|
1
|
Kong FM, Zhao L and Hayman JA: The role of
radiation therapy in thoracic tumors. Hematol Oncol Clin North Am.
20:363–400. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Baskar R, Lee KA, Yeo R and Yeoh KW:
Cancer and radiation therapy: Current advances and future
directions. Int J Med Sci. 9:193–199. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Delaney G, Jacob S, Featherstone C and
Barton M: The role of radiotherapy in cancer treatment: Estimating
optimal utilization from a review of evidence-based clinical
guidelines. Cancer. 104:1129–1137. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Miller KD, Siegel RL, Lin CC, Mariotto AB,
Kramer JL, Rowland JH, Stein KD, Alteri R and Jemal A: Cancer
treatment and survivorship statistics, 2016. CA Cancer J Clin.
66:271–289. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Darby S, McGale P, Peto R, Granath F, Hall
P and Ekbom A: Mortality from cardiovascular disease more than 10
years after radiotherapy for breast cancer: Nationwide cohort study
of 90 000 Swedish women. BMJ. 326:256–257. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Darby SC, Ewertz M, McGale P, Bennet AM,
Blom-Goldman U, Brønnum D, Correa C, Cutter D, Gagliardi G, Gigante
B, et al: Risk of ischemic heart disease in women after
radiotherapy for breast cancer. N Engl J Med. 368:987–998. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Baselet B, Rombouts C, Benotmane AM,
Baatout S and Aerts A: Cardiovascular diseases related to ionizing
radiation: The risk of low-dose exposure (review). Int J Mol Med.
38:1623–1641. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yusuf SW, Sami S and Daher IN:
Radiation-induced heart disease: A clinical update. Cardiol Res
Pract. 2011:3176592011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Authors on behalf of ICRP, ; Stewart FA,
Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, Macvittie TJ,
Aleman BM, Edgar AB, Mabuchi K, et al: ICRP publication 118: ICRP
statement on tissue reactions and early and late effects of
radiation in normal tissues and organs-threshold doses for tissue
reactions in a radiation protection context. Ann ICRP. 41:1–322.
2012. View Article : Google Scholar
|
|
10
|
Little MP: Radiation and circulatory
disease. Mutat Res. 770:299–318. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Eftekhari M, Anbiaei R, Zamani H, Fallahi
B, Beiki D, Ameri A, Emami-Ardekani A, Fard-Esfahani A,
Gholamrezanezhad A, Seid Ratki KR and Roknabadi AM:
Radiation-induced myocardial perfusion abnormalities in breast
cancer patients following external beam radiation therapy. Asia
Ocean J Nucl Med Biol. 3:3–9. 2015.PubMed/NCBI
|
|
12
|
Kole TP, Aghayere O, Kwah J, Yorke ED and
Goodman KA: Comparison of heart and coronary artery doses
associated with intensity-modulated radiotherapy versus
three-dimensional conformal radiotherapy for distal esophageal
cancer. Int J Radiat Oncol Biol Phys. 83:1580–1586. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Tillman GF, Pawlicki T, Koong AC and
Goodman KA: Preoperative versus postoperative radiotherapy for
locally advanced gastroesophageal junction and proximal gastric
cancers: A comparison of normal tissue radiation doses. Dis
Esophagus. 21:437–444. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hong JC, Rahimy E, Gross CP, Shafman T, Hu
X, Yu JB, Ross R, Finkelstein SE, Dosoretz A, Park HS, et al:
Radiation dose and cardiac risk in breast cancer treatment: An
analysis of modern radiation therapy including community settings.
Pract Radiat Oncol. 8:e79–e86. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Al-Kindi SG and Oliveira GH: Incidence and
trends of cardiovascular mortality after common cancers in young
adults: Analysis of surveillance, epidemiology and end-results
program. World J Cardiol. 8:368–374. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Drost L, Yee C, Lam H, Zhang L, Wronski M,
McCann C, Lee J, Vesprini D, Leung E and Chow E: A systematic
review of heart dose in breast radiotherapy. Clin Breast Cancer.
18:e819–e824. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hoving S, Heeneman S, Gijbels MJ, te Poele
JA, Russell NS, Daemen MJ and Stewart FA: Single-dose and
fractionated irradiation promote initiation and progression of
atherosclerosis and induce an inflammatory plaque phenotype in
ApoE(−/−) mice. Int J Radiat Oncol Biol Phys. 71:848–857. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Stewart FA, Heeneman S, Te Poele J, Kruse
J, Russell NS, Gijbels M and Daemen M: Ionizing radiation
accelerates the development of atherosclerotic lesions in
ApoE−/− mice and predisposes to an inflammatory plaque
phenotype prone to hemorrhage. Am J Pathol. 168:649–658. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kreuzer M, Auvinen A, Cardis E, Hall J,
Jourdain JR, Laurier D, Little MP, Peters A, Raj K, Russell NS, et
al: Low-dose ionising radiation and cardiovascular
diseases-strategies for molecular epidemiological studies in
Europe. Mutat Res Rev Mutat Res. 764:90–100. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Shimizu Y, Kodama K, Nishi N, Kasagi F,
Suyama A, Soda M, Grant EJ, Sugiyama H, Sakata R, Moriwaki H, et
al: Radiation exposure and circulatory disease risk: Hiroshima and
Nagasaki atomic bomb survivor data, 1950–2003. BMJ. 340:b53492010.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yamada M, Naito K, Kasagi F, Masunari N
and Suzuki G: Prevalence of atherosclerosis in relation to atomic
bomb radiation exposure: An RERF adult health study. Int J Radiat
Biol. 81:821–826. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Azizova TV, Grigoryeva ES, Haylock RG,
Pikulina MV and Moseeva MB: Ischaemic heart disease incidence and
mortality in an extended cohort of Mayak workers first employed in
1948–1982. Br J Radiol. 88:201501692015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kashcheev VV, Chekin SY, Karpenko SV,
Maksioutov MA, Menyaylo AN, Tumanov KA, Kochergina EV, Kashcheeva
PV, Gorsky AI, Shchukina NV, et al: Radiation risk of
cardiovascular diseases in the cohort of Russian emergency workers
of the chernobyl accident. Health Phys. 113:23–29. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ramadan R, Vromans E, Anang DC, Decrock E,
Mysara M, Monsieurs P, Baatout S, Leybaert L and Aerts A: Single
and fractionated ionizing radiation induce alterations in
endothelial connexin expression and channel function. Sci Rep.
9:46432019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Mathias D, Mitchel RE, Barclay M, Wyatt H,
Bugden M, Priest ND, Whitman SC, Scholz M, Hildebrandt G, Kamprad M
and Glasow A: Low-dose irradiation affects expression of
inflammatory markers in the heart of ApoE−/− mice. PLoS
One. 10:e01196612015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Sievert W, Trott KR, Azimzadeh O, Tapio S,
Zitzelsberger H and Multhoff G: Late proliferating and inflammatory
effects on murine microvascular heart and lung endothelial cells
after irradiation. Radiother Oncol. 117:376–381. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Mitchel RE, Hasu M, Bugden M, Wyatt H,
Little MP, Gola A, Hildebrandt G, Priest ND and Whitman SC:
Low-dose radiation exposure and atherosclerosis in ApoE(−)/(−)
mice. Radiat Res. 175:665–676. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Mancuso M, Pasquali E, Braga-Tanaka I III,
Tanaka S, Pannicelli A, Giardullo P, Pazzaglia S, Tapio S, Atkinson
MJ and Saran A: Acceleration of atherogenesis in ApoE−/−
mice exposed to acute or low-dose-rate ionizing radiation.
Oncotarget. 6:31263–31271. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kumarathasan P, Vincent R, Blais E,
Saravanamuthu A, Gupta P, Wyatt H, Mitchel R, Hannan M, Trivedi A
and Whitman S: Cardiovascular changes in atherosclerotic
ApoE-deficient mice exposed to Co60 (ү) radiation. PLoS One.
8:e654862013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Massberg S, Brand K, Gruner S, Page S,
Müller E, Müller I, Bergmeier W, Richter T, Lorenz M, Konrad I, et
al: A critical role of platelet adhesion in the initiation of
atherosclerotic lesion formation. J Exp Med. 196:887–896. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Heidenreich PA, Hancock SL, Lee BK,
Mariscal CS and Schnittger I: Asymptomatic cardiac disease
following mediastinal irradiation. J Am Coll Cardiol. 42:743–749.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Yusuf SW, Venkatesulu BP, Mahadevan LS and
Krishnan S: Radiation-induced cardiovascular disease: A clinical
perspective. Front Cardiovasc Med. 4:662017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Corrado E, Rizzo M, Coppola G, Fattouch K,
Novo G, Marturana I, Ferrara F and Novo S: An update on the role of
markers of inflammation in atherosclerosis. J Atheroscler Thromb.
17:1–11. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Soeki T and Sata M: Inflammatory
biomarkers and atherosclerosis. Int Heart J. 57:134–139. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Libby P: Inflammation in atherosclerosis.
Arterioscler Thromb Vasc Biol. 32:2045–2051. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Murabito JM, Keyes MJ, Guo CY, Keaney JF
Jr, Vasan RS, D'Agostino RB Sr and Benjamin EJ: Cross-sectional
relations of multiple inflammatory biomarkers to peripheral
arterial disease: The Framingham offspring study. Atherosclerosis.
203:509–514. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Halle M, Gabrielsen A, Paulsson-Berne G,
Gahm C, Agardh HE, Farnebo F and Tornvall P: Sustained inflammation
due to nuclear factor-kappa B activation in irradiated human
arteries. J Am Coll Cardiol. 55:1227–1236. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kiyohara H, Ishizaki Y, Suzuki Y, Katoh H,
Hamada N, Ohno T, Takahashi T, Kobayashi Y and Nakano T:
Radiation-induced ICAM-1 expression via TGF-β1 pathway on human
umbilical vein endothelial cells; comparison between X-ray and
carbon-ion beam irradiation. J Radiat Res. 52:287–292. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Hallahan D, Kuchibhotla J and Wyble C:
Cell adhesion molecules mediate radiation-induced leukocyte
adhesion to the vascular endothelium. Cancer Res. 56:5150–5155.
1996.PubMed/NCBI
|
|
40
|
Di Maggio FM, Minafra L, Forte GI,
Cammarata FP, Lio D, Messa C, Gilardi MC and Bravatà V: Portrait of
inflammatory response to ionizing radiation treatment. J Inflamm
(Lond). 12:142015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Baluna RG, Eng TY and Thomas CR: Adhesion
molecules in radiotherapy. Radiat Res. 166:819–831. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Min X, Lu M, Tu S, Wang X, Zhou C, Wang S,
Pang S, Qian J, Ge Y, Guo Y, et al: Serum cytokine profile in
relation to the severity of coronary artery disease. Biomed Res
Int. 2017:40136852017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Peng J, Luo F, Ruan G, Peng R and Li X:
Hypertriglyceridemia and atherosclerosis. Lipids Health Dis.
16:2332017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Sloop GD: A critical analysis of the role
of cholesterol in atherogenesis. Atherosclerosis. 142:265–268.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lowe D and Raj K: Premature aging induced
by radiation exhibits pro-atherosclerotic effects mediated by
epigenetic activation of CD44 expression. Aging Cell. 13:900–910.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lowe D, Horvath S and Raj K: Epigenetic
clock analyses of cellular senescence and ageing. Oncotarget.
7:8524–8531. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Leligdowicz A, Conroy AL, Hawkes M, Zhong
K, Lebovic G, Matthay MA and Kain KC: Validation of two multiplex
platforms to quantify circulating markers of inflammation and
endothelial injury in severe infection. PLoS One. 12:e01751302017.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Vitkova V, Panek M, Janec P, Šibíková M,
Vobruba V, Haluzík M, Živný J and Janota J: Endothelial
microvesicles and soluble markers of endothelial injury in
critically Ill newborns. Mediators Inflamm. 2018:19750562018.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Bahlas S, Damiati L, Dandachi N, Sait H,
Alsefri M and Pushparaj PN: Rapid immunoprofiling of cytokines,
chemokines and growth factors in patients with active rheumatoid
arthritis using luminex multiple analyte profiling technology for
precision medicine. Clin Exp Rheumatol. 37:112–119. 2019.PubMed/NCBI
|
|
50
|
Reslova N, Michna V, Kasny M, Mikel P and
Kralik P: xMAP technology: Applications in detection of pathogens.
Front Microbiol. 8:552017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ramadan R, Vromans E, Anang DC,
Goetschalckx I, Hoorelbeke D, Decrock E, Baatout S, Leybaert L and
Aerts A: Connexin43 hemichannel targeting with TAT-Gap19 alleviates
radiation-induced endothelial cell damage. Front Pharmacol.
11:2122020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Darby SC, Cutter DJ, Boerma M, Constine
LS, Fajardo LF, Kodama K, Mabuchi K, Marks LB, Mettler FA, Pierce
LJ, et al: Radiation-related heart disease: Current knowledge and
future prospects. Int J Radiat Oncol Biol Phys. 76:656–665. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Aleman BM, Moser EC, Nuver J, Suter TM,
Maraldo MV, Specht L, Vrieling C and Darby SC: Cardiovascular
disease after cancer therapy. EJC Suppl. 12:18–28. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Monceau V, Meziani L, Strup-Perrot C,
Morel E, Schmidt M, Haagen J, Escoubet B, Dörr W and Vozenin MC:
Enhanced sensitivity to low dose irradiation of ApoE−/−
mice mediated by early pro-inflammatory profile and delayed
activation of the TGFβ1 cascade involved in fibrogenesis. PLoS One.
8:e570522013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Brunner D, Altman S, Loebl K, Schwartz S
and Levin S: Serum cholesterol and triglycerides in patients
suffering from ischemic heart disease and in healthy subjects.
Atherosclerosis. 28:197–204. 1977. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sarwar N, Danesh J, Eiriksdottir G,
Sigurdsson G, Wareham N, Bingham S, Boekholdt SM, Khaw KT and
Gudnason V: Triglycerides and the risk of coronary heart disease:
10,158 incident cases among 262,525 participants in 29 Western
prospective studies. Circulation. 115:450–458. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ozmen HK, Erdemci B, Askin S and Sezen O:
Carnitine and adiponectin levels in breast cancer after
radiotherapy. Open Med (Wars). 12:189–194. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Park H, Kim CH, Jeong JH, Park M and Kim
KS: GDF15 contributes to radiation-induced senescence through the
ROS-mediated p16 pathway in human endothelial cells. Oncotarget.
7:9634–9644. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hoving S, Heeneman S, Gijbels MJ, Te Poele
JA, Visser N, Cleutjens J, Russell NS, Daemen MJ and Stewart FA:
Irradiation induces different inflammatory and thrombotic responses
in carotid arteries of wildtype C57BL/6J and atherosclerosis-prone
ApoE(−/−) mice. Radiother Oncol. 105:365–370. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Bootcov MR, Bauskin AR, Valenzuela SM,
Moore AG, Bansal M, He XY, Zhang HP, Donnellan M, Mahler S, Pryor
K, et al: MIC-1, a novel macrophage inhibitory cytokine, is a
divergent member of the TGF-beta superfamily. Proc Natl Acad Sci
USA. 94:11514–11519. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hsiao EC, Koniaris LG, Zimmers-Koniaris T,
Sebald SM, Huynh TV and Lee SJ: Characterization of
growth-differentiation factor 15, a transforming growth factor beta
superfamily member induced following liver injury. Mol Cell Biol.
20:3742–3751. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wollert KC and Kempf T: Growth
differentiation factor 15 in heart failure: An update. Curr Heart
Fail Rep. 9:337–345. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Chen J, Luo F, Fang Z and Zhang W: GDF-15
levels and atherosclerosis. Int J Cardiol. 257:362018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kempf T and Wollert KC: Growth
differentiation factor-15: A new biomarker in cardiovascular
disease. Herz. 34:594–599. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Xu X, Li Z and Gao W: Growth
differentiation factor 15 in cardiovascular diseases: From bench to
bedside. Biomarkers. 16:466–475. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Bonaterra GA, Zugel S, Thogersen J, Walter
SA, Haberkorn U, Strelau J and Kinscherf R: Growth differentiation
factor-15 deficiency inhibits atherosclerosis progression by
regulating interleukin-6-dependent inflammatory response to
vascular injury. J Am Heart Assoc. 1:e0025502012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
de Jager SC, Bermudez B, Bot I, Koenen RR,
Bot M, Kavelaars A, de Waard V, Heijnen CJ, Muriana FJ, Weber C, et
al: Growth differentiation factor 15 deficiency protects against
atherosclerosis by attenuating CCR2-mediated macrophage chemotaxis.
J Exp Med. 208:217–225. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Heller EA, Liu E, Tager AM, Yuan Q, Lin
AY, Ahluwalia N, Jones K, Koehn SL, Lok VM, Aikawa E, et al:
Chemokine CXCL10 promotes atherogenesis by modulating the local
balance of effector and regulatory T cells. Circulation.
113:2301–2312. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Mach F, Sauty A, Iarossi AS, Sukhova GK,
Neote K, Libby P and Luster AD: Differential expression of three T
lymphocyte-activating CXC chemokines by human atheroma-associated
cells. J Clin Invest. 104:1041–1050. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
van den Borne P, Quax PH, Hoefer IE and
Pasterkamp G: The multifaceted functions of CXCL10 in
cardiovascular disease. Biomed Res Int. 2014:8931062014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ardigo D, Assimes TL, Fortmann SP, Go AS,
Hlatky M, Hytopoulos E, Iribarren C, Tsao PS, Tabibiazar R and
Quertermous T; ADVANCE Investigators, : Circulating chemokines
accurately identify individuals with clinically significant
atherosclerotic heart disease. Physiol Genomics. 31:402–409. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Orn S, Breland UM, Mollnes TE, Manhenke C,
Dickstein K, Aukrust P and Ueland T: The chemokine network in
relation to infarct size and left ventricular remodeling following
acute myocardial infarction. Am J Cardiol. 104:1179–1183. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Tavakolian Ferdousie V, Mohammadi M,
Hassanshahi G, Khorramdelazad H, Khanamani Falahati-Pour S, Mirzaei
M, Allah Tavakoli M, Kamiab Z, Ahmadi Z, Vazirinejad R, et al:
Serum CXCL10 and CXCL12 chemokine levels are associated with the
severity of coronary artery disease and coronary artery occlusion.
Int J Cardiol. 233:23–28. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Palayoor ST, John-Aryankalayil M, Makinde
AY, Falduto MT, Magnuson SR and Coleman CN: Differential expression
of stress and immune response pathway transcripts and miRNAs in
normal human endothelial cells subjected to fractionated or
single-dose radiation. Mol Cancer Res. 12:1002–1015. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Heinonen M, Milliat F, Benadjaoud MA,
François A, Buard V, Tarlet G, d'Alché-Buc F and Guipaud O:
Temporal clustering analysis of endothelial cell gene expression
following exposure to a conventional radiotherapy dose fraction
using Gaussian process clustering. PLoS One. 13:e02049602018.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Libby P, Ridker PM and Maseri A:
Inflammation and atherosclerosis. Circulation. 105:1135–1143. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lusis AJ: Atherosclerosis. Nature.
407:233–241. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Hallahan DE and Virudachalam S:
Accumulation of P-selectin in the lumen of irradiated blood
vessels. Radiat Res. 152:6–13. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Tu J, Hu Z and Chen Z: Endothelial gene
expression and molecular changes in response to radiosurgery in in
vitro and in vivo models of cerebral arteriovenous malformations.
Biomed Res Int. 2013:4082532013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Hallahan DE and Virudachalam S: Ionizing
radiation mediates expression of cell adhesion molecules in
distinct histological patterns within the lung. Cancer Res.
57:2096–2099. 1997.PubMed/NCBI
|
|
81
|
Gaugler MH, Squiban C, van der Meeren A,
Bertho JM, Vandamme M and Mouthon MA: Late and persistent
up-regulation of intercellular adhesion molecule-1 (ICAM-1)
expression by ionizing radiation in human endothelial cells in
vitro. Int J Radiat Biol. 72:201–209. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Haubner F, Leyh M, Ohmann E, Pohl F,
Prantl L and Gassner HG: Effects of external radiation in a
co-culture model of endothelial cells and adipose-derived stem
cells. Radiat Oncol. 8:662013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Azimzadeh O, Sievert W, Sarioglu H,
Merl-Pham J, Yentrapalli R, Bakshi MV, Janik D, Ueffing M, Atkinson
MJ, Multhoff G and Tapio S: Integrative proteomics and targeted
transcriptomics analyses in cardiac endothelial cells unravel
mechanisms of long-term radiation-induced vascular dysfunction. J
Proteome Res. 14:1203–1219. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Cervelli T, Panetta D, Navarra T,
Andreassi MG, Basta G, Galli A, Salvadori PA, Picano E and Del
Turco S: Effects of single and fractionated low-dose irradiation on
vascular endothelial cells. Atherosclerosis. 235:510–518. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ria R, Cirulli T, Giannini T, Bambace S,
Serio G, Portaluri M, Ribatti D, Vacca A and Dammacco F: Serum
levels of angiogenic cytokines decrease after radiotherapy in
non-Hodgkin lymphomas. Clin Exp Med. 8:141–145. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Ria R, Portaluri M, Russo F, Cirulli T, Di
Pietro G, Bambace S, Cucci F, Romano T, Vacca A and Dammacco F:
Serum levels of angiogenic cytokines decrease after antineoplastic
radiotherapy. Cancer Lett. 216:103–107. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yang X, Liaw L, Prudovsky I, Brooks PC,
Vary C, Oxburgh L and Friesel R: Fibroblast growth factor signaling
in the vasculature. Curr Atheroscler Rep. 17:5092015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Fuks Z, Persaud RS, Alfieri A, McLoughlin
M, Ehleiter D, Schwartz JL, Seddon AP, Cordon-Cardo C and
Haimovitz-Friedman A: Basic fibroblast growth factor protects
endothelial cells against radiation-induced programmed cell death
in vitro and in vivo. Cancer Res. 54:2582–2590. 1994.PubMed/NCBI
|
|
89
|
Zhang S, Qiu X, Zhang Y, Fu K, Zhao X, Wu
J, Hu Y, Zhu W and Guo H: Basic fibroblast growth factor
ameliorates endothelial dysfunction in radiation-induced bladder
injury. Biomed Res Int. 2015:9676802015.PubMed/NCBI
|
|
90
|
Six I, Mouquet F, Corseaux D, Bordet R,
Letourneau T, Vallet B, Dosquet CC, Dupuis B, Jude B, Bertrand ME,
et al: Protective effects of basic fibroblast growth factor in
early atherosclerosis. Growth Factors. 22:157–167. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Aiello RJ, Bourassa PA, Lindsey S, Weng W,
Natoli E, Rollins BJ and Milos PM: Monocyte chemoattractant
protein-1 accelerates atherosclerosis in apolipoprotein E-deficient
mice. Arterioscler Thromb Vasc Biol. 19:1518–1525. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Harrington JR: The role of MCP-1 in
atherosclerosis. Stem Cells. 18:65–66. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Nalla AK, Gogineni VR, Gupta R, Dinh DH
and Rao JS: Suppression of uPA and uPAR blocks radiation-induced
MCP-1 mediated recruitment of endothelial cells in meningioma. Cell
Signal. 23:1299–1310. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Farris SD, Hu JH, Krishnan R, Emery I, Chu
T, Du L, Kremen M, Dichek HL, Gold E, Ramsey SA and Dichek DA:
Mechanisms of urokinase plasminogen activator (uPA)-mediated
atherosclerosis: Role of the uPA receptor and S100A8/A9 proteins. J
Biol Chem. 286:22665–22677. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Kimura M, Sudhir K, Jones M, Simpson E,
Jefferis AM and Chin-Dusting JP: Impaired acetylcholine-induced
release of nitric oxide in the aorta of male aromatase-knockout
mice: Regulation of nitric oxide production by endogenous sex
hormones in males. Circ Res. 93:1267–1271. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Adams MR, Golden DL, Register TC, Anthony
MS, Hodgin JB, Maeda N and Williams JK: The atheroprotective effect
of dietary soy isoflavones in apolipoprotein E−/− mice
requires the presence of estrogen receptor-alpha. Arterioscler
Thromb Vasc Biol. 22:1859–1864. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhu Y, Bian Z, Lu P, Karas RH, Bao L, Cox
D, Hodgin J, Shaul PW, Thoren P, Smithies O, et al: Abnormal
vascular function and hypertension in mice deficient in estrogen
receptor beta. Science. 295:505–508. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Hodgin JB, Krege JH, Reddick RL, Korach
KS, Smithies O and Maeda N: Estrogen receptor alpha is a major
mediator of 17beta-estradiol's atheroprotective effects on lesion
size in Apoe−/− mice. J Clin Invest. 107:333–340. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Hurtado R, Celani M and Geber S: Effect of
short-term estrogen therapy on endothelial function: A
double-blinded, randomized, controlled trial. Climacteric.
19:448–451. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zheng S, Chen X, Hong S, Long L, Xu Y,
Simoncini T and Fu X: 17β-Estradiol inhibits vascular smooth muscle
cell migration via up-regulation of striatin protein. Gynecol
Endocrinol. 31:618–624. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zhang G, Li C, Zhu N, Chen Y, Yu Q, Liu E
and Wang R: Sex differences in the formation of atherosclerosis
lesion in apoE−/−mice and the effect of 17β-estrodiol on
protein S-nitrosylation. Biomed Pharmacother. 99:1014–1021. 2018.
View Article : Google Scholar : PubMed/NCBI
|