|
1
|
Domingo-Gonzalez R, Zanini F, Che X, Liu
M, Jones RC, Swift MA, Quake SR, Cornfield DN and Alvira CM:
Diverse homeostatic and immunomodulatory roles of immune cells in
the developing mouse lung at single cell resolution. Elife.
9:e568902020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Martinez FD: Early-life origins of chronic
obstructive pulmonary disease. N Engl J Med. 375:871–878. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lange P, Celli B, Agusti A, Boje Jensen G,
Divo M, Faner R, Guerra S, Marott JL, Martinez FD, Martinez-Camblor
P, et al: Lung-function trajectories leading to chronic obstructive
pulmonary disease. N Engl J Med. 373:111–122. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
McGeachie MJ, Yates KP, Zhou X, Guo F,
Sternberg AL, Van Natta ML, Wise RA, Szefler SJ, Sharma S, Kho AT,
et al: Patterns of growth and decline in lung function in
persistent childhood asthma. N Engl J Med. 374:1842–1852. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Loering S, Cameron GJM, Bhatt NP, Belz GT,
Foster PS, Hansbro PM and Starkey MR: Differences in pulmonary
group 2 innate lymphoid cells are dependent on mouse age, sex and
strain. Immunol Cell Biol. Dec 8–2020.(Epub ahead of print). doi:
10.1111/imcb.12430. PubMed/NCBI
|
|
6
|
Lan F, Zhang N, Holtappels G, De Ruyck N,
Krysko O, Van Crombruggen K, Braun H, Johnston SL, Papadopoulos NG,
Zhang L and Bachert C: Staphylococcus aureus induces a mucosal type
2 immune response via epithelial cell-derived cytokines. Am J
Respir Crit Care Med. 198:452–463. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sciurba JC, Gieseck RL, Jiwrajka N, White
SD, Karmele EP, Redes J, Vannella KM, Henderson NC, Wynn TA and
Hart KM: Fibroblast-specific integrin-alpha V differentially
regulates type 17 and type 2 driven inflammation and fibrosis. J
Pathol. 248:16–29. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hajimohammadi B, Athari SM, Abdollahi M,
Vahedi G and Athari SS: Oral administration of acrylamide worsens
the inflammatory responses in the airways of asthmatic mice through
agitation of oxidative stress in the lungs. Front Immunol.
11:19402020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ryan NM and Oghumu S: Role of mast cells
in the generation of a T-helper type 2 dominated anti-helminthic
immune response. Biosci Rep. 39:BSR201817712019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Choi JP, Kim YM, Choi HI, Choi SJ, Park
HT, Lee WH, Gho YS, Jee YK, Jeon SG and Kim YK: An important role
of tumor necrosis factor receptor-2 on natural killer T cells on
the development of dsRNA-enhanced Th2 cell response to inhaled
allergens. Allergy. 69:186–198. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Sun L, Cornell TT, LeVine A, Berlin AA,
Hinkovska-Galcheva V, Fleszar AJ, Lukacs NW and Shanley TP: Dual
role of interleukin-10 in the regulation of respiratory syncitial
virus (RSV)-induced lung inflammation. Clin Exp Immunol.
172:263–279. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Helou DG, Shafiei-Jahani P, Lo R, Howard
E, Hurrell BP, Galle-Treger L, Painter JD, Lewis G, Soroosh P,
Sharpe AH and Akbari O: PD-1 pathway regulates ILC2 metabolism and
PD-1 agonist treatment ameliorates airway hyperreactivity. Nat
Commun. 11:39982020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Leyva-Castillo JM, Galand C, Mashiko S,
Bissonnette R, McGurk A, Ziegler SF, Dong C, McKenzie ANJ, Sarfati
M and Geha RS: ILC2 activation by keratinocyte-derived IL-25 drives
IL-13 production at sites of allergic skin inflammation. J Allergy
Clin Immunol. 145:1606–1614.e4. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Miller MM, Patel PS, Bao K, Danhorn T,
O'Connor BP and Reinhardt RL: BATF acts as an essential regulator
of IL-25-responsive migratory ILC2 cell fate and function. Sci
Immunol. 5:eaay39942020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Fort MM, Cheung J, Yen D, Li J, Zurawski
SM, Lo S, Menon S, Clifford T, Hunte B, Lesley R, et al: IL-25
induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in
vivo. Immunity. 15:985–995. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hurst SD, Muchamuel T, Gorman DM, Gilbert
JM, Clifford T, Kwan S, Menon S, Seymour B, Jackson C, Kung TT, et
al: New IL-17 family members promote Th1 or Th2 responses in the
lung: In vivo function of the novel cytokine IL-25. J Immunol.
169:443–453. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Oliphant CJ, Hwang YY, Walker JA, Salimi
M, Wong SH, Brewer JM, Englezakis A, Barlow JL, Hams E, Scanlon ST,
et al: MHCII-mediated dialog between group 2 innate lymphoid cells
and CD4(+) T cells potentiates type 2 immunity and promotes
parasitic helminth expulsion. Immunity. 41:283–295. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
She L, Alanazi HH, Yan L, Brooks EG, Dube
PH, Xiang Y, Zhang F, Sun Y, Liu Y, Zhang X and Li XD: Sensing and
signaling of immunogenic extracellular RNAs restrain group 2 innate
lymphoid cell-driven acute lung inflammation and airway
hyperresponsiveness. PLoS One. 15:e02367442020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Entwistle LJ, Gregory LG, Oliver RA,
Branchett WJ, Puttur F and Lloyd CM: Pulmonary group 2 innate
lymphoid cell phenotype is context specific: Determining the effect
of strain, location, and stimuli. Front Immunol. 10:31142019.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Gieseck RL III, Wilson MS and Wynn TA:
Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol.
18:62–76. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Katsura Y, Harada N, Harada S, Ishimori A,
Makino F, Ito J, Kamachi F, Okumura K, Akiba H, Atsuta R and
Takahashi K: Characteristics of alveolar macrophages from murine
models of OVA-induced allergic airway inflammation and LPS-induced
acute airway inflammation. Exp Lung Res. 41:370–382. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Fang SB, Zhang HY, Meng XC, Wang C, He BX,
Peng YQ, Xu ZB, Fan XL, Wu ZJ, Wu ZC, et al: Small extracellular
vesicles derived from human MSCs prevent allergic airway
inflammation via immunomodulation on pulmonary macrophages. Cell
Death Dis. 11:4092020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Su B, Han H, Gong Y, Li X, Ji C, Yao J,
Yang J, Hu W, Zhao W, Li J, et al: Let-7d inhibits intratumoral
macrophage M2 polarization and subsequent tumor angiogenesis by
targeting IL-13 and IL-10. Cancer Immunol Immunother. Nov
25–2020.(Epub ahead of print). doi: 10.1007/s00262-020-02791-6.
View Article : Google Scholar
|
|
24
|
De Salvo C, Buela KA and Pizarro TT:
Cytokine-mediated regulation of innate lymphoid cell plasticity in
gut mucosal immunity. Front Immunol. 11:5853192020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Silver J, Humbles AA and Ohne Y:
Isolation, culture, and induction of plasticity in ILC2s. Methods
Mol Biol. 2121:115–127. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Vacca P, Chiossone L, Mingari MC and
Moretta L: Heterogeneity of NK cells and other innate lymphoid
cells in human and murine decidua. Front Immunol. 10:1702019.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Li S, Bostick JW, Ye J, Qiu J, Zhang B,
Urban JF Jr, Avram D and Zhou L: Aryl hydrocarbon receptor
signaling cell intrinsically inhibits intestinal group 2 innate
lymphoid cell function. Immunity. 49:915–928.e5. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Klose CS and Artis D: Innate lymphoid
cells as regulators of immunity, inflammation and tissue
homeostasis. Nat Immunol. 17:765–774. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kabata H, Moro K and Koyasu S: The group 2
innate lymphoid cell (ILC2) regulatory network and its underlying
mechanisms. Immunol Rev. 286:37–52. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Pasha MA, Patel G, Hopp R and Yang Q: Role
of innate lymphoid cells in allergic diseases. Allergy Asthma Proc.
40:138–145. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Monticelli LA, Sonnenberg GF, Abt MC,
Alenghat T, Ziegler CG, Doering TA, Angelosanto JM, Laidlaw BJ,
Yang CY, Sathaliyawala T, et al: Innate lymphoid cells promote
lung-tissue homeostasis after infection with influenza virus. Nat
Immunol. 12:1045–1054. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Simoni Y, Fehlings M, Kloverpris HN,
McGovern N, Koo SL, Loh CY, Lim S, Kurioka A, Fergusson JR, Tang
CL, et al: Human innate lymphoid cell subsets possess tissue-type
based heterogeneity in phenotype and frequency. Immunity.
48:10602018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Camelo A, Rosignoli G, Ohne Y, Stewart RA,
Overed-Sayer C, Sleeman MA and May RD: IL-33, IL-25, and TSLP
induce a distinct phenotypic and activation profile in human type 2
innate lymphoid cells. Blood Adv. 1:577–589. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Huang Y, Guo L, Qiu J, Chen X, Hu-Li J,
Siebenlist U, Williamson PR, Urban JF Jr and Paul WE:
IL-25-responsive, lineage-negative KLRG1(hi) cells are
multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat
Immunol. 16:161–169. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Li Y, Chen S, Chi Y, Yang Y, Chen X, Wang
H, Lv Z, Wang J, Yuan L, Huang P, et al: Kinetics of the
accumulation of group 2 innate lymphoid cells in IL-33-induced and
IL-25-induced murine models of asthma: A potential role for the
chemokine CXCL16. Cell Mol Immunol. 16:75–86. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Salimi M, Barlow JL, Saunders SP, Xue L,
Gutowska-Owsiak D, Wang X, Huang LC, Johnson D, Scanlon ST,
McKenzie AN, et al: A role for IL-25 and IL-33-driven type-2 innate
lymphoid cells in atopic dermatitis. J Exp Med. 210:2939–2950.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Mohapatra A, Van Dyken SJ, Schneider C,
Nussbaum JC, Liang HE and Locksley RM: Group 2 innate lymphoid
cells utilize the IRF4-IL-9 module to coordinate epithelial cell
maintenance of lung homeostasis. Mucosal Immunol. 9:275–286. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Moretti S, Renga G, Oikonomou V, Galosi C,
Pariano M, Iannitti RG, Borghi M, Puccetti M, De Zuani M, Pucillo
CE, et al: A mast cell-ILC2-Th9 pathway promotes lung inflammation
in cystic fibrosis. Nat Commun. 8:140172017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wilhelm C, Hirota K, Stieglitz B, Van
Snick J, Tolaini M, Lahl K, Sparwasser T, Helmby H and Stockinger
B: An IL-9 fate reporter demonstrates the induction of an innate
IL-9 response in lung inflammation. Nat Immunol. 12:1071–1077.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bartemes KR, Kephart GM, Fox SJ and Kita
H: Enhanced innate type 2 immune response in peripheral blood from
patients with asthma. J Allergy Clin Immunol. 134:671–678.e4. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Motomura Y, Morita H, Moro K, Nakae S,
Artis D, Endo TA, Kuroki Y, Ohara O, Koyasu S and Kubo M:
Basophil-derived interleukin-4 controls the function of natural
helper cells, a member of ILC2s, in lung inflammation. Immunity.
40:758–771. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Matsuki A, Takatori H, Makita S, Yokota M,
Tamachi T, Suto A, Suzuki K, Hirose K and Nakajima H: T-bet
inhibits innate lymphoid cell-mediated eosinophilic airway
inflammation by suppressing IL-9 production. J Allergy Clin
Immunol. 139:1355–1367.e6. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhang K, Jin Y, Lai D, Wang J, Wang Y, Wu
X, Scott M, Li Y, Hou J, Billiar T, et al: RAGE-induced ILC2
expansion in acute lung injury due to haemorrhagic shock. Thorax.
75:209–219. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ishii T, Muroi M, Horiguchi K, Tanamoto
KI, Nagase T and Yamashita N: Activation through toll-like receptor
2 on group 2 innate lymphoid cells can induce asthmatic
characteristics. Clin Exp Allergy. 49:1624–1632. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Maggi L, Montaini G, Mazzoni A, Rossettini
B, Capone M, Rossi MC, Santarlasci V, Liotta F, Rossi O, Gallo O,
et al: Human circulating group 2 innate lymphoid cells can express
CD154 and promote IgE production. J Allergy Clin Immunol.
139:964–976.e4. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Gury-BenAri M, Thaiss CA, Serafini N,
Winter DR, Giladi A, Lara-Astiaso D, Levy M, Salame TM, Weiner A,
David E, et al: The spectrum and regulatory landscape of intestinal
innate lymphoid cells are shaped by the microbiome. Cell.
166:1231–1246.e13. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Robinette ML, Fuchs A, Cortez VS, Lee JS,
Wang Y, Durum SK, Gilfillan S and Colonna M; Immunological Genome
Consortium, : Transcriptional programs define molecular
characteristics of innate lymphoid cell classes and subsets. Nat
Immunol. 16:306–317. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kim HS, Jang JH, Lee MB, Jung ID, Kim YM,
Park YM and Choi WS: A novel IL-10-producing innate lymphoid cells
(ILC10) in a contact hypersensitivity mouse model. BMB Rep.
49:293–296. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wallrapp A, Burkett PR, Riesenfeld SJ, Kim
SJ, Christian E, Abdulnour RE, Thakore PI, Schnell A, Lambden C,
Herbst RH, et al: Calcitonin gene-related peptide negatively
regulates alarmin-driven type 2 innate lymphoid cell responses.
Immunity. 51:709–723.e6. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ho J, Bailey M, Zaunders J, Mrad N, Sacks
R, Sewell W and Harvey RJ: Group 2 innate lymphoid cells (ILC2s)
are increased in chronic rhinosinusitis with nasal polyps or
eosinophilia. Clin Exp Allergy. 45:394–403. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Jeffery HC, McDowell P, Lutz P, Wawman RE,
Roberts S, Bagnall C, Birtwistle J, Adams DH and Oo YH: Human
intrahepatic ILC2 are IL-13positive amphiregulinpositive and their
frequency correlates with model of end stage liver disease score.
PLoS One. 12:e01886492017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Campbell L, Hepworth MR, Whittingham-Dowd
J, Thompson S, Bancroft AJ, Hayes KS, Shaw TN, Dickey BF, Flamar
AL, Artis D, et al: ILC2s mediate systemic innate protection by
priming mucus production at distal mucosal sites. J Exp Med.
216:2714–2723. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
D'Souza SS, Shen X, Fung ITH, Ye L,
Kuentzel M, Chittur SV, Furuya Y, Siebel CW, Maillard IP, Metzger
DW and Yang Q: Compartmentalized effects of aging on group 2 innate
lymphoid cell development and function. Aging Cell. 18:e130192019.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ghaedi M, Shen ZY, Orangi M,
Martinez-Gonzalez I, Wei L, Lu X, Das A, Heravi-Moussavi A, Marra
MA, Bhandoola A and Takei F: Single-cell analysis of RORα tracer
mouse lung reveals ILC progenitors and effector ILC2 subsets. J Exp
Med. 217:jem.20182293. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Steer CA, Matha L, Shim H and Takei F:
Lung group 2 innate lymphoid cells are trained by endogenous IL-33
in the neonatal period. JCI Insight. 5:e1359612020. View Article : Google Scholar
|
|
56
|
Lindquist RL, Bayat-Sarmadi J, Leben R,
Niesner R and Hauser AE: NAD(P)H oxidase activity in the small
intestine is predominantly found in enterocytes, not professional
phagocytes. Int J Mol Sci. 19:13652018. View Article : Google Scholar
|
|
57
|
Vellozo NS, Pereira-Marques ST,
Cabral-Piccin MP, Filardy AA, Ribeiro-Gomes FL, Rigoni TS, DosReis
GA and Lopes MF: All-trans retinoic acid promotes an M1- to
M2-phenotype shift and inhibits macrophage-mediated immunity to
leishmania major. Front Immunol. 8:15602017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Moreira AP, Cavassani KA, Hullinger R,
Rosada RS, Fong DJ, Murray L, Hesson DP and Hogaboam CM: Serum
amyloid P attenuates M2 macrophage activation and protects against
fungal spore-induced allergic airway disease. J Allergy Clin
Immunol. 126:712–721.e7. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wu Y and Hirschi KK: Tissue-resident
macrophage development and function. Front Cell Dev Biol.
8:6178792020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Liu G, Zhai H, Zhang T, Li S, Li N, Chen
J, Gu M, Qin Z and Liu X: New therapeutic strategies for IPF: Based
on the ‘phagocytosis-secretion-immunization’ network regulation
mechanism of pulmonary macrophages. Biomed Pharmacother.
118:1092302019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Li R, Shang Y, Hu X, Yu Y, Zhou T, Xiong W
and Zou X: ATP/P2X7r axis mediates the pathological process of
allergic asthma by inducing M2 polarization of alveolar
macrophages. Exp Cell Res. 386:1117082020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ke X, Chen C, Song Y, Cai Q, Li J, Tang Y,
Han X, Qu W, Chen A, Wang H, et al: Hypoxia modifies the
polarization of macrophages and their inflammatory
microenvironment, and inhibits malignant behavior in cancer cells.
Oncol Lett. 18:5871–5878. 2019.PubMed/NCBI
|
|
63
|
Bazzan E, Turato G, Tine M, Radu CM,
Balestro E, Rigobello C, Biondini D, Schiavon M, Lunardi F, Baraldo
S, et al: Dual polarization of human alveolar macrophages
progressively increases with smoking and COPD severity. Respir Res.
18:402017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lin F, Song C, Zeng Y, Li Y, Li H, Liu B,
Dai M and Pan P: Canagliflozin alleviates LPS-induced acute lung
injury by modulating alveolar macrophage polarization. Int
Immunopharmacol. 88:1069692020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Soliman E, Elhassanny AE, Malur A, McPeek
M, Bell A, Leffler N, Van Dross R, Jones JL, Malur AG and Thomassen
MJ: Impaired mitochondrial function of alveolar macrophages in
carbon nanotube-induced chronic pulmonary granulomatous disease.
Toxicology. 445:1525982020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Nenasheva T, Gerasimova T, Serdyuk Y,
Grigor'eva E, Kosmiadi G, Nikolaev A, Dashinimaev E and Lyadova I:
Macrophages derived from human induced pluripotent stem cells are
low-activated ‘Naive-Like’ cells capable of restricting
mycobacteria growth. Front Immunol. 11:10162020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhang L, Wang Y, Wu G, Xiong W, Gu W and
Wang CY: Macrophages: Friend or foe in idiopathic pulmonary
fibrosis? Respir Res. 19:1702018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Bronte V and Zanovello P: Regulation of
immune responses by L-arginine metabolism. Nat Rev Immunol.
5:641–654. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Grabarz F, Aguiar CF, Correa-Costa M,
Braga TT, Hyane MI, Andrade-Oliveira V, Landgraf MA and Camara NOS:
Protective role of NKT cells and macrophage M2-driven phenotype in
bleomycin-induced pulmonary fibrosis. Inflammopharmacology.
26:491–504. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
de Campos GY, Oliveira RA, Oliveira-Brito
PK, Roque-Barreira MC and da Silva TA: Pro-inflammatory response
ensured by LPS and Pam3CSK4 in RAW 264.7 cells did not improve a
fungistatic effect on Cryptococcus gattii infection. PeerJ.
8:e102952020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Anthony RM, Urban JF Jr, Alem F, Hamed HA,
Rozo CT, Boucher JL, Van Rooijen N and Gause WC: Memory T(H)2 cells
induce alternatively activated macrophages to mediate protection
against nematode parasites. Nat Med. 12:955–960. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhu L, Fu X, Chen X, Han X and Dong P: M2
macrophages induce EMT through the TGF-beta/Smad2 signaling
pathway. Cell Biol Int. 41:960–968. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Loering S, Cameron GJ, Starkey MR and
Hansbro PM: Lung development and emerging roles for type 2
immunity. J Pathol. 247:686–696. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Blackwell TS, Hipps AN, Yamamoto Y, Han W,
Barham WJ, Ostrowski MC, Yull FE and Prince LS: NF-kappaB signaling
in fetal lung macrophages disrupts airway morphogenesis. J Immunol.
187:2740–2747. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Jones CV, Williams TM, Walker KA,
Dickinson H, Sakkal S, Rumballe BA, Little MH, Jenkin G and Ricardo
SD: M2 macrophage polarisation is associated with alveolar
formation during postnatal lung development. Respir Res. 14:412013.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Saluzzo S, Gorki AD, Rana BMJ, Martins R,
Scanlon S, Starkl P, Lakovits K, Hladik A, Korosec A, Sharif O, et
al: First-breath-induced type 2 pathways shape the lung immune
environment. Cell Rep. 18:1893–1905. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Schneider C, Lee J, Koga S,
Ricardo-Gonzalez RR, Nussbaum JC, Smith LK, Villeda SA, Liang HE
and Locksley RM: Tissue-resident group 2 innate lymphoid cells
differentiate by layered ontogeny and in situ perinatal priming.
Immunity. 50:1425–1438.e5. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Huang Y, Mao K, Chen X, Sun MA, Kawabe T,
Li W, Usher N, Zhu J, Urban JF Jr, Paul WE and Germain RN:
S1P-dependent interorgan trafficking of group 2 innate lymphoid
cells supports host defense. Science. 359:114–119. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Steer CA, Martinez-Gonzalez I, Ghaedi M,
Allinger P, Matha L and Takei F: Group 2 innate lymphoid cell
activation in the neonatal lung drives type 2 immunity and allergen
sensitization. J Allergy Clin Immunol. 140:593–595.e3. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Nussbaum JC, Van Dyken SJ, von Moltke J,
Cheng LE, Mohapatra A, Molofsky AB, Thornton EE, Krummel MF, Chawla
A, Liang HE and Locksley RM: Type 2 innate lymphoid cells control
eosinophil homeostasis. Nature. 502:245–248. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
de Kleer IM, Kool M, de Bruijn MJ, Willart
M, van Moorleghem J, Schuijs MJ, Plantinga M, Beyaert R, Hams E,
Fallon PG, et al: Perinatal activation of the interleukin-33
pathway promotes type 2 immunity in the developing lung. Immunity.
45:1285–1298. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Ghaedi M, Steer CA, Martinez-Gonzalez I,
Halim TYF, Abraham N and Takei F:
Common-lymphoid-progenitor-independent pathways of innate and T
lymphocyte development. Cell Rep. 15:471–480. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Sahoo D, Zaramela LS, Hernandez GE, Mai U,
Taheri S, Dang D, Stouch AN, Medal RM, McCoy AM, Aschner JL, et al:
Transcriptional profiling of lung macrophages identifies a
predictive signature for inflammatory lung disease in preterm
infants. Commun Biol. 3:2592020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ubags NDJ, Alejandre Alcazar MA, Kallapur
SG, Knapp S, Lanone S, Lloyd CM, Morty RE, Pattaroni C, Reynaert
NL, Rottier RJ, et al: Early origins of lung disease: Towards an
interdisciplinary approach. Eur Respir Rev. 29:2001912020.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Obata-Ninomiya K, Ishiwata K, Tsutsui H,
Nei Y, Yoshikawa S, Kawano Y, Minegishi Y, Ohta N, Watanabe N,
Kanuka H and Karasuyama H: The skin is an important bulwark of
acquired immunity against intestinal helminths. J Exp Med.
210:2583–2595. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Minutti CM, Jackson-Jones LH,
Garcia-Fojeda B, Knipper JA, Sutherland TE, Logan N, Ringqvist E,
Guillamat-Prats R, Ferenbach DA, Artigas A, et al: Local amplifiers
of IL-4Rα-mediated macrophage activation promote repair in lung and
liver. Science. 356:1076–1080. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Chen S, Kammerl IE, Vosyka O, Baumann T,
Yu Y, Wu Y, Irmler M, Overkleeft HS, Beckers J, Eickelberg O, et
al: Immunoproteasome dysfunction augments alternative polarization
of alveolar macrophages. Cell Death Differ. 23:1026–1037. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kim J, Chang Y, Bae B, Sohn KH, Cho SH,
Chung DH, Kang HR and Kim HY: Innate immune crosstalk in asthmatic
airways: Innate lymphoid cells coordinate polarization of lung
macrophages. J Allergy Clin Immunol. 143:1769–1782.e11. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
King SD and Chen SY: Recent progress on
surfactant protein A: cellular function in lung and kidney disease
development. Am J Physiol Cell Physiol. 319:C316–C320. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Buckley S, Bui KC, Hussain M and Warburton
D: Dynamics of TGF-beta 3 peptide activity during rat alveolar
epithelial cell proliferative recovery from acute hyperoxia. Am J
Physiol. 271:L54–L60. 1996.PubMed/NCBI
|
|
91
|
Lechner AJ, Driver IH, Lee J, Conroy CM,
Nagle A, Locksley RM and Rock JR: Recruited monocytes and type 2
immunity promote lung regeneration following pneumonectomy. Cell
Stem Cell. 21:120–134.e7. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Rindler TN, Stockman CA, Filuta AL, Brown
KM, Snowball JM, Zhou W, Veldhuizen R, Zink EM, Dautel SE, Clair G,
et al: Alveolar injury and regeneration following deletion of
ABCA3. JCI Insight. 2:e973812017. View Article : Google Scholar
|
|
93
|
Kurowska-Stolarska M, Stolarski B, Kewin
P, Murphy G, Corrigan CJ, Ying S, Pitman N, Mirchandani A, Rana B,
van Rooijen N, et al: IL-33 amplifies the polarization of
alternatively activated macrophages that contribute to airway
inflammation. J Immunol. 183:6469–6477. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Cohen M, Giladi A, Gorki AD, Solodkin DG,
Zada M, Hladik A, Miklosi A, Salame TM, Halpern KB, David E, et al:
Lung single-cell signaling interaction map reveals basophil role in
macrophage imprinting. Cell. 175:1031–1044.e18. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Dagher R, Copenhaver AM, Besnard V, Berlin
A, Hamidi F, Maret M, Wang J, Qu X, Shrestha Y, Wu J, et al:
IL-33-ST2 axis regulates myeloid cell differentiation and
activation enabling effective club cell regeneration. Nat Commun.
11:47862020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Silva JD, Su Y, Calfee CS, Delucchi KL,
Weiss D, McAuley DF, O'Kane C and Krasnodembskaya AD: MSC
extracellular vesicles rescue mitochondrial dysfunction and improve
barrier integrity in clinically relevant models of ARDS. Eur Respir
J. Dec 17–2020.(Epub ahead of print). doi:
10.1183/13993003.02978-2020. View Article : Google Scholar
|
|
97
|
Duan F, Guo L, Yang L, Han Y, Thakur A,
Nilsson-Payant BE, Wang P, Zhang Z, Ma CY, Zhou X, et al: Modeling
COVID-19 with human pluripotent stem cell-derived cells reveals
synergistic effects of anti-inflammatory macrophages with ACE2
inhibition against SARS-CoV-2. Res Sq. Aug 20–2020.(Epub ahead of
print). doi: 10.21203/rs.3.rs-62758/v1. PubMed/NCBI
|
|
98
|
Sersar SI, Elnahas HA, Saleh AB, Moussa SA
and Ghafar WA: Pulmonary parasitosis: Applied clinical and
therapeutic issues. Heart Lung Circ. 15:24–29. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Miller MM and Reinhardt RL: The
heterogeneity, origins, and impact of migratory iILC2 cells in
anti-helminth immunity. Front Immunol. 11:15942020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Meiners J, Reitz M, Rudiger N, Turner JE,
Heepmann L, Rudolf L, Hartmann W, McSorley HJ and Breloer M: IL-33
facilitates rapid expulsion of the parasitic nematode Strongyloides
ratti from the intestine via ILC2- and IL-9-driven mast cell
activation. PLoS Pathog. 16:e10091212020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Webb LM and Tait Wojno ED: The role of
rare innate immune cells in Type 2 immune activation against
parasitic helminths. Parasitology. 144:1288–1301. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Bouchery T, Kyle R, Camberis M, Shepherd
A, Filbey K, Smith A, Harvie M, Painter G, Johnston K, Ferguson P,
et al: ILC2s and T cells cooperate to ensure maintenance of M2
macrophages for lung immunity against hookworms. Nat Commun.
6:69702015. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Nieves W, Hung LY, Oniskey TK, Boon L,
Foretz M, Viollet B and Herbert DR: Myeloid-restricted AMPKα1
promotes host immunity and protects against IL-12/23p40-dependent
lung injury during hookworm infection. J Immunol. 196:4632–4640.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Thawer S, Auret J, Schnoeller C, Chetty A,
Smith K, Darby M, Roberts L, Mackay RM, Whitwell HJ, Timms JF, et
al: Surfactant protein-D is essential for immunity to helminth
infection. PLoS Pathog. 12:e10054612016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Snietura M, Brewczynski A, Kopec A and
Rutkowski T: Infiltrates of M2-like tumour-associated macrophages
are adverse prognostic factor in patients with human
papillomavirus-negative but not in human papillomavirus-positive
oropharyngeal squamous cell carcinoma. Pathobiology. 87:75–86.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Yan C, Wu J, Xu N, Li J, Zhou QY, Yang HM,
Cheng XD, Liu JX, Dong X, Koda S, et al: TLR4 deficiency
exacerbates biliary injuries and peribiliary fibrosis caused by
clonorchis sinensis in a resistant mouse strain. Front Cell Infect
Microbiol. 10:5269972021. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wang H, Zhang CS, Fang BB, Hou J, Li WD,
Li ZD, Li L, Bi XJ, Li L, Abulizi A, et al: Dual role of hepatic
macrophages in the establishment of the echinococcus multilocularis
metacestode in mice. Front Immunol. 11:6006352021. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Kindermann M, Knipfer L, Obermeyer S,
Muller U, Alber G, Bogdan C, Schleicher U, Neurath MF and Wirtz S:
Group 2 innate lymphoid cells (ILC2) suppress beneficial type 1
immune responses during pulmonary cryptococcosis. Front Immunol.
11:2092020. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Han M, Ishikawa T, Bermick JR, Rajput C,
Lei J, Goldsmith AM, Jarman CR, Lee J, Bentley JK and Hershenson
MB: IL-1β prevents ILC2 expansion, type 2 cytokine secretion, and
mucus metaplasia in response to early-life rhinovirus infection in
mice. Allergy. 75:2005–2019. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Yamaguchi M, Samuchiwal SK, Quehenberger
O, Boyce JA and Balestrieri B: Macrophages regulate lung ILC2
activation via Pla2g5-dependent mechanisms. Mucosal Immunol.
11:615–626. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Panova V, Gogoi M, Rodriguez-Rodriguez N,
Sivasubramaniam M, Jolin HE, Heycock MWD, Walker JA, Rana BM,
Drynan LF, Hodskinson M, et al: Group-2 innate lymphoid
cell-dependent regulation of tissue neutrophil migration by
alternatively activated macrophage-secreted Ear11. Mucosal Immunol.
14:26–37. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Wu K, Byers DE, Jin X, Agapov E,
Alexander-Brett J, Patel AC, Cella M, Gilfilan S, Colonna M, Kober
DL, et al: TREM-2 promotes macrophage survival and lung disease
after respiratory viral infection. J Exp Med. 212:681–697. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Botelho F, Dubey A, Ayaub EA, Park R, Yip
A, Humbles A, Kolbeck R and Richards CD: IL-33 mediates lung
inflammation by the IL-6-type cytokine oncostatin M. Mediators
Inflamm. 2020:40873152020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Pei W, Zhang Y, Li X, Luo M, Chen T, Zhang
M, Zhong M and Lv K: LncRNA AK085865 depletion ameliorates
asthmatic airway inflammation by modulating macrophage
polarization. Int Immunopharmacol. 83:1064502020. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Cai H, Wang J, Mo Y, Ye L, Zhu G, Song X,
Zhu M, Xue X, Yang C and Jin M: Salidroside suppresses group 2
innate lymphoid cell-mediated allergic airway inflammation by
targeting IL-33/ST2 axis. Int Immunopharmacol. 81:1062432020.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Nagashima R, Kosai H, Masuo M, Izumiyama
K, Noshikawaji T, Morimoto M, Kumaki S, Miyazaki Y, Motohashi H,
Yamamoto M and Tanaka N: Nrf2 suppresses allergic lung inflammation
by attenuating the type 2 innate lymphoid cell response. J Immunol.
202:1331–1339. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Bando JK, Nussbaum JC, Liang HE and
Locksley RM: Type 2 innate lymphoid cells constitutively express
arginase-I in the naive and inflamed lung. J Leukoc Biol.
94:877–884. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Li Q, Li D, Zhang X, Wan Q, Zhang W, Zheng
M, Zou L, Elly C, Lee JH and Liu YC: E3 Ligase VHL promotes group 2
innate lymphoid cell maturation and function via glycolysis
inhibition and induction of interleukin-33 receptor. Immunity.
48:258–270.e5. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Liu J, Qiu P, Qin J, Wu X, Wang X, Yang X,
Li B, Zhang W, Ye K, Peng Z and Lu X: Allogeneic adipose-derived
stem cells promote ischemic muscle repair by inducing M2 macrophage
polarization via the HIF-1α/IL-10 pathway. Stem Cells.
38:1307–1320. 2020.PubMed/NCBI
|
|
120
|
Scoville DK, Nolin JD, Ogden HL, An D,
Afsharinejad Z, Johnson BW, Bammler TK, Gao X, Frevert CW,
Altemeier WA, et al: Quantum dots and mouse strain influence house
dust mite-induced allergic airway disease. Toxicol Appl Pharmacol.
368:55–62. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Schuijs MJ, Hammad H and Lambrecht BN:
Professional and ‘Amateur’ Antigen-presenting cells in type 2
immunity. Trends Immunol. 40:22–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Li D, Guabiraba R, Besnard AG, Komai-Koma
M, Jabir MS, Zhang L, Graham GJ, Kurowska-Stolarska M, Liew FY,
McSharry C and Xu D: IL-33 promotes ST2-dependent lung fibrosis by
the induction of alternatively activated macrophages and innate
lymphoid cells in mice. J Allergy Clin Immunol. 134:1422–1432.e11.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Park HJ, Chi GY, Choi YH and Park SH:
Lupeol suppresses plasminogen activator inhibitor-1-mediated
macrophage recruitment and attenuates M2 macrophage polarization.
Biochem Biophys Res Commun. 527:889–895. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Zhao Y, De Los Santos FG, Wu Z, Liu T and
Phan SH: An ST2-dependent role of bone marrow-derived group 2
innate lymphoid cells in pulmonary fibrosis. J Pathol. 245:399–409.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Hams E, Armstrong ME, Barlow JL, Saunders
SP, Schwartz C, Cooke G, Fahy RJ, Crotty TB, Hirani N, Flynn RJ, et
al: IL-25 and type 2 innate lymphoid cells induce pulmonary
fibrosis. Proc Natl Acad Sci USA. 111:367–372. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
De Grove KC, Provoost S, Verhamme FM,
Bracke KR, Joos GF, Maes T and Brusselle GG: Characterization and
quantification of innate lymphoid cell subsets in human lung. PLoS
One. 11:e01459612016. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Pouwels SD, Zijlstra GJ, van der Toorn M,
Hesse L, Gras R, Ten Hacken NH, Krysko DV, Vandenabeele P, de Vries
M, van Oosterhout AJ, et al: Cigarette smoke-induced necroptosis
and DAMP release trigger neutrophilic airway inflammation in mice.
Am J Physiol Lung Cell Mol Physiol. 310:L377–L386. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Hershenson MB: Rhinovirus-induced
exacerbations of asthma and COPD. Scientifica (Cairo).
2013:4058762013.PubMed/NCBI
|
|
129
|
Zou SC, Pang LL, Mao QS, Wu SY and Xiao
QF: IL-9 exacerbates the development of chronic obstructive
pulmonary disease through oxidative stress. Eur Rev Med Pharmacol
Sci. 22:8877–8884. 2018.PubMed/NCBI
|
|
130
|
Wei Q, Sha Y, Bhattacharya A, Abdel Fattah
E, Bonilla D, Jyothula SS, Pandit L, Khurana Hershey GK and Eissa
NT: Regulation of IL-4 receptor signaling by STUB1 in lung
inflammation. Am J Respir Crit Care Med. 189:16–29. 2014.PubMed/NCBI
|
|
131
|
Saha J, Sarkar D, Pramanik A, Mahanti K,
Adhikary A and Bhattacharyya S: PGE2-HIF1α reciprocal induction
regulates migration, phenotypic alteration and immunosuppressive
capacity of macrophages in tumor microenvironment. Life Sci.
253:1177312020. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Lu Q, Wang X, Zhu J, Fei X, Chen H and Li
C: Hypoxic tumor-derived exosomal Circ0048117 facilitates M2
macrophage polarization acting as miR-140 sponge in esophageal
squamous cell carcinoma. Onco Targets Ther. 13:11883–11897. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Cui W, Zhang W, Yuan X, Liu S, Li M, Niu
J, Zhang P and Li D: Vitamin A deficiency execrates Lewis lung
carcinoma via induction of type 2 innate lymphoid cells and
alternatively activates macrophages. Food Sci Nutr. 7:1288–1294.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Robbins SM and Senger DL: To promote or
inhibit glioma progression, that is the question for IL-33. Cell
Stress. 5:19–22. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Mai S, Liu L, Jiang J, Ren P, Diao D, Wang
H and Cai K: Oesophageal squamous cell carcinoma-associated IL-33
rewires macrophage polarization towards M2 via activating ornithine
decarboxylase. Cell Prolif. 54:e129602021. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Li J, Razumilava N, Gores GJ, Walters S,
Mizuochi T, Mourya R, Bessho K, Wang YH, Glaser SS, Shivakumar P
and Bezerra JA: Biliary repair and carcinogenesis are mediated by
IL-33-dependent cholangiocyte proliferation. J Clin Invest.
124:3241–3251. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Yang Y, Xia S, Zhang L, Wang W, Chen L and
Zhan W: MiR-324-5p/PTPRD/CEBPD axis promotes papillary thyroid
carcinoma progression via microenvironment alteration. Cancer Biol
Ther. 21:522–532. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
You Y, Zhang X, Wang X, Yue D, Meng F, Zhu
J, Wang Y and Sun X: ILC2 Proliferated by IL-33 stimulation
alleviates acute colitis in Rag1(−/-) Mouse through promoting M2
macrophage polarization. J Immunol Res. 2020:50189752020.
View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Della Valle L, Gatta A, Farinelli A,
Scarano G, Lumaca A, Tinari N, Cipollone F, Paganelli R and Di
Gioacchino M: Allergooncology: An expanding research area. J Biol
Regul Homeost Agents. 34:319–326. 2020.PubMed/NCBI
|
|
140
|
Park HJ, Chi GY, Choi YH and Park SH: The
root bark of Morus alba L. regulates tumor-associated macrophages
by blocking recruitment and M2 polarization of macrophages.
Phytother Res. 34:3333–3344. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Esposito S, De Simone G, Boccia G, De Caro
F and Pagliano P: Sepsis and septic shock: New definitions, new
diagnostic and therapeutic approaches. J Glob Antimicrob Resist.
10:204–212. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Xu H, Xu J, Xu L, Jin S, Turnquist HR,
Hoffman R, Loughran P, Billiar TR and Deng M: Interleukin-33
contributes to ILC2 activation and early inflammation-associated
lung injury during abdominal sepsis. Immunol Cell Biol. 96:935–947.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Nascimento DC, Melo PH, Pineros AR,
Ferreira RG, Colon DF, Donate PB, Castanheira FV, Gozzi A,
Czaikoski PG, Niedbala W, et al: IL-33 contributes to
sepsis-induced long-term immunosuppression by expanding the
regulatory T cell population. Nat Commun. 8:149192017. View Article : Google Scholar : PubMed/NCBI
|