL and McGavern DB:
Microglia development and function. Annu Rev Immunol. 32:367–402.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zuchero JB and Barres BA: Glia in
mammalian development and disease. Development. 142:3805–3809.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Subhramanyam CS, Wang C, Hu Q and Dheen
ST: Microglia-mediated neuroinflammation in neurodegenerative
diseases. Semin Cell Dev Biol. 94:112–120. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Skaper SD: Ion channels on microglia:
Therapeutic targets for neuroprotection. CNS Neurol Disord Drug
Targets. 10:44–56. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Rash JE, Yasumura T, Dudek FE and Nagy JI:
Cell-specific expression of connexins and evidence of restricted
gap junctional coupling between glial cells and between neurons. J
Neurosci. 21:1983–2000. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Beyer EC and Berthoud VM: Gap junction
gene and protein families: Connexins, innexins, and pannexins.
Biochim Biophys Acta Biomembr. 1860:5–8. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Nielsen MS, Axelsen LN, Sorgen PL, Verma
V, Delmar M and Holstein-Rathlou NH: Gap junctions. Compr Physiol.
2:1981–2035. 2012.PubMed/NCBI
|
|
11
|
Gomes P, Srinivas SP, Van Driessche W,
Vereecke J and Himpens B: ATP release through connexin hemichannels
in corneal endothelial cells. Invest Ophthalmol Vis Sci.
46:1208–1218. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Li H, Liu TF, Lazrak A, Peracchia C,
Goldberg GS, Lampe PD and Johnson RG: Properties and regulation of
gap junctional hemichannels in the plasma membranes of cultured
cells. J Cell Biol. 134:1019–1030. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Rhett JM, Fann SA and Yost MJ: Purinergic
signaling in early inflammatory events of the foreign body
response: Modulating extracellular ATP as an enabling technology
for engineered implants and tissues. Tissue Eng Part B Rev.
20:392–402. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Rhett JM and Yeh ES: The potential for
connexin hemichannels to drive breast cancer progression through
regulation of the inflammatory response. Int J Mol Sci.
19:10432018. View Article : Google Scholar
|
|
15
|
Merrifield PA and Laird DW: Connexins in
skeletal muscle development and disease. Semin Cell Dev Biol.
50:67–73. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hervé JC: Membrane channels formed by gap
junction proteins. Biochim Biophys Acta Biomembr. 1860:1–4. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Martins-Marques T, Ribeiro-Rodrigues T,
Batista-Almeida D, Aasen T, Kwak BR and Girao H: Biological
functions of connexin43 beyond intercellular communication. Trends
Cell Biol. 29:835–847. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Laird DW: Closing the gap on autosomal
dominant connexin-26 and connexin-43 mutants linked to human
disease. J Biol Chem. 283:2997–3001. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Vinken M: Connexin hemichannels: Novel
mediators of toxicity. Arch Toxicol. 89:143–145. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Hervé JC and Derangeon M:
Gap-junction-mediated cell-to-cell communication. Cell Tissue Res.
352:21–31. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Meda P: Gap junction proteins are key
drivers of endocrine function. Biochim Biophys Acta Biomembr.
1860:124–140. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Harris AL: Electrical coupling and its
channels. J Gen Physiol. 150:1606–1639. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Traub RD, Whittington MA, Gutiérrez R and
Draguhn A: Electrical coupling between hippocampal neurons:
Contrasting roles of principal cell gap junctions and interneuron
gap junctions. Cell Tissue Res. 373:671–691. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Srinivas M, Calderon DP, Kronengold J and
Verselis VK: Regulation of connexin hemichannels by monovalent
cations. J Gen Physiol. 127:67–75. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Contreras JE, Sáez JC, Bukauskas FF and
Bennett MV: Gating and regulation of connexin 43 (Cx43)
hemichannels. Proc Natl Acad Sci USA. 100:11388–11393. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Quist AP, Rhee SK, Lin H and Lal R:
Physiological role of gap-junctional hemichannels. Extracellular
calcium-dependent isosmotic volume regulation. J Cell Biol.
148:1063–1074. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Stout CE, Costantin JL, Naus CC and
Charles AC: Intercellular calcium signaling in astrocytes via ATP
release through connexin hemichannels. J Biol Chem.
277:10482–10488. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Taruno A: ATP release channels. Int J Mol
Sci. 19:8082018. View Article : Google Scholar
|
|
29
|
Xing L, Yang T, Cui S and Chen G: Connexin
hemichannels in astrocytes: Role in CNS disorders. Front Mol
Neurosci. 12:232019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Khakh BS: Molecular physiology of P2X
receptors and ATP signalling at synapses. Nat Rev Neurosci.
2:165–174. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Rogne P, Andersson D, Grundström C,
Sauer-Eriksson E, Linusson A and Wolf-Watz M: Nucleation of an
activating conformational change by a cation-π interaction.
Biochemistry. 58:3408–3412. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kawasaki A, Hayashi T, Nakachi K, Trosko
JE, Sugihara K, Kotake Y and Ohta S: Modulation of connexin 43 in
rotenone-induced model of Parkinson's disease. Neuroscience.
160:61–68. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sáez JC, Schalper KA, Retamal MA, Orellana
JA, Shoji KF and Bennett MV: Cell membrane permeabilization via
connexin hemichannels in living and dying cells. Exp Cell Res.
316:2377–2389. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Delvaeye T, Vandenabeele P, Bultynck G,
Leybaert L and Krysko DV: Therapeutic targeting of connexin
channels: New views and challenges. Trends Mol Med. 24:1036–1053.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Parkinson J: An essay on the shaking
palsy. 1817. J Neuropsychiatry Clin Neurosci. 14:223–236;
discussion 222. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hirsch L, Jette N, Frolkis A, Steeves T
and Pringsheim T: The incidence of Parkinson's disease: A
systematic review and meta-analysis. Neuroepidemiology. 46:292–300.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Jankovic J: Parkinson's disease: Clinical
features and diagnosis. J Neurol Neurosurg Psychiatry. 79:368–376.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Maatouk L, Yi C, Carrillo-de Sauvage MA,
Compagnion AC, Hunot S, Ezan P, Hirsch EC, Koulakoff A, Pfrieger
FW, Tronche F, et al: Glucocorticoid receptor in astrocytes
regulates midbrain dopamine neurodegeneration through connexin
hemichannel activity. Cell Death Differ. 26:580–596. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
DeLong MR and Wichmann T: Basal ganglia
circuits as targets for neuromodulation in Parkinson disease. JAMA
Neurol. 72:1354–1360. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Gerfen CR and Surmeier DJ: Modulation of
striatal projection systems by dopamine. Annu Rev Neurosci.
34:441–466. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Bryois J, Skene NG, Hansen TF, Kogelman
LJA, Watson HJ, Liu Z; Eating Disorders Working Group of the
Psychiatric Genomics Consortium; International Headache Genetics
Consortium; 23andMe Research Team; Brueggeman L, ; et al: Genetic
identification of cell types underlying brain complex traits yields
insights into the etiology of Parkinson's disease. Nat Genet.
52:482–493. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Orieux G, Francois C, Féger J, Yelnik J,
Vila M, Ruberg M, Agid Y and Hirsch EC: Metabolic activity of
excitatory parafascicular and pedunculopontine inputs to the
subthalamic nucleus in a rat model of Parkinson's disease.
Neuroscience. 97:79–88. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hauser RA: α-Synuclein in Parkinson's
disease: Getting to the core of the matter. Lancet Neurol.
14:785–786. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Diniz LP, Matias I, Araujo APB, Garcia MN,
Barros-Aragão FGQ, Alves-Leon SV, de Souza JM, Foguel D, Figueiredo
CP, Braga C, et al: α-Synuclein oligomers enhance astrocyte-induced
synapse formation through TGF-β1 signaling in a Parkinson's disease
model. J Neurochem. 150:138–157. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Singh-Bains MK, Waldvogel HJ and Faull RL:
The role of the human globus pallidus in Huntington's disease.
Brain Pathol. 26:741–751. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kim IS, Ganesan P and Choi DK: Cx43
mediates resistance against MPP+-induced apoptosis in
SH-SY5Y neuroblastoma cells via modulating the mitochondrial
apoptosis pathway. Int J Mol Sci. 17:18192016. View Article : Google Scholar
|
|
47
|
Wu A, Green CR, Rupenthal ID and
Moalem-Taylor G: Role of gap junctions in chronic pain. J Neurosci
Res. 90:337–345. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Pérez-Alvarez A and Araque A:
Astrocyte-neuron interaction at tripartite synapses. Curr Drug
Targets. 14:1220–1224. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Hertz L, Hansson E and Rönnbäck L:
Signaling and gene expression in the neuron-glia unit during brain
function and dysfunction: Holger Hydén in memoriam. Neurochem Int.
39:227–252. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Jiang BC, Cao DL, Zhang X, Zhang ZJ, He
LN, Li CH, Zhang WW, Wu XB, Berta T, Ji RR and Gao YJ: CXCL13
drives spinal astrocyte activation and neuropathic pain via CXCR5.
J Clin Invest. 126:745–761. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Durkee CA and Araque A: Diversity and
specificity of astrocyte-neuron communication. Neuroscience.
396:73–78. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Szczupak L: Functional contributions of
electrical synapses in sensory and motor networks. Curr Opin
Neurobiol. 41:99–105. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Halje P, Brys I, Mariman JJ, da Cunha C,
Fuentes R and Petersson P: Oscillations in cortico-basal ganglia
circuits: Implications for Parkinson's disease and other neurologic
and psychiatric conditions. J Neurophysiol. 122:203–231. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Adamchic I, Hauptmann C, Barnikol UB,
Pawelczyk N, Popovych O, Barnikol TT, Silchenko A, Volkmann J,
Deuschl G, Meissner WG, et al: Coordinated reset neuromodulation
for Parkinson's disease: Proof-of-concept study. Mov Disord.
29:1679–1684. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Dauer W and Przedborski S: Parkinson's
disease: Mechanisms and models. Neuron. 39:889–909. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Díaz EF, Labra VC, Alvear TF, Mellado LA,
Inostroza CA, Oyarzún JE, Salgado N, Quintanilla RA and Orellana
JA: Connexin 43 hemichannels and pannexin-1 channels contribute to
the α-synuclein-induced dysfunction and death of astrocytes. Glia.
67:1598–1619. 2019.PubMed/NCBI
|
|
57
|
Sarrouilhe D, Dejean C and Mesnil M:
Connexin43- and pannexin-based channels in neuroinflammation and
cerebral neuropathies. Front Mol Neurosci. 10:3202017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Takeuchi H, Jin S, Wang J, Zhang G,
Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T and Suzumura A: Tumor
necrosis factor-alpha induces neurotoxicity via glutamate release
from hemichannels of activated microglia in an autocrine manner. J
Biol Chem. 281:21362–21368. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lu C, Meng Z, He Y, Xiao D, Cai H, Xu Y,
Liu X, Wang X, Mo L, Liang Z, et al: Involvement of gap junctions
in astrocyte impairment induced by manganese exposure. Brain Res
Bull. 140:107–113. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sung JY, Lee HJ, Jeong EI, Oh Y, Park J,
Kang KS and Chung KC: Alpha-synuclein overexpression reduces gap
junctional intercellular communication in dopaminergic
neuroblastoma cells. Neurosci Lett. 416:289–293. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Reyes JF, Sackmann C, Hoffmann A,
Svenningsson P, Winkler J, Ingelsson M and Hallbeck M: Binding of
α-synuclein oligomers to Cx32 facilitates protein uptake and
transfer in neurons and oligodendrocytes. Acta Neuropathol.
138:23–47. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hare DJ, Adlard PA, Doble PA and
Finkelstein DI: Metallobiology of
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity.
Metallomics. 5:91–109. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Fujita A, Yamaguchi H, Yamasaki R, Cui Y,
Matsuoka Y, Yamada KI and Kira JI: Connexin 30 deficiency
attenuates A2 astrocyte responses and induces severe
neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
hydrochloride Parkinson's disease animal model. J
Neuroinflammation. 15:2272018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Liddelow SA, Guttenplan KA, Clarke LE,
Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS,
Peterson TC, et al: Neurotoxic reactive astrocytes are induced by
activated microglia. Nature. 541:481–487. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Pannasch U, Freche D, Dallérac G, Ghézali
G, Escartin C, Ezan P, Cohen-Salmon M, Benchenane K, Abudara V,
Dufour A, et al: Connexin 30 sets synaptic strength by controlling
astroglial synapse invasion. Nat Neurosci. 17:549–558. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Evin G and Hince C: BACE1 as a therapeutic
target in Alzheimer's disease: Rationale and current status. Drugs
Aging. 30:755–764. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hardy JA and Higgins GA: Alzheimer's
disease: The amyloid cascade hypothesis. Science. 256:184–185.
1992. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Swerdlow RH, Burns JM and Khan SM: The
Alzheimer's disease mitochondrial cascade hypothesis: Progress and
perspectives. Biochim Biophys Acta. 1842:1219–1231. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Jammal L, Whalley B and Barkai E:
Learning-induced modulation of the effect of neuroglial
transmission on synaptic plasticity. J Neurophysiol. 119:2373–2379.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Walrave L, Vinken M, Albertini G, De
Bundel D, Leybaert L and Smolders IJ: Inhibition of connexin43
hemichannels impairs spatial short-term memory without affecting
spatial working memory. Front Cell Neurosci. 10:2882016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Nagy JI, Li W, Hertzberg EL and Marotta
CA: Elevated connexin43 immunoreactivity at sites of amyloid
plaques in Alzheimer's disease. Brain Res. 717:173–178. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Mei X, Ezan P, Giaume C and Koulakoff A:
Astroglial connexin immunoreactivity is specifically altered at
β-amyloid plaques in β-amyloid precursor protein/presenilin1 mice.
Neuroscience. 171:92–105. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Sokoloff L: Energetics of functional
activation in neural tissues. Neurochem Res. 24:321–329. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Tholey G and Ledig M: Neuronal and
astrocytic plasticity: Metabolic aspects. Ann Med Interne (Paris).
141 (Suppl 1):S13–S18. 1990.(In French).
|
|
75
|
Nunomura A, Castellani RJ, Zhu X, Moreira
PI, Perry G and Smith MA: Involvement of oxidative stress in
Alzheimer disease. J Neuropathol Exp Neurol. 65:631–641. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Pocernich CB and Butterfield DA: Elevation
of glutathione as a therapeutic strategy in Alzheimer disease.
Biochim Biophys Acta. 1822:625–630. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Dringen R: Metabolism and functions of
glutathione in brain. Prog Neurobiol. 62:649–671. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Ong WY, Hu CY, Hjelle OP, Ottersen OP and
Halliwell B: Changes in glutathione in the hippocampus of rats
injected with kainate: Depletion in neurons and upregulation in
glia. Exp Brain Res. 132:510–516. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Bolaños JP: Bioenergetics and redox
adaptations of astrocytes to neuronal activity. J Neurochem. 139
(Suppl 2):S115–S125. 2016. View Article : Google Scholar
|
|
80
|
Aoyama K, Suh SW, Hamby AM, Liu J, Chan
WY, Chen Y and Swanson RA: Neuronal glutathione deficiency and
age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat
Neurosci. 9:119–126. 2006. View
Article : Google Scholar : PubMed/NCBI
|
|
81
|
Hohnholt MC and Dringen R: Short time
exposure to hydrogen peroxide induces sustained glutathione export
from cultured neurons. Free Radic Biol Med. 70:33–44. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Rana S and Dringen R: Gap junction
hemichannel-mediated release of glutathione from cultured rat
astrocytes. Neurosci Lett. 415:45–48. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Orellana JA, Shoji KF, Abudara V, Ezan P,
Amigou E, Sáez PJ, Jiang JX, Naus CC, Sáez JC and Giaume C: Amyloid
β-induced death in neurons involves glial and neuronal
hemichannels. J Neurosci. 31:4962–4977. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Hardiman O, Al-Chalabi A, Chio A, Corr EM,
Logroscino G, Robberecht W, Shaw PJ, Simmons Z and van den Berg LH:
Amyotrophic lateral sclerosis. Nat Rev Dis Primers. 3:170712017.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Riva N, Agosta F, Lunetta C, Filippi M and
Quattrini A: Recent advances in amyotrophic lateral sclerosis. J
Neurol. 263:1241–1254. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Ohta Y, Nomura E, Shang J, Feng T, Huang
Y, Liu X, Shi X, Nakano Y, Hishikawa N, Sato K, et al: Enhanced
oxidative stress and the treatment by edaravone in mice model of
amyotrophic lateral sclerosis. J Neurosci Res. 97:607–619. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Holecek V and Rokyta R: Possible etiology
and treatment of amyotrophic lateral sclerosis. Neuro Endocrinol
Lett. 38:528–531. 2018.PubMed/NCBI
|
|
88
|
Tedeschi V, Petrozziello T and Secondo A:
Calcium dyshomeostasis and lysosomal Ca2+ dysfunction in
amyotrophic lateral sclerosis. Cells. 8:12162019. View Article : Google Scholar
|
|
89
|
Mandrioli J, D'Amico R, Zucchi E, Gessani
A, Fini N, Fasano A, Caponnetto C, Chiò A, Dalla Bella E, Lunetta
C, et al: Rapamycin treatment for amyotrophic lateral sclerosis:
Protocol for a phase II randomized, double-blind,
placebo-controlled, multicenter, clinical trial (RAP-ALS trial).
Medicine (Baltimore). 97:e111192018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
McGeer PL and McGeer EG: Inflammatory
processes in amyotrophic lateral sclerosis. Muscle Nerve.
26:459–470. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Spitale FM, Vicario N, Rosa MD, Tibullo D,
Vecchio M, Gulino R and Parenti R: Increased expression of connexin
43 in a mouse model of spinal motoneuronal loss. Aging (Albany NY).
12:12598–12608. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Almad AA, Doreswamy A, Gross SK, Richard
JP, Huo Y, Haughey N and Maragakis NJ: Connexin 43 in astrocytes
contributes to motor neuron toxicity in amyotrophic lateral
sclerosis. Glia. 64:1154–1169. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Hamilton N, Vayro S, Kirchhoff F,
Verkhratsky A, Robbins J, Gorecki DC and Butt AM: Mechanisms of
ATP- and glutamate-mediated calcium signaling in white matter
astrocytes. Glia. 56:734–749. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Sheng L, Leshchyns'ka I and Sytnyk V: Cell
adhesion and intracellular calcium signaling in neurons. Cell
Commun Signal. 11:942013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Brini M, Calì T, Ottolini D and Carafoli
E: Neuronal calcium signaling: Function and dysfunction. Cell Mol
Life Sci. 71:2787–2814. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Belousov AB, Nishimune H, Denisova JV and
Fontes JD: A potential role for neuronal connexin 36 in the
pathogenesis of amyotrophic lateral sclerosis. Neurosci Lett.
666:1–4. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Decrock E, Vinken M, De Vuyst E, Krysko
DV, D'Herde K, Vanhaecke T, Vandenabeele P, Rogiers V and Leybaert
L: Connexin-related signaling in cell death: To live or let die?
Cell Death Differ. 16:524–536. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
McColgan P and Tabrizi SJ: Huntington's
disease: A clinical review. Eur J Neurol. 25:24–34. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Goetz CG: The history of Parkinson's
disease: Early clinical descriptions and neurological therapies.
Cold Spring Harb Perspect Med. 1:a0088622011. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Wichmann T and Dostrovsky JO: Pathological
basal ganglia activity in movement disorders. Neuroscience.
198:232–244. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Vis JC, Nicholson LF, Faull RL, Evans WH,
Severs NJ and Green CR: Connexin expression in Huntington's
diseased human brain. Cell Biol Int. 22:837–847. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Allen NJ and Lyons DA: Glia as architects
of central nervous system formation and function. Science.
362:181–185. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Scheefhals N and MacGillavry HD:
Functional organization of postsynaptic glutamate receptors. Mol
Cell Neurosci. 91:82–94. 2018. View Article : Google Scholar : PubMed/NCBI
|