Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2021 Volume 23 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2021 Volume 23 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

A crosstalk between type 2 innate lymphoid cells and alternative macrophages in lung development and lung diseases (Review)

  • Authors:
    • Lan-Lan Mi
    • Yue Zhu
    • Hong-Yan Lu
  • View Affiliations / Copyright

    Affiliations: Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
    Copyright: © Mi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 403
    |
    Published online on: March 26, 2021
       https://doi.org/10.3892/mmr.2021.12042
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Type 2 innate lymphoid cells (ILC2s) are important innate immune cells that are involved in type 2 inflammation, in both mice and humans. ILC2s are stimulated by factors, including interleukin (IL)‑33 and IL‑25, and activated ILC2s secrete several cytokines that mediate type 2 immunity by inducing profound changes in physiology, including activation of alternative (M2) macrophages. M2 macrophages possess immune modulatory, phagocytic, tissue repair and remodeling properties, and can regulate ILC2s under infection. The present review summarizes the role of ILC2s as innate cells and M2 macrophages as anti‑inflammatory cells, and discusses current literature on their important biological significance. The present review also highlights how the crosstalk between ILC2s and M2 macrophages contributes to lung development, induces pulmonary parasitic expulsion, exacerbates pulmonary viral and fungal infections and allergic airway diseases, and promotes the development of lung diseases, such as pulmonary fibrosis, chronic obstructive pulmonary disease and carcinoma of the lungs.
View Figures

Figure 1

Figure 2

View References

1 

Domingo-Gonzalez R, Zanini F, Che X, Liu M, Jones RC, Swift MA, Quake SR, Cornfield DN and Alvira CM: Diverse homeostatic and immunomodulatory roles of immune cells in the developing mouse lung at single cell resolution. Elife. 9:e568902020. View Article : Google Scholar : PubMed/NCBI

2 

Martinez FD: Early-life origins of chronic obstructive pulmonary disease. N Engl J Med. 375:871–878. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Lange P, Celli B, Agusti A, Boje Jensen G, Divo M, Faner R, Guerra S, Marott JL, Martinez FD, Martinez-Camblor P, et al: Lung-function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med. 373:111–122. 2015. View Article : Google Scholar : PubMed/NCBI

4 

McGeachie MJ, Yates KP, Zhou X, Guo F, Sternberg AL, Van Natta ML, Wise RA, Szefler SJ, Sharma S, Kho AT, et al: Patterns of growth and decline in lung function in persistent childhood asthma. N Engl J Med. 374:1842–1852. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Loering S, Cameron GJM, Bhatt NP, Belz GT, Foster PS, Hansbro PM and Starkey MR: Differences in pulmonary group 2 innate lymphoid cells are dependent on mouse age, sex and strain. Immunol Cell Biol. Dec 8–2020.(Epub ahead of print). doi: 10.1111/imcb.12430. PubMed/NCBI

6 

Lan F, Zhang N, Holtappels G, De Ruyck N, Krysko O, Van Crombruggen K, Braun H, Johnston SL, Papadopoulos NG, Zhang L and Bachert C: Staphylococcus aureus induces a mucosal type 2 immune response via epithelial cell-derived cytokines. Am J Respir Crit Care Med. 198:452–463. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Sciurba JC, Gieseck RL, Jiwrajka N, White SD, Karmele EP, Redes J, Vannella KM, Henderson NC, Wynn TA and Hart KM: Fibroblast-specific integrin-alpha V differentially regulates type 17 and type 2 driven inflammation and fibrosis. J Pathol. 248:16–29. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Hajimohammadi B, Athari SM, Abdollahi M, Vahedi G and Athari SS: Oral administration of acrylamide worsens the inflammatory responses in the airways of asthmatic mice through agitation of oxidative stress in the lungs. Front Immunol. 11:19402020. View Article : Google Scholar : PubMed/NCBI

9 

Ryan NM and Oghumu S: Role of mast cells in the generation of a T-helper type 2 dominated anti-helminthic immune response. Biosci Rep. 39:BSR201817712019. View Article : Google Scholar : PubMed/NCBI

10 

Choi JP, Kim YM, Choi HI, Choi SJ, Park HT, Lee WH, Gho YS, Jee YK, Jeon SG and Kim YK: An important role of tumor necrosis factor receptor-2 on natural killer T cells on the development of dsRNA-enhanced Th2 cell response to inhaled allergens. Allergy. 69:186–198. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Sun L, Cornell TT, LeVine A, Berlin AA, Hinkovska-Galcheva V, Fleszar AJ, Lukacs NW and Shanley TP: Dual role of interleukin-10 in the regulation of respiratory syncitial virus (RSV)-induced lung inflammation. Clin Exp Immunol. 172:263–279. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Helou DG, Shafiei-Jahani P, Lo R, Howard E, Hurrell BP, Galle-Treger L, Painter JD, Lewis G, Soroosh P, Sharpe AH and Akbari O: PD-1 pathway regulates ILC2 metabolism and PD-1 agonist treatment ameliorates airway hyperreactivity. Nat Commun. 11:39982020. View Article : Google Scholar : PubMed/NCBI

13 

Leyva-Castillo JM, Galand C, Mashiko S, Bissonnette R, McGurk A, Ziegler SF, Dong C, McKenzie ANJ, Sarfati M and Geha RS: ILC2 activation by keratinocyte-derived IL-25 drives IL-13 production at sites of allergic skin inflammation. J Allergy Clin Immunol. 145:1606–1614.e4. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Miller MM, Patel PS, Bao K, Danhorn T, O'Connor BP and Reinhardt RL: BATF acts as an essential regulator of IL-25-responsive migratory ILC2 cell fate and function. Sci Immunol. 5:eaay39942020. View Article : Google Scholar : PubMed/NCBI

15 

Fort MM, Cheung J, Yen D, Li J, Zurawski SM, Lo S, Menon S, Clifford T, Hunte B, Lesley R, et al: IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity. 15:985–995. 2001. View Article : Google Scholar : PubMed/NCBI

16 

Hurst SD, Muchamuel T, Gorman DM, Gilbert JM, Clifford T, Kwan S, Menon S, Seymour B, Jackson C, Kung TT, et al: New IL-17 family members promote Th1 or Th2 responses in the lung: In vivo function of the novel cytokine IL-25. J Immunol. 169:443–453. 2002. View Article : Google Scholar : PubMed/NCBI

17 

Oliphant CJ, Hwang YY, Walker JA, Salimi M, Wong SH, Brewer JM, Englezakis A, Barlow JL, Hams E, Scanlon ST, et al: MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity. 41:283–295. 2014. View Article : Google Scholar : PubMed/NCBI

18 

She L, Alanazi HH, Yan L, Brooks EG, Dube PH, Xiang Y, Zhang F, Sun Y, Liu Y, Zhang X and Li XD: Sensing and signaling of immunogenic extracellular RNAs restrain group 2 innate lymphoid cell-driven acute lung inflammation and airway hyperresponsiveness. PLoS One. 15:e02367442020. View Article : Google Scholar : PubMed/NCBI

19 

Entwistle LJ, Gregory LG, Oliver RA, Branchett WJ, Puttur F and Lloyd CM: Pulmonary group 2 innate lymphoid cell phenotype is context specific: Determining the effect of strain, location, and stimuli. Front Immunol. 10:31142019. View Article : Google Scholar : PubMed/NCBI

20 

Gieseck RL III, Wilson MS and Wynn TA: Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol. 18:62–76. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Katsura Y, Harada N, Harada S, Ishimori A, Makino F, Ito J, Kamachi F, Okumura K, Akiba H, Atsuta R and Takahashi K: Characteristics of alveolar macrophages from murine models of OVA-induced allergic airway inflammation and LPS-induced acute airway inflammation. Exp Lung Res. 41:370–382. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Fang SB, Zhang HY, Meng XC, Wang C, He BX, Peng YQ, Xu ZB, Fan XL, Wu ZJ, Wu ZC, et al: Small extracellular vesicles derived from human MSCs prevent allergic airway inflammation via immunomodulation on pulmonary macrophages. Cell Death Dis. 11:4092020. View Article : Google Scholar : PubMed/NCBI

23 

Su B, Han H, Gong Y, Li X, Ji C, Yao J, Yang J, Hu W, Zhao W, Li J, et al: Let-7d inhibits intratumoral macrophage M2 polarization and subsequent tumor angiogenesis by targeting IL-13 and IL-10. Cancer Immunol Immunother. Nov 25–2020.(Epub ahead of print). doi: 10.1007/s00262-020-02791-6. View Article : Google Scholar

24 

De Salvo C, Buela KA and Pizarro TT: Cytokine-mediated regulation of innate lymphoid cell plasticity in gut mucosal immunity. Front Immunol. 11:5853192020. View Article : Google Scholar : PubMed/NCBI

25 

Silver J, Humbles AA and Ohne Y: Isolation, culture, and induction of plasticity in ILC2s. Methods Mol Biol. 2121:115–127. 2020. View Article : Google Scholar : PubMed/NCBI

26 

Vacca P, Chiossone L, Mingari MC and Moretta L: Heterogeneity of NK cells and other innate lymphoid cells in human and murine decidua. Front Immunol. 10:1702019. View Article : Google Scholar : PubMed/NCBI

27 

Li S, Bostick JW, Ye J, Qiu J, Zhang B, Urban JF Jr, Avram D and Zhou L: Aryl hydrocarbon receptor signaling cell intrinsically inhibits intestinal group 2 innate lymphoid cell function. Immunity. 49:915–928.e5. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Klose CS and Artis D: Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol. 17:765–774. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Kabata H, Moro K and Koyasu S: The group 2 innate lymphoid cell (ILC2) regulatory network and its underlying mechanisms. Immunol Rev. 286:37–52. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Pasha MA, Patel G, Hopp R and Yang Q: Role of innate lymphoid cells in allergic diseases. Allergy Asthma Proc. 40:138–145. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Doering TA, Angelosanto JM, Laidlaw BJ, Yang CY, Sathaliyawala T, et al: Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol. 12:1045–1054. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Simoni Y, Fehlings M, Kloverpris HN, McGovern N, Koo SL, Loh CY, Lim S, Kurioka A, Fergusson JR, Tang CL, et al: Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity. 48:10602018. View Article : Google Scholar : PubMed/NCBI

33 

Camelo A, Rosignoli G, Ohne Y, Stewart RA, Overed-Sayer C, Sleeman MA and May RD: IL-33, IL-25, and TSLP induce a distinct phenotypic and activation profile in human type 2 innate lymphoid cells. Blood Adv. 1:577–589. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Huang Y, Guo L, Qiu J, Chen X, Hu-Li J, Siebenlist U, Williamson PR, Urban JF Jr and Paul WE: IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat Immunol. 16:161–169. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Li Y, Chen S, Chi Y, Yang Y, Chen X, Wang H, Lv Z, Wang J, Yuan L, Huang P, et al: Kinetics of the accumulation of group 2 innate lymphoid cells in IL-33-induced and IL-25-induced murine models of asthma: A potential role for the chemokine CXCL16. Cell Mol Immunol. 16:75–86. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Salimi M, Barlow JL, Saunders SP, Xue L, Gutowska-Owsiak D, Wang X, Huang LC, Johnson D, Scanlon ST, McKenzie AN, et al: A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med. 210:2939–2950. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Mohapatra A, Van Dyken SJ, Schneider C, Nussbaum JC, Liang HE and Locksley RM: Group 2 innate lymphoid cells utilize the IRF4-IL-9 module to coordinate epithelial cell maintenance of lung homeostasis. Mucosal Immunol. 9:275–286. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Moretti S, Renga G, Oikonomou V, Galosi C, Pariano M, Iannitti RG, Borghi M, Puccetti M, De Zuani M, Pucillo CE, et al: A mast cell-ILC2-Th9 pathway promotes lung inflammation in cystic fibrosis. Nat Commun. 8:140172017. View Article : Google Scholar : PubMed/NCBI

39 

Wilhelm C, Hirota K, Stieglitz B, Van Snick J, Tolaini M, Lahl K, Sparwasser T, Helmby H and Stockinger B: An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat Immunol. 12:1071–1077. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Bartemes KR, Kephart GM, Fox SJ and Kita H: Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J Allergy Clin Immunol. 134:671–678.e4. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Motomura Y, Morita H, Moro K, Nakae S, Artis D, Endo TA, Kuroki Y, Ohara O, Koyasu S and Kubo M: Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation. Immunity. 40:758–771. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Matsuki A, Takatori H, Makita S, Yokota M, Tamachi T, Suto A, Suzuki K, Hirose K and Nakajima H: T-bet inhibits innate lymphoid cell-mediated eosinophilic airway inflammation by suppressing IL-9 production. J Allergy Clin Immunol. 139:1355–1367.e6. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Zhang K, Jin Y, Lai D, Wang J, Wang Y, Wu X, Scott M, Li Y, Hou J, Billiar T, et al: RAGE-induced ILC2 expansion in acute lung injury due to haemorrhagic shock. Thorax. 75:209–219. 2020. View Article : Google Scholar : PubMed/NCBI

44 

Ishii T, Muroi M, Horiguchi K, Tanamoto KI, Nagase T and Yamashita N: Activation through toll-like receptor 2 on group 2 innate lymphoid cells can induce asthmatic characteristics. Clin Exp Allergy. 49:1624–1632. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Maggi L, Montaini G, Mazzoni A, Rossettini B, Capone M, Rossi MC, Santarlasci V, Liotta F, Rossi O, Gallo O, et al: Human circulating group 2 innate lymphoid cells can express CD154 and promote IgE production. J Allergy Clin Immunol. 139:964–976.e4. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Gury-BenAri M, Thaiss CA, Serafini N, Winter DR, Giladi A, Lara-Astiaso D, Levy M, Salame TM, Weiner A, David E, et al: The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell. 166:1231–1246.e13. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Robinette ML, Fuchs A, Cortez VS, Lee JS, Wang Y, Durum SK, Gilfillan S and Colonna M; Immunological Genome Consortium, : Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat Immunol. 16:306–317. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Kim HS, Jang JH, Lee MB, Jung ID, Kim YM, Park YM and Choi WS: A novel IL-10-producing innate lymphoid cells (ILC10) in a contact hypersensitivity mouse model. BMB Rep. 49:293–296. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Wallrapp A, Burkett PR, Riesenfeld SJ, Kim SJ, Christian E, Abdulnour RE, Thakore PI, Schnell A, Lambden C, Herbst RH, et al: Calcitonin gene-related peptide negatively regulates alarmin-driven type 2 innate lymphoid cell responses. Immunity. 51:709–723.e6. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Ho J, Bailey M, Zaunders J, Mrad N, Sacks R, Sewell W and Harvey RJ: Group 2 innate lymphoid cells (ILC2s) are increased in chronic rhinosinusitis with nasal polyps or eosinophilia. Clin Exp Allergy. 45:394–403. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Jeffery HC, McDowell P, Lutz P, Wawman RE, Roberts S, Bagnall C, Birtwistle J, Adams DH and Oo YH: Human intrahepatic ILC2 are IL-13positive amphiregulinpositive and their frequency correlates with model of end stage liver disease score. PLoS One. 12:e01886492017. View Article : Google Scholar : PubMed/NCBI

52 

Campbell L, Hepworth MR, Whittingham-Dowd J, Thompson S, Bancroft AJ, Hayes KS, Shaw TN, Dickey BF, Flamar AL, Artis D, et al: ILC2s mediate systemic innate protection by priming mucus production at distal mucosal sites. J Exp Med. 216:2714–2723. 2019. View Article : Google Scholar : PubMed/NCBI

53 

D'Souza SS, Shen X, Fung ITH, Ye L, Kuentzel M, Chittur SV, Furuya Y, Siebel CW, Maillard IP, Metzger DW and Yang Q: Compartmentalized effects of aging on group 2 innate lymphoid cell development and function. Aging Cell. 18:e130192019. View Article : Google Scholar : PubMed/NCBI

54 

Ghaedi M, Shen ZY, Orangi M, Martinez-Gonzalez I, Wei L, Lu X, Das A, Heravi-Moussavi A, Marra MA, Bhandoola A and Takei F: Single-cell analysis of RORα tracer mouse lung reveals ILC progenitors and effector ILC2 subsets. J Exp Med. 217:jem.20182293. 2020. View Article : Google Scholar : PubMed/NCBI

55 

Steer CA, Matha L, Shim H and Takei F: Lung group 2 innate lymphoid cells are trained by endogenous IL-33 in the neonatal period. JCI Insight. 5:e1359612020. View Article : Google Scholar

56 

Lindquist RL, Bayat-Sarmadi J, Leben R, Niesner R and Hauser AE: NAD(P)H oxidase activity in the small intestine is predominantly found in enterocytes, not professional phagocytes. Int J Mol Sci. 19:13652018. View Article : Google Scholar

57 

Vellozo NS, Pereira-Marques ST, Cabral-Piccin MP, Filardy AA, Ribeiro-Gomes FL, Rigoni TS, DosReis GA and Lopes MF: All-trans retinoic acid promotes an M1- to M2-phenotype shift and inhibits macrophage-mediated immunity to leishmania major. Front Immunol. 8:15602017. View Article : Google Scholar : PubMed/NCBI

58 

Moreira AP, Cavassani KA, Hullinger R, Rosada RS, Fong DJ, Murray L, Hesson DP and Hogaboam CM: Serum amyloid P attenuates M2 macrophage activation and protects against fungal spore-induced allergic airway disease. J Allergy Clin Immunol. 126:712–721.e7. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Wu Y and Hirschi KK: Tissue-resident macrophage development and function. Front Cell Dev Biol. 8:6178792020. View Article : Google Scholar : PubMed/NCBI

60 

Liu G, Zhai H, Zhang T, Li S, Li N, Chen J, Gu M, Qin Z and Liu X: New therapeutic strategies for IPF: Based on the ‘phagocytosis-secretion-immunization’ network regulation mechanism of pulmonary macrophages. Biomed Pharmacother. 118:1092302019. View Article : Google Scholar : PubMed/NCBI

61 

Li R, Shang Y, Hu X, Yu Y, Zhou T, Xiong W and Zou X: ATP/P2X7r axis mediates the pathological process of allergic asthma by inducing M2 polarization of alveolar macrophages. Exp Cell Res. 386:1117082020. View Article : Google Scholar : PubMed/NCBI

62 

Ke X, Chen C, Song Y, Cai Q, Li J, Tang Y, Han X, Qu W, Chen A, Wang H, et al: Hypoxia modifies the polarization of macrophages and their inflammatory microenvironment, and inhibits malignant behavior in cancer cells. Oncol Lett. 18:5871–5878. 2019.PubMed/NCBI

63 

Bazzan E, Turato G, Tine M, Radu CM, Balestro E, Rigobello C, Biondini D, Schiavon M, Lunardi F, Baraldo S, et al: Dual polarization of human alveolar macrophages progressively increases with smoking and COPD severity. Respir Res. 18:402017. View Article : Google Scholar : PubMed/NCBI

64 

Lin F, Song C, Zeng Y, Li Y, Li H, Liu B, Dai M and Pan P: Canagliflozin alleviates LPS-induced acute lung injury by modulating alveolar macrophage polarization. Int Immunopharmacol. 88:1069692020. View Article : Google Scholar : PubMed/NCBI

65 

Soliman E, Elhassanny AE, Malur A, McPeek M, Bell A, Leffler N, Van Dross R, Jones JL, Malur AG and Thomassen MJ: Impaired mitochondrial function of alveolar macrophages in carbon nanotube-induced chronic pulmonary granulomatous disease. Toxicology. 445:1525982020. View Article : Google Scholar : PubMed/NCBI

66 

Nenasheva T, Gerasimova T, Serdyuk Y, Grigor'eva E, Kosmiadi G, Nikolaev A, Dashinimaev E and Lyadova I: Macrophages derived from human induced pluripotent stem cells are low-activated ‘Naive-Like’ cells capable of restricting mycobacteria growth. Front Immunol. 11:10162020. View Article : Google Scholar : PubMed/NCBI

67 

Zhang L, Wang Y, Wu G, Xiong W, Gu W and Wang CY: Macrophages: Friend or foe in idiopathic pulmonary fibrosis? Respir Res. 19:1702018. View Article : Google Scholar : PubMed/NCBI

68 

Bronte V and Zanovello P: Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol. 5:641–654. 2005. View Article : Google Scholar : PubMed/NCBI

69 

Grabarz F, Aguiar CF, Correa-Costa M, Braga TT, Hyane MI, Andrade-Oliveira V, Landgraf MA and Camara NOS: Protective role of NKT cells and macrophage M2-driven phenotype in bleomycin-induced pulmonary fibrosis. Inflammopharmacology. 26:491–504. 2018. View Article : Google Scholar : PubMed/NCBI

70 

de Campos GY, Oliveira RA, Oliveira-Brito PK, Roque-Barreira MC and da Silva TA: Pro-inflammatory response ensured by LPS and Pam3CSK4 in RAW 264.7 cells did not improve a fungistatic effect on Cryptococcus gattii infection. PeerJ. 8:e102952020. View Article : Google Scholar : PubMed/NCBI

71 

Anthony RM, Urban JF Jr, Alem F, Hamed HA, Rozo CT, Boucher JL, Van Rooijen N and Gause WC: Memory T(H)2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nat Med. 12:955–960. 2006. View Article : Google Scholar : PubMed/NCBI

72 

Zhu L, Fu X, Chen X, Han X and Dong P: M2 macrophages induce EMT through the TGF-beta/Smad2 signaling pathway. Cell Biol Int. 41:960–968. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Loering S, Cameron GJ, Starkey MR and Hansbro PM: Lung development and emerging roles for type 2 immunity. J Pathol. 247:686–696. 2019. View Article : Google Scholar : PubMed/NCBI

74 

Blackwell TS, Hipps AN, Yamamoto Y, Han W, Barham WJ, Ostrowski MC, Yull FE and Prince LS: NF-kappaB signaling in fetal lung macrophages disrupts airway morphogenesis. J Immunol. 187:2740–2747. 2011. View Article : Google Scholar : PubMed/NCBI

75 

Jones CV, Williams TM, Walker KA, Dickinson H, Sakkal S, Rumballe BA, Little MH, Jenkin G and Ricardo SD: M2 macrophage polarisation is associated with alveolar formation during postnatal lung development. Respir Res. 14:412013. View Article : Google Scholar : PubMed/NCBI

76 

Saluzzo S, Gorki AD, Rana BMJ, Martins R, Scanlon S, Starkl P, Lakovits K, Hladik A, Korosec A, Sharif O, et al: First-breath-induced type 2 pathways shape the lung immune environment. Cell Rep. 18:1893–1905. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Schneider C, Lee J, Koga S, Ricardo-Gonzalez RR, Nussbaum JC, Smith LK, Villeda SA, Liang HE and Locksley RM: Tissue-resident group 2 innate lymphoid cells differentiate by layered ontogeny and in situ perinatal priming. Immunity. 50:1425–1438.e5. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Huang Y, Mao K, Chen X, Sun MA, Kawabe T, Li W, Usher N, Zhu J, Urban JF Jr, Paul WE and Germain RN: S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science. 359:114–119. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Steer CA, Martinez-Gonzalez I, Ghaedi M, Allinger P, Matha L and Takei F: Group 2 innate lymphoid cell activation in the neonatal lung drives type 2 immunity and allergen sensitization. J Allergy Clin Immunol. 140:593–595.e3. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A, Molofsky AB, Thornton EE, Krummel MF, Chawla A, Liang HE and Locksley RM: Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 502:245–248. 2013. View Article : Google Scholar : PubMed/NCBI

81 

de Kleer IM, Kool M, de Bruijn MJ, Willart M, van Moorleghem J, Schuijs MJ, Plantinga M, Beyaert R, Hams E, Fallon PG, et al: Perinatal activation of the interleukin-33 pathway promotes type 2 immunity in the developing lung. Immunity. 45:1285–1298. 2016. View Article : Google Scholar : PubMed/NCBI

82 

Ghaedi M, Steer CA, Martinez-Gonzalez I, Halim TYF, Abraham N and Takei F: Common-lymphoid-progenitor-independent pathways of innate and T lymphocyte development. Cell Rep. 15:471–480. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Sahoo D, Zaramela LS, Hernandez GE, Mai U, Taheri S, Dang D, Stouch AN, Medal RM, McCoy AM, Aschner JL, et al: Transcriptional profiling of lung macrophages identifies a predictive signature for inflammatory lung disease in preterm infants. Commun Biol. 3:2592020. View Article : Google Scholar : PubMed/NCBI

84 

Ubags NDJ, Alejandre Alcazar MA, Kallapur SG, Knapp S, Lanone S, Lloyd CM, Morty RE, Pattaroni C, Reynaert NL, Rottier RJ, et al: Early origins of lung disease: Towards an interdisciplinary approach. Eur Respir Rev. 29:2001912020. View Article : Google Scholar : PubMed/NCBI

85 

Obata-Ninomiya K, Ishiwata K, Tsutsui H, Nei Y, Yoshikawa S, Kawano Y, Minegishi Y, Ohta N, Watanabe N, Kanuka H and Karasuyama H: The skin is an important bulwark of acquired immunity against intestinal helminths. J Exp Med. 210:2583–2595. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Minutti CM, Jackson-Jones LH, Garcia-Fojeda B, Knipper JA, Sutherland TE, Logan N, Ringqvist E, Guillamat-Prats R, Ferenbach DA, Artigas A, et al: Local amplifiers of IL-4Rα-mediated macrophage activation promote repair in lung and liver. Science. 356:1076–1080. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Chen S, Kammerl IE, Vosyka O, Baumann T, Yu Y, Wu Y, Irmler M, Overkleeft HS, Beckers J, Eickelberg O, et al: Immunoproteasome dysfunction augments alternative polarization of alveolar macrophages. Cell Death Differ. 23:1026–1037. 2016. View Article : Google Scholar : PubMed/NCBI

88 

Kim J, Chang Y, Bae B, Sohn KH, Cho SH, Chung DH, Kang HR and Kim HY: Innate immune crosstalk in asthmatic airways: Innate lymphoid cells coordinate polarization of lung macrophages. J Allergy Clin Immunol. 143:1769–1782.e11. 2019. View Article : Google Scholar : PubMed/NCBI

89 

King SD and Chen SY: Recent progress on surfactant protein A: cellular function in lung and kidney disease development. Am J Physiol Cell Physiol. 319:C316–C320. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Buckley S, Bui KC, Hussain M and Warburton D: Dynamics of TGF-beta 3 peptide activity during rat alveolar epithelial cell proliferative recovery from acute hyperoxia. Am J Physiol. 271:L54–L60. 1996.PubMed/NCBI

91 

Lechner AJ, Driver IH, Lee J, Conroy CM, Nagle A, Locksley RM and Rock JR: Recruited monocytes and type 2 immunity promote lung regeneration following pneumonectomy. Cell Stem Cell. 21:120–134.e7. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Rindler TN, Stockman CA, Filuta AL, Brown KM, Snowball JM, Zhou W, Veldhuizen R, Zink EM, Dautel SE, Clair G, et al: Alveolar injury and regeneration following deletion of ABCA3. JCI Insight. 2:e973812017. View Article : Google Scholar

93 

Kurowska-Stolarska M, Stolarski B, Kewin P, Murphy G, Corrigan CJ, Ying S, Pitman N, Mirchandani A, Rana B, van Rooijen N, et al: IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol. 183:6469–6477. 2009. View Article : Google Scholar : PubMed/NCBI

94 

Cohen M, Giladi A, Gorki AD, Solodkin DG, Zada M, Hladik A, Miklosi A, Salame TM, Halpern KB, David E, et al: Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting. Cell. 175:1031–1044.e18. 2018. View Article : Google Scholar : PubMed/NCBI

95 

Dagher R, Copenhaver AM, Besnard V, Berlin A, Hamidi F, Maret M, Wang J, Qu X, Shrestha Y, Wu J, et al: IL-33-ST2 axis regulates myeloid cell differentiation and activation enabling effective club cell regeneration. Nat Commun. 11:47862020. View Article : Google Scholar : PubMed/NCBI

96 

Silva JD, Su Y, Calfee CS, Delucchi KL, Weiss D, McAuley DF, O'Kane C and Krasnodembskaya AD: MSC extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS. Eur Respir J. Dec 17–2020.(Epub ahead of print). doi: 10.1183/13993003.02978-2020. View Article : Google Scholar

97 

Duan F, Guo L, Yang L, Han Y, Thakur A, Nilsson-Payant BE, Wang P, Zhang Z, Ma CY, Zhou X, et al: Modeling COVID-19 with human pluripotent stem cell-derived cells reveals synergistic effects of anti-inflammatory macrophages with ACE2 inhibition against SARS-CoV-2. Res Sq. Aug 20–2020.(Epub ahead of print). doi: 10.21203/rs.3.rs-62758/v1. PubMed/NCBI

98 

Sersar SI, Elnahas HA, Saleh AB, Moussa SA and Ghafar WA: Pulmonary parasitosis: Applied clinical and therapeutic issues. Heart Lung Circ. 15:24–29. 2006. View Article : Google Scholar : PubMed/NCBI

99 

Miller MM and Reinhardt RL: The heterogeneity, origins, and impact of migratory iILC2 cells in anti-helminth immunity. Front Immunol. 11:15942020. View Article : Google Scholar : PubMed/NCBI

100 

Meiners J, Reitz M, Rudiger N, Turner JE, Heepmann L, Rudolf L, Hartmann W, McSorley HJ and Breloer M: IL-33 facilitates rapid expulsion of the parasitic nematode Strongyloides ratti from the intestine via ILC2- and IL-9-driven mast cell activation. PLoS Pathog. 16:e10091212020. View Article : Google Scholar : PubMed/NCBI

101 

Webb LM and Tait Wojno ED: The role of rare innate immune cells in Type 2 immune activation against parasitic helminths. Parasitology. 144:1288–1301. 2017. View Article : Google Scholar : PubMed/NCBI

102 

Bouchery T, Kyle R, Camberis M, Shepherd A, Filbey K, Smith A, Harvie M, Painter G, Johnston K, Ferguson P, et al: ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms. Nat Commun. 6:69702015. View Article : Google Scholar : PubMed/NCBI

103 

Nieves W, Hung LY, Oniskey TK, Boon L, Foretz M, Viollet B and Herbert DR: Myeloid-restricted AMPKα1 promotes host immunity and protects against IL-12/23p40-dependent lung injury during hookworm infection. J Immunol. 196:4632–4640. 2016. View Article : Google Scholar : PubMed/NCBI

104 

Thawer S, Auret J, Schnoeller C, Chetty A, Smith K, Darby M, Roberts L, Mackay RM, Whitwell HJ, Timms JF, et al: Surfactant protein-D is essential for immunity to helminth infection. PLoS Pathog. 12:e10054612016. View Article : Google Scholar : PubMed/NCBI

105 

Snietura M, Brewczynski A, Kopec A and Rutkowski T: Infiltrates of M2-like tumour-associated macrophages are adverse prognostic factor in patients with human papillomavirus-negative but not in human papillomavirus-positive oropharyngeal squamous cell carcinoma. Pathobiology. 87:75–86. 2020. View Article : Google Scholar : PubMed/NCBI

106 

Yan C, Wu J, Xu N, Li J, Zhou QY, Yang HM, Cheng XD, Liu JX, Dong X, Koda S, et al: TLR4 deficiency exacerbates biliary injuries and peribiliary fibrosis caused by clonorchis sinensis in a resistant mouse strain. Front Cell Infect Microbiol. 10:5269972021. View Article : Google Scholar : PubMed/NCBI

107 

Wang H, Zhang CS, Fang BB, Hou J, Li WD, Li ZD, Li L, Bi XJ, Li L, Abulizi A, et al: Dual role of hepatic macrophages in the establishment of the echinococcus multilocularis metacestode in mice. Front Immunol. 11:6006352021. View Article : Google Scholar : PubMed/NCBI

108 

Kindermann M, Knipfer L, Obermeyer S, Muller U, Alber G, Bogdan C, Schleicher U, Neurath MF and Wirtz S: Group 2 innate lymphoid cells (ILC2) suppress beneficial type 1 immune responses during pulmonary cryptococcosis. Front Immunol. 11:2092020. View Article : Google Scholar : PubMed/NCBI

109 

Han M, Ishikawa T, Bermick JR, Rajput C, Lei J, Goldsmith AM, Jarman CR, Lee J, Bentley JK and Hershenson MB: IL-1β prevents ILC2 expansion, type 2 cytokine secretion, and mucus metaplasia in response to early-life rhinovirus infection in mice. Allergy. 75:2005–2019. 2020. View Article : Google Scholar : PubMed/NCBI

110 

Yamaguchi M, Samuchiwal SK, Quehenberger O, Boyce JA and Balestrieri B: Macrophages regulate lung ILC2 activation via Pla2g5-dependent mechanisms. Mucosal Immunol. 11:615–626. 2018. View Article : Google Scholar : PubMed/NCBI

111 

Panova V, Gogoi M, Rodriguez-Rodriguez N, Sivasubramaniam M, Jolin HE, Heycock MWD, Walker JA, Rana BM, Drynan LF, Hodskinson M, et al: Group-2 innate lymphoid cell-dependent regulation of tissue neutrophil migration by alternatively activated macrophage-secreted Ear11. Mucosal Immunol. 14:26–37. 2020. View Article : Google Scholar : PubMed/NCBI

112 

Wu K, Byers DE, Jin X, Agapov E, Alexander-Brett J, Patel AC, Cella M, Gilfilan S, Colonna M, Kober DL, et al: TREM-2 promotes macrophage survival and lung disease after respiratory viral infection. J Exp Med. 212:681–697. 2015. View Article : Google Scholar : PubMed/NCBI

113 

Botelho F, Dubey A, Ayaub EA, Park R, Yip A, Humbles A, Kolbeck R and Richards CD: IL-33 mediates lung inflammation by the IL-6-type cytokine oncostatin M. Mediators Inflamm. 2020:40873152020. View Article : Google Scholar : PubMed/NCBI

114 

Pei W, Zhang Y, Li X, Luo M, Chen T, Zhang M, Zhong M and Lv K: LncRNA AK085865 depletion ameliorates asthmatic airway inflammation by modulating macrophage polarization. Int Immunopharmacol. 83:1064502020. View Article : Google Scholar : PubMed/NCBI

115 

Cai H, Wang J, Mo Y, Ye L, Zhu G, Song X, Zhu M, Xue X, Yang C and Jin M: Salidroside suppresses group 2 innate lymphoid cell-mediated allergic airway inflammation by targeting IL-33/ST2 axis. Int Immunopharmacol. 81:1062432020. View Article : Google Scholar : PubMed/NCBI

116 

Nagashima R, Kosai H, Masuo M, Izumiyama K, Noshikawaji T, Morimoto M, Kumaki S, Miyazaki Y, Motohashi H, Yamamoto M and Tanaka N: Nrf2 suppresses allergic lung inflammation by attenuating the type 2 innate lymphoid cell response. J Immunol. 202:1331–1339. 2019. View Article : Google Scholar : PubMed/NCBI

117 

Bando JK, Nussbaum JC, Liang HE and Locksley RM: Type 2 innate lymphoid cells constitutively express arginase-I in the naive and inflamed lung. J Leukoc Biol. 94:877–884. 2013. View Article : Google Scholar : PubMed/NCBI

118 

Li Q, Li D, Zhang X, Wan Q, Zhang W, Zheng M, Zou L, Elly C, Lee JH and Liu YC: E3 Ligase VHL promotes group 2 innate lymphoid cell maturation and function via glycolysis inhibition and induction of interleukin-33 receptor. Immunity. 48:258–270.e5. 2018. View Article : Google Scholar : PubMed/NCBI

119 

Liu J, Qiu P, Qin J, Wu X, Wang X, Yang X, Li B, Zhang W, Ye K, Peng Z and Lu X: Allogeneic adipose-derived stem cells promote ischemic muscle repair by inducing M2 macrophage polarization via the HIF-1α/IL-10 pathway. Stem Cells. 38:1307–1320. 2020.PubMed/NCBI

120 

Scoville DK, Nolin JD, Ogden HL, An D, Afsharinejad Z, Johnson BW, Bammler TK, Gao X, Frevert CW, Altemeier WA, et al: Quantum dots and mouse strain influence house dust mite-induced allergic airway disease. Toxicol Appl Pharmacol. 368:55–62. 2019. View Article : Google Scholar : PubMed/NCBI

121 

Schuijs MJ, Hammad H and Lambrecht BN: Professional and ‘Amateur’ Antigen-presenting cells in type 2 immunity. Trends Immunol. 40:22–34. 2019. View Article : Google Scholar : PubMed/NCBI

122 

Li D, Guabiraba R, Besnard AG, Komai-Koma M, Jabir MS, Zhang L, Graham GJ, Kurowska-Stolarska M, Liew FY, McSharry C and Xu D: IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. J Allergy Clin Immunol. 134:1422–1432.e11. 2014. View Article : Google Scholar : PubMed/NCBI

123 

Park HJ, Chi GY, Choi YH and Park SH: Lupeol suppresses plasminogen activator inhibitor-1-mediated macrophage recruitment and attenuates M2 macrophage polarization. Biochem Biophys Res Commun. 527:889–895. 2020. View Article : Google Scholar : PubMed/NCBI

124 

Zhao Y, De Los Santos FG, Wu Z, Liu T and Phan SH: An ST2-dependent role of bone marrow-derived group 2 innate lymphoid cells in pulmonary fibrosis. J Pathol. 245:399–409. 2018. View Article : Google Scholar : PubMed/NCBI

125 

Hams E, Armstrong ME, Barlow JL, Saunders SP, Schwartz C, Cooke G, Fahy RJ, Crotty TB, Hirani N, Flynn RJ, et al: IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. Proc Natl Acad Sci USA. 111:367–372. 2014. View Article : Google Scholar : PubMed/NCBI

126 

De Grove KC, Provoost S, Verhamme FM, Bracke KR, Joos GF, Maes T and Brusselle GG: Characterization and quantification of innate lymphoid cell subsets in human lung. PLoS One. 11:e01459612016. View Article : Google Scholar : PubMed/NCBI

127 

Pouwels SD, Zijlstra GJ, van der Toorn M, Hesse L, Gras R, Ten Hacken NH, Krysko DV, Vandenabeele P, de Vries M, van Oosterhout AJ, et al: Cigarette smoke-induced necroptosis and DAMP release trigger neutrophilic airway inflammation in mice. Am J Physiol Lung Cell Mol Physiol. 310:L377–L386. 2016. View Article : Google Scholar : PubMed/NCBI

128 

Hershenson MB: Rhinovirus-induced exacerbations of asthma and COPD. Scientifica (Cairo). 2013:4058762013.PubMed/NCBI

129 

Zou SC, Pang LL, Mao QS, Wu SY and Xiao QF: IL-9 exacerbates the development of chronic obstructive pulmonary disease through oxidative stress. Eur Rev Med Pharmacol Sci. 22:8877–8884. 2018.PubMed/NCBI

130 

Wei Q, Sha Y, Bhattacharya A, Abdel Fattah E, Bonilla D, Jyothula SS, Pandit L, Khurana Hershey GK and Eissa NT: Regulation of IL-4 receptor signaling by STUB1 in lung inflammation. Am J Respir Crit Care Med. 189:16–29. 2014.PubMed/NCBI

131 

Saha J, Sarkar D, Pramanik A, Mahanti K, Adhikary A and Bhattacharyya S: PGE2-HIF1α reciprocal induction regulates migration, phenotypic alteration and immunosuppressive capacity of macrophages in tumor microenvironment. Life Sci. 253:1177312020. View Article : Google Scholar : PubMed/NCBI

132 

Lu Q, Wang X, Zhu J, Fei X, Chen H and Li C: Hypoxic tumor-derived exosomal Circ0048117 facilitates M2 macrophage polarization acting as miR-140 sponge in esophageal squamous cell carcinoma. Onco Targets Ther. 13:11883–11897. 2020. View Article : Google Scholar : PubMed/NCBI

133 

Cui W, Zhang W, Yuan X, Liu S, Li M, Niu J, Zhang P and Li D: Vitamin A deficiency execrates Lewis lung carcinoma via induction of type 2 innate lymphoid cells and alternatively activates macrophages. Food Sci Nutr. 7:1288–1294. 2019. View Article : Google Scholar : PubMed/NCBI

134 

Robbins SM and Senger DL: To promote or inhibit glioma progression, that is the question for IL-33. Cell Stress. 5:19–22. 2020. View Article : Google Scholar : PubMed/NCBI

135 

Mai S, Liu L, Jiang J, Ren P, Diao D, Wang H and Cai K: Oesophageal squamous cell carcinoma-associated IL-33 rewires macrophage polarization towards M2 via activating ornithine decarboxylase. Cell Prolif. 54:e129602021. View Article : Google Scholar : PubMed/NCBI

136 

Li J, Razumilava N, Gores GJ, Walters S, Mizuochi T, Mourya R, Bessho K, Wang YH, Glaser SS, Shivakumar P and Bezerra JA: Biliary repair and carcinogenesis are mediated by IL-33-dependent cholangiocyte proliferation. J Clin Invest. 124:3241–3251. 2014. View Article : Google Scholar : PubMed/NCBI

137 

Yang Y, Xia S, Zhang L, Wang W, Chen L and Zhan W: MiR-324-5p/PTPRD/CEBPD axis promotes papillary thyroid carcinoma progression via microenvironment alteration. Cancer Biol Ther. 21:522–532. 2020. View Article : Google Scholar : PubMed/NCBI

138 

You Y, Zhang X, Wang X, Yue D, Meng F, Zhu J, Wang Y and Sun X: ILC2 Proliferated by IL-33 stimulation alleviates acute colitis in Rag1(−/-) Mouse through promoting M2 macrophage polarization. J Immunol Res. 2020:50189752020. View Article : Google Scholar : PubMed/NCBI

139 

Della Valle L, Gatta A, Farinelli A, Scarano G, Lumaca A, Tinari N, Cipollone F, Paganelli R and Di Gioacchino M: Allergooncology: An expanding research area. J Biol Regul Homeost Agents. 34:319–326. 2020.PubMed/NCBI

140 

Park HJ, Chi GY, Choi YH and Park SH: The root bark of Morus alba L. regulates tumor-associated macrophages by blocking recruitment and M2 polarization of macrophages. Phytother Res. 34:3333–3344. 2020. View Article : Google Scholar : PubMed/NCBI

141 

Esposito S, De Simone G, Boccia G, De Caro F and Pagliano P: Sepsis and septic shock: New definitions, new diagnostic and therapeutic approaches. J Glob Antimicrob Resist. 10:204–212. 2017. View Article : Google Scholar : PubMed/NCBI

142 

Xu H, Xu J, Xu L, Jin S, Turnquist HR, Hoffman R, Loughran P, Billiar TR and Deng M: Interleukin-33 contributes to ILC2 activation and early inflammation-associated lung injury during abdominal sepsis. Immunol Cell Biol. 96:935–947. 2018. View Article : Google Scholar : PubMed/NCBI

143 

Nascimento DC, Melo PH, Pineros AR, Ferreira RG, Colon DF, Donate PB, Castanheira FV, Gozzi A, Czaikoski PG, Niedbala W, et al: IL-33 contributes to sepsis-induced long-term immunosuppression by expanding the regulatory T cell population. Nat Commun. 8:149192017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Mi L, Zhu Y and Lu H: A crosstalk between type 2 innate lymphoid cells and alternative macrophages in lung development and lung diseases (Review). Mol Med Rep 23: 403, 2021.
APA
Mi, L., Zhu, Y., & Lu, H. (2021). A crosstalk between type 2 innate lymphoid cells and alternative macrophages in lung development and lung diseases (Review). Molecular Medicine Reports, 23, 403. https://doi.org/10.3892/mmr.2021.12042
MLA
Mi, L., Zhu, Y., Lu, H."A crosstalk between type 2 innate lymphoid cells and alternative macrophages in lung development and lung diseases (Review)". Molecular Medicine Reports 23.6 (2021): 403.
Chicago
Mi, L., Zhu, Y., Lu, H."A crosstalk between type 2 innate lymphoid cells and alternative macrophages in lung development and lung diseases (Review)". Molecular Medicine Reports 23, no. 6 (2021): 403. https://doi.org/10.3892/mmr.2021.12042
Copy and paste a formatted citation
x
Spandidos Publications style
Mi L, Zhu Y and Lu H: A crosstalk between type 2 innate lymphoid cells and alternative macrophages in lung development and lung diseases (Review). Mol Med Rep 23: 403, 2021.
APA
Mi, L., Zhu, Y., & Lu, H. (2021). A crosstalk between type 2 innate lymphoid cells and alternative macrophages in lung development and lung diseases (Review). Molecular Medicine Reports, 23, 403. https://doi.org/10.3892/mmr.2021.12042
MLA
Mi, L., Zhu, Y., Lu, H."A crosstalk between type 2 innate lymphoid cells and alternative macrophages in lung development and lung diseases (Review)". Molecular Medicine Reports 23.6 (2021): 403.
Chicago
Mi, L., Zhu, Y., Lu, H."A crosstalk between type 2 innate lymphoid cells and alternative macrophages in lung development and lung diseases (Review)". Molecular Medicine Reports 23, no. 6 (2021): 403. https://doi.org/10.3892/mmr.2021.12042
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team