Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2021 Volume 23 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2021 Volume 23 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review)

  • Authors:
    • Yi Zhang
    • Abdullah Al Mamun
    • Yuan Yuan
    • Qi Lu
    • Jun Xiong
    • Shulin Yang
    • Chengbiao Wu
    • Yanqing Wu
    • Jian Wang
  • View Affiliations / Copyright

    Affiliations: School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China, Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China, Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 417
    |
    Published online on: March 31, 2021
       https://doi.org/10.3892/mmr.2021.12056
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Spinal cord injury (SCI) is one of the most debilitating of all the traumatic conditions that afflict individuals. For a number of years, extensive studies have been conducted to clarify the molecular mechanisms of SCI. Experimental and clinical studies have indicated that two phases, primary damage and secondary damage, are involved in SCI. The initial mechanical damage is caused by local impairment of the spinal cord. In addition, the fundamental mechanisms are associated with hyperflexion, hyperextension, axial loading and rotation. By contrast, secondary injury mechanisms are led by systemic and cellular factors, which may also be initiated by the primary injury. Although significant advances in supportive care have improved clinical outcomes in recent years, a number of studies continue to explore specific pharmacological therapies to minimize SCI. The present review summarized some important pathophysiologic mechanisms that are involved in SCI and focused on several pharmacological and non‑pharmacological therapies, which have either been previously investigated or have a potential in the management of this debilitating injury in the near future.
View Figures

Figure 1

View References

1 

Hamid R, Averbeck MA, Chiang H, Garcia A, Al Mousa RT, Oh SJ, Patel A, Plata M and Del Popolo G: Epidemiology and pathophysiology of neurogenic bladder after spinal cord injury. World J Urol. 36:1517–1527. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Hu HZ, Granger N and Jeffery ND: Pathophysiology, clinical importance, and management of neurogenic lower urinary tract dysfunction caused by suprasacral spinal cord injury. J Vet Intern Med. 30:1575–1588. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Elliott CS, Dallas KB, Zlatev D, Comiter CV, Crew J and Shem K: Volitional voiding of the bladder after spinal cord injury: Validation of bilateral lower extremity motor Function as a key predictor. J Urol. 200:154–160. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Sharma HS: Early microvascular reactions and blood-spinal cord barrier disruption are instrumental in pathophysiology of spinal cord injury and repair: Novel therapeutic strategies including nanowired drug delivery to enhance neuroprotection. J Neural Transm (Vienna). 118:155–176. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Tator CH: Experimental and clinical studies of the pathophysiology and management of acute spinal cord injury. J Spinal Cord Med. 19:206–214. 1996. View Article : Google Scholar : PubMed/NCBI

6 

Hulsebosch CE: Recent advances in pathophysiology and treatment of spinal cord injury. Adv Physiol Educ. 26:238–255. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Tator CH and Deecke L: Studies of the treatment and pathophysiology of acute spinal cord injury in primates. Paraplegia. 10:344–345. 1973.PubMed/NCBI

8 

Xiong Y and Hall ED: Pharmacological evidence for a role of peroxynitrite in the pathophysiology of spinal cord injury. Exp Neurol. 216:105–114. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Wasner G, Naleschinski D and Baron R: A role for peripheral afferents in the pathophysiology and treatment of at-level neuropathic pain in spinal cord injury? A case report. Pain. 131:219–225. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Vaidyanathan S, Soni BM, Sett P, Watt JW, Oo T and Bingley J: Pathophysiology of autonomic dysreflexia: Long-term treatment with terazosin in adult and paediatric spinal cord injury patients manifesting recurrent dysreflexic episodes. Spinal Cord. 36:761–770. 1998. View Article : Google Scholar : PubMed/NCBI

11 

Austin JW, Afshar M and Fehlings MG: The relationship between localized subarachnoid inflammation and parenchymal pathophysiology after spinal cord injury. J Neurotrauma. 29:1838–1849. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Yezierski RP: Pain following spinal cord injury: Pathophysiology and central mechanisms. Prog Brain Res. 129:429–449. 2000. View Article : Google Scholar : PubMed/NCBI

13 

Nickel M and Gu C: Regulation of central nervous system myelination in higher brain functions. Neural Plast. 2018:64364532018. View Article : Google Scholar : PubMed/NCBI

14 

Fehlings MG and Agrawal S: Role of sodium in the pathophysiology of secondary spinal cord injury. Spine (Phila Pa 1976). 20:2187–2191. 1995. View Article : Google Scholar : PubMed/NCBI

15 

Schwartz G and Fehlings MG: Secondary injury mechanisms of spinal cord trauma: A novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res. 137:177–190. 2002. View Article : Google Scholar : PubMed/NCBI

16 

Sharma HS, Patnaik R, Sharma A, Sjoquist PO and Lafuente JV: Silicon dioxide nanoparticles (SiO2, 40–50 nm) exacerbate pathophysiology of traumatic spinal cord injury and deteriorate functional outcome in the rat. An experimental study using pharmacological and morphological approaches. J Nanosci Nanotechnol. 9:4970–4980. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Valles M and Mearin F: Pathophysiology of bowel dysfunction in patients with motor incomplete spinal cord injury: Comparison with patients with motor complete spinal cord injury. Dis Colon Rectum. 52:1589–1597. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Agrawal SK, Nashmi R and Fehlings MG: Role of L- and N-type calcium channels in the pathophysiology of traumatic spinal cord white matter injury. Neuroscience. 99:179–188. 2000. View Article : Google Scholar : PubMed/NCBI

19 

Furlan JC and Fehlings MG: Cardiovascular complications after acute spinal cord injury: Pathophysiology, diagnosis, and management. Neurosurg Focus. 25:E132008. View Article : Google Scholar : PubMed/NCBI

20 

Hayta E and Elden H: Acute spinal cord injury: A review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention. J Chem Neuroanat. 87:25–31. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Hall ED: Pathophysiology of spinal cord injury. Current and future therapies. Minerva Anestesiol. 55:63–66. 1989.PubMed/NCBI

22 

Segal JL: Immunoactivation and altered intercellular communication mediate the pathophysiology of spinal cord injury. Pharmacotherapy. 25:145–156. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Delamarter RB, Sherman J and Carr JB: Pathophysiology of spinal cord injury. Recovery after immediate and delayed decompression. J Bone Joint Surg Am. 77:1042–1049. 1995. View Article : Google Scholar : PubMed/NCBI

24 

Santos-Nogueira E, López-Serrano C, Hernandez J, Lago N, Astudillo AM, Balsinde J, Estivill-Torrús G, de Fonseca FR, Chun J and López-Vales R: Activation of Lysophosphatidic acid receptor type 1 contributes to pathophysiology of spinal cord injury. J Neurosci. 35:10224–10235. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Sharma HS, Badgaiyan RD, Alm P, Mohanty S and Wiklund L: Neuroprotective effects of nitric oxide synthase inhibitors in spinal cord injury-induced pathophysiology and motor functions: An experimental study in the rat. Ann N Y Acad Sci. 1053:422–434. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Karimi-Abdolrezaee S, Eftekharpour E and Fehlings MG: Temporal and spatial patterns of Kv1.1 and Kv1.2 protein and gene expression in spinal cord white matter after acute and chronic spinal cord injury in rats: Implications for axonal pathophysiology after neurotrauma. Eur J Neurosci. 19:577–589. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Tator CH: Acute spinal cord injury: A review of recent studies of treatment and pathophysiology. Can Med Assoc J. 107:143–145. 1972.PubMed/NCBI

28 

Sharma HS, Muresanu DF, Sharma A, Patnaik R and Lafuente JV: Chapter 9-nanoparticles influence pathophysiology of spinal cord injury and repair. Prog Brain Res. 180:154–180. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Neal JM, Kopp SL, Pasternak JJ, Lanier WL and Rathmell JP: Anatomy and pathophysiology of spinal cord injury associated with regional anesthesia and pain medicine: 2015 update. Reg Anesth Pain Med. 40:506–525. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Wang X, Cao K, Sun X, Chen Y, Duan Z, Sun L, Guo L, Bai P, Sun D, Fan J, et al: Macrophages in spinal cord injury: Phenotypic and functional change from exposure to myelin debris. Glia. 63:635–651. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Eldahan KC and Rabchevsky AG: Autonomic dysreflexia after spinal cord injury: Systemic pathophysiology and methods of management. Auton Neurosci. 209:59–70. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Sharma HS: Neurotrophic factors in combination: A possible new therapeutic strategy to influence pathophysiology of spinal cord injury and repair mechanisms. Curr Pharm Des. 13:1841–1874. 2007. View Article : Google Scholar : PubMed/NCBI

33 

Siddiqui TA, Lively S and Schlichter LC: Complex molecular and functional outcomes of single versus sequential cytokine stimulation of rat microglia. J Neuroinflammation. 13:662016. View Article : Google Scholar : PubMed/NCBI

34 

Zhou LH, Ouyang L, Lin SZ, Chen S, Liu Y, Zhou W and Wang X: Protective role of β-carotene against oxidative stress and neuroinflammation in a rat model of spinal cord injury. Int Immunopharmacol. 61:92–99. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Yao X, Zhang Y, Hao J, Duan HQ, Zhao CX, Sun C, Li B, Fan BY, Wang X, Li WX, et al: Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis. Neural Regen Res. 14:532–541. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Zhang D, Wang F, Zhai X, Li XH and He XJ: Lithium promotes recovery of neurological function after spinal cord injury by inducing autophagy. Neural Regen Res. 13:2191–2199. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Zhou LY, Song ZF, Zhou LW, Qiu Y, Hu N, Hu Y and Hu X: Protective role of astragalus injection in spinal cord ischemia-reperfusion injury in rats. Neurosciences (Riyadh). 23:116–121. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Sharma HS: Pathophysiology of blood-spinal cord barrier in traumatic injury and repair. Curr Pharm Des. 11:1353–1389. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Aarabi B, Olexa J, Chryssikos T, Galvagno SM, Hersh DS, Wessell A, Sansur C, Schwartzbauer G, Crandall K, et al: Extent of Spinal Cord Decompression in Motor Complete (American Spinal Injury Association Impairment Scale Grades A and B) Traumatic Spinal Cord Injury Patients: Post-Operative Magnetic Resonance Imaging Analysis of Standard Operative Approaches. J Neurotrauma. 36:862–876. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Akhmetzyanova ER, Mukhamedshina YO, Zhuravleva MN, Galieva LR, Kostennikov AA, Garanina EE and Rizvanov AA: Transplantation of microglia in the area of spinal cord injury in an acute period increases tissue sparing, but not functional recovery. Front Cell Neurosci. 12:5072018. View Article : Google Scholar : PubMed/NCBI

41 

Aguiar SA, Baker SN, Gant K, Bohorquez J and Thomas CK: Spasms after spinal cord injury show low-frequency intermuscular coherence. J Neurophysiol. 120:1765–1771. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Tang Y, Liu HL, Min LX, Yuan HS, Guo L, Han PB, Lu YX, Zhong JF and Wang DL: Serum and cerebrospinal fluid tau protein level as biomarkers for evaluating acute spinal cord injury severity and motor function outcome. Neural Regen Res. 14:896–902. 2019. View Article : Google Scholar : PubMed/NCBI

43 

Alizadeh A, Santhosh K, Kataria H and Karimi-Abdolrezaee S: Neuregulin-1 positively modulates neuroinflammation and improves functional recovery following traumatic spinal cord injury. J Neurotrauma. 35:A32. 2018.

44 

Baklaushev VP, Durov OV, Kim SV, Gulaev EV, Gubskiy IL, Konoplyannikov MA, Zabozlaev FG, Zhang C, Agrba VZ, Orlov SV, et al: Development of a motor and somatosensory evoked potentials-guided spinal cord Injury model in non-human primates. J Neurosci Methods. 311:200–214. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Bonizzato M, Pidpruzhnykova G, DiGiovanna J, Shkorbatova P, Pavlova N, Micera S and Courtine G: Brain-controlled modulation of spinal circuits improves recovery from spinal cord injury. Nat Commun. 9:30152018. View Article : Google Scholar : PubMed/NCBI

46 

Burnside ER, De Winter F, Didangelos A, James ND, Andreica EC, Layard-Horsfall H, Muir EM, Verhaagen J and Bradbury EJ: Immune-evasive gene switch enables regulated delivery of chondroitinase after spinal cord injury. Brain. 141:2362–2381. 2018. View Article : Google Scholar : PubMed/NCBI

47 

Casper DS, Zmistowski B, Schroeder GD, McKenzie JC, Mangan J, Vatson J, Hilibrand AS, Vaccaro AR and Kepler CK: Preinjury patient characteristics and postinjury neurological status are associated with mortality following spinal cord injury. Spine (Phila Pa 1976). 43:895–899. 2018. View Article : Google Scholar : PubMed/NCBI

48 

David S, Kroner A, Greenhalgh AD, Zarruk JG and Lopez-Vales R: Myeloid cell responses after spinal cord injury. J Neuroimmunol. 321:97–108. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Chhaya SJ, Quiros-Molina D, Tamashiro-Orrego AD, Houle JD and Detloff MR: Exercise-induced changes to the macrophage response in the dorsal root ganglia prevent neuropathic pain after spinal cord injury. J Neurotrauma. 36:877–890. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Chi LY, Yu J, Zhu H, Li XG, Zhu SG and Kindy MS: The dual role of tumor necrosis factor-alpha in the pathophysiology of spinal cord injury. Neurosci Lett. 438:174–179. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Lv RX, Du LL, Zhang LX and Zhang ZQ: Polydatin attenuates spinal cord injury in rats by inhibiting oxidative stress and microglia apoptosis via Nrf2/HO-1 pathway. Life Sci. 217:119–127. 2019. View Article : Google Scholar : PubMed/NCBI

52 

Ziegler G, Grabher P, Thompson A, Altmann D, Hupp M, Ashburner J, Friston K, Weiskopf N, Curt A and Freund P: Progressive neurodegeneration following spinal cord injury Implications for clinical trials. Neurology. 90:e1257–e1266. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Zhou QS, Xiang HK, Li A, Lin W, Huang Z, Guo J, Wang P, Chi Y, Xiang K, Xu Y, et al: Activating adiponectin signaling with exogenous AdipoRon reduces myelin lipid accumulation and suppresses macrophage recruitment after spinal cord injury. J Neurotrauma. 36:903–918. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Cizkova D, Cubinkova V, Smolek T, Murgoci AN, Danko J, Vdoviakova K, Humenik F, Cizek M, Quanico J, Fournier I, Salzet M; Correction, ; Cizkova D..et al: Localized intrathecal delivery of mesenchymal stromal cells conditioned media improves functional recovery in a rat model of contusive spinal cord injury. Int. J. Mol. Sci. 2018.19, 870. Int J Mol Sci 19: 1942, 2018. View Article : Google Scholar

55 

de Menezes MF, Nicola F, Vital da Silva IR, Vizuete A, Elsner VR, Xavier LL, Gonçalves CAS, Netto CA and Mestriner RG: Glial fibrillary acidic protein levels are associated with global histone H4 acetylation after spinal cord injury in rats. Neural Regen Res. 13:1945–1952. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Faden AI and Holaday JW: A role for endorphins in the pathophysiology of spinal cord injury. Adv Biochem Psychopharmacol. 28:435–446. 1981.PubMed/NCBI

57 

O'Hare Doig RL, Santhakumar S, Fehily B, Raja S, Solomon T, Bartlett CA, Fitzgerald M and Hodgetts SI: Acute cellular and functional changes with a combinatorial treatment of ion channel inhibitors following spinal cord injury. Front Mol Neurosci. 13(85)https://doi.org/10.3389/fnmol.2020.000852020.

58 

Durdag E, Yildirim Z, Unlu NL, Kale A and Ceviker N: Neuroprotective effects of vigabatrin on spinal cord ischemia-reperfusion injury. World Neurosurg. 120:e33–e41. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Dietrich WD: Clinical significance and potential translation of neural regeneration and functional recovery in monkeys after spinal cord injury. Sci China Life Sci. 61:1291–1292. 2018. View Article : Google Scholar : PubMed/NCBI

60 

Olsson Y, Sharma HS, Nyberg F and Westman J: The opioid receptor antagonist naloxone influences the pathophysiology of spinal cord injury. Prog Brain Res. 104:381–399. 1995. View Article : Google Scholar : PubMed/NCBI

61 

Young W, Flamm ES, Demopoulos HB, Tomasula JJ and DeCrescito V: Effect of naloxone on posttraumatic ischemia in experimental spinal contusion. J Neurosurg. 55:209–219. 1981. View Article : Google Scholar : PubMed/NCBI

62 

Yadollahi M, Kashkooe A, Habibpour E and Jamali K: Prevalence and risk factors of spinal trauma and spinal cord injury in a trauma center in Shiraz, Iran. Iran Red Crescent Med J. Feb;2018.doi: 10.5812/ircmj.14238. View Article : Google Scholar

63 

Hogan MK, Zhao TY, Kondiles B, Sellers D, Pun SZ and Horner P: Controlled release of thrombin-inhibitor from injectable hydrogel modulates gliosis after spinal cord injury. J Neurotrauma. 35:A37. 2018.

64 

Huber E, David G, Thompson AJ, Weiskopf N, Mohammadi S and Freund P: Dorsal and ventral horn atrophy is associated with clinical outcome after spinal cord injury. Neurology. 90:e1510–e1522. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Huang WH, Bai XS, Stopper L, Catalin B, Cartarozzi LP, Scheller A and Kirchhoff F: During development NG2 glial cells of the spinal cord are restricted to the oligodendrocyte lineage, but generate astrocytes upon acute injury. Neuroscience. 385:154–165. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Hupp M, Pavese C, Bachmann LM, Koller R and Schubert M; EMSCI Study Group, : Electrophysiological multimodal assessments improve outcome prediction in traumatic cervical spinal cord injury. J Neurotrauma. 35:2916–2923. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Kaptanoglu E, Okutan O, Akbiyik F, Solaroglu I, Kilinc A and Beskonakli E: Correlation of injury severity and tissue Evans blue content, lipid peroxidation and clinical evaluation in acute spinal cord injury in rats. J Clin Neurosci. 11:879–885. 2004. View Article : Google Scholar : PubMed/NCBI

68 

Irrera N, Arcoraci V, Mannino F, Vermiglio G, Pallio G, Minutoli L, Bagnato G, Anastasi GP, Mazzon E, Bramanti P, et al: Activation of A2A receptor by PDRN reduces neuronal damage and stimulates WNT/β-CATENIN driven neurogenesis in spinal cord injury. Front Pharmacol. 9:5062018. View Article : Google Scholar : PubMed/NCBI

69 

Huo J, Ma R, Chai X, Liang HJ, Jiang P, Zhu XL, Chen X and Su BX: Inhibiting a spinal cord signaling pathway protects against ischemia injury in rats. J Thorac Cardiovasc Surg. 157:494–503.e1. 2019. View Article : Google Scholar : PubMed/NCBI

70 

Werner C and Engelhard K: Pathophysiology of traumatic brain injury. Br J Anaesth. 99:4–9. 2007. View Article : Google Scholar : PubMed/NCBI

71 

Li Y, Gu R, Zhu QS and Liu JC: Changes of spinal edema and expression of aquaporin 4 in methylprednisolone-treated rats with spinal cord injury. Ann Clin Lab Sci. 48:453–459. 2018.PubMed/NCBI

72 

Jaja B, Jiang F, Badhiwala J, Fehlings MG and Wilson J: Neurological recovery and functional outcomes following acquired infections after acute spinal cord injury. J Neurotrauma. 35:A177–A178. 2018.

73 

Lanza M, Campolo M, Casili G, Filippone A, Cuzzocrea S and Esposito E: Sodium butyrate exerts neuroprotective effects in spinal cord injury. FASEB J. 32:8242018.

74 

DeForge D, Nymark J, Lemaire E, Gardner S, Hunt M, Martel L, Curran D and Barbeau H: Effect of 4-aminopyridine on gait in ambulatory spinal cord injuries: A double-blind, placebo-controlled, crossover trial. Spinal Cord. 42:674–685. 2004. View Article : Google Scholar : PubMed/NCBI

75 

Hall ED: Antioxidant therapies for acute spinal cord injury. Neurotherapeutics. 8:152–167. 2011. View Article : Google Scholar : PubMed/NCBI

76 

Wang HJ, Cahoon R, Cahoon EB, Zheng H, Patel KP and Zucker IH: Glutamatergic receptor dysfunction in spinal cord contributes to the exaggerated exercise pressor reflex in heart failure. Am J Physiol Heart Circ Physiol. 308:H447–H455. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Winkler T, Sharma HS, Stalberg E, Badgaiyan RD, Gordh T and Westman J: An L-type calcium channel blocker, nimodipine influences trauma induced spinal cord conduction and axonal injury in the rat. Acta Neurochir Suppl. 86:425–432. 2003.PubMed/NCBI

78 

Kusuyama K, Tachibana T, Yamanaka H, Okubo M, Yoshiya S and Noguchi K: Upregulation of calcium channel alpha-2-delta-1 subunit in dorsal horn contributes to spinal cord injury-induced tactile allodynia. Spine J. 18:1062–1069. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Chen YM, Wang BL and Zhao H: Thymoquinone reduces spinal cord injury by inhibiting inflammatory response, oxidative stress and apoptosis via PPAR-γ and PI3K/Akt pathways. Exp Ther Med. 15:4987–4994. 2018.PubMed/NCBI

80 

Damon Y, Kitano Y and Makino M: Analgesic effects of the novel α2δ ligand mirogabalin in a rat model of spinal cord injury. Pharmazie. 73:659–661. 2018.PubMed/NCBI

81 

Chaves RHD, de Souza CC, Furlaneto IP, Teixeira RKC, Oliveira CP, Rodrigues EM, Santos DASD, Silva RC, Penha NEAD and Lima AR: Influence of tramadol on functional recovery of acute spinal cord injury in rats. Acta Cir Bras. 33:1087–1094. 2018. View Article : Google Scholar : PubMed/NCBI

82 

Harada N, Taoka Y and Okajima K: Role of prostacyclin in the development of compression trauma-induced spinal cord injury in rats. J Neurotrauma. 23:1739–1749. 2006. View Article : Google Scholar : PubMed/NCBI

83 

Sohn S: Ursodeoxycholic acid inhibits inflammatory responses and promotes functional recovery after spinal cord injury in rats. J Neurotrauma. 35:A172. 2018.

84 

Pallottie A, Ratnayake A, Ni L, Acioglu C, Li L, Mirabelli E, Heary RF and Elkabes S: A toll-like receptor 9 antagonist restores below-level glial glutamate transporter expression in the dorsal horn following spinal cord injury. Sci Rep. 8:87232018. View Article : Google Scholar : PubMed/NCBI

85 

Cai J, Sun Y, Yin Z, Wang D, Shi K, Fu Y, Cao X and Ge Y: Analysis of FK506-mediated functional recovery and neuroprotection in a rat model of spinal cord injury indicates that EGF is modulated in astrocytes. Exp Ther Med. 16:501–510. 2018.PubMed/NCBI

86 

Kim YH, Ha KY and Kim SI: Spinal cord injury and related clinical trials. Clin Orthop Surg. 9:1–9. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Mori E, Ueta T, Maeda T, Ideta R, Yugué I, Kawano O and Shiba K: Sequential neurological improvements after conservative treatment in patients with complete motor paralysis caused by cervical spinal cord injury without bone and disc injury. J Neurosurg Spine. 29:1–9. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Chen S, Ye J, Chen X, Shi J, Wu W, Lin W, Lin W, Li Y, Fu H and Li S: Valproic acid attenuates traumatic spinal cord injury-induced inflammation via STAT1 and NF-κB pathway dependent of HDAC3. J Neuroinflammation. 15:1502018. View Article : Google Scholar : PubMed/NCBI

89 

Mongardon N, Kohlhauer M, Lidouren F, Barretto M, Micheau P, Adam C, Dhonneur G, Ghaleh B and Tissier R: Targeted temperature management with total liquid ventilation after ischemic spinal cord injury. Ann Thorac Surg. 106:1797–1803. 2018. View Article : Google Scholar : PubMed/NCBI

90 

Chang MC: Spinal Cord injury by direct damage during CT-Guided C7 transforaminal epidural steroid injection. Am J Phys Med Rehabil. 97:e62–e64. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Sámano C and Nistri A: Mechanism of neuroprotection against experimental spinal cord injury by riluzole or methylprednisolone. Neurochem Res. 44:200–213. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Ye JC, Qin Y, Tang Y, Ma M, Wang P, Huang L, Yang R, Chen K, Chai C, Wu Y and Shen H: Methylprednisolone inhibits the proliferation of endogenous neural stem cells in nonhuman primates with spinal cord injury. J Neurosurg Spine. 29:199–207. 2018. View Article : Google Scholar : PubMed/NCBI

93 

Chu TH, Cummins K and Stys PK: The triple monoamine re-uptake inhibitor DOV 216,303 promotes functional recovery after spinal cord contusion injury in mice. Neurosci Lett. 675:1–6. 2018. View Article : Google Scholar : PubMed/NCBI

94 

Ko MY, Jang EY, Lee JY, Kim SP, Whang SH, Lee BH, Kim HY, Yang CH, Cho HJ and Gwak YS: The role of ventral tegmental area gamma-aminobutyric acid in chronic neuropathic pain after spinal cord injury in rats. J Neurotrauma. 35:1755–1764. 2018. View Article : Google Scholar : PubMed/NCBI

95 

Fehlings MG, Tator CH and Linden RD: The effect of nimodipine and dextran on axonal function and blood flow following experimental spinal cord injury. J Neurosurg. 71:403–416. 1989. View Article : Google Scholar : PubMed/NCBI

96 

Rosenberg LJ, Teng YD and Wrathall JR: Effects of the sodium channel blocker tetrodotoxin on acute white matter pathology after experimental contusive spinal cord injury. J Neurosci. 19:6122–6133. 1999. View Article : Google Scholar : PubMed/NCBI

97 

Caglar YS, Demirel A, Dogan I, Huseynov R, Eroglu U, Ozgural O, Cansiz C, Bahadir B, Kilinc MC and Al-Beyati ESM: Effect of riluzole on spinal cord regeneration with hemisection method before injury. World Neurosurg. 114:e247–e253. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Verma R, Virdi JK, Singh N and Jaggi AS: Animals models of spinal cord contusion injury. Korean J Pain. 32:12–21. 2019. View Article : Google Scholar : PubMed/NCBI

99 

Nagoshi N, Nakashima H and Fehlings MG: Riluzole as a neuroprotective drug for spinal cord injury: From bench to bedside. Molecules. 20:7775–7789. 2015. View Article : Google Scholar : PubMed/NCBI

100 

Fehlings MG, Nakashima H, Nagoshi N, Chow DS, Grossman RG and Kopjar B: Rationale, design and critical end points for the Riluzole in acute spinal cord injury study (RISCIS): A randomized, double-blinded, placebo-controlled parallel multi-center trial. Spinal Cord. 54:8–15. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Grijalva I, García-Pérez A, Díaz J, Aguilar S, Mino D, Santiago-Rodríguez E, Guizar-Sahagún G, Castañeda- Hernández G, Maldonado-Julián H and Madrazo I: High doses of 4-aminopyridine improve functionality in chronic complete spinal cord injury patients with MRI evidence of cord continuity. Arch Med Res. 41:567–575. 2010. View Article : Google Scholar : PubMed/NCBI

102 

Page JC, Park J, Chen Z, Cao P and Shi R: Parallel evaluation of two potassium channel blockers in restoring conduction in mechanical spinal cord injury in rat. J Neurotrauma. 35:1057–1068. 2018. View Article : Google Scholar : PubMed/NCBI

103 

Darlington C: Fampridine acorda therapeutics. Curr Opin Investig Drugs. 1:375–379. 2000.PubMed/NCBI

104 

Hayes KC: Impact of extended-release dalfampridine on walking ability in patients with multiple sclerosis. Neuropsychiatr Dis Treat. 7:229–239. 2011. View Article : Google Scholar : PubMed/NCBI

105 

Proks P, Reimann F, Green N, Gribble F and Ashcroft F: Sulfonylurea stimulation of insulin secretion. Diabetes. 51 (Suppl 3):S368–S376. 2002. View Article : Google Scholar : PubMed/NCBI

106 

Kurland DB, Tosun C, Pampori A, Karimy JK, Caffes NM, Gerzanich V and Simard JM: Glibenclamide for the treatment of acute CNS injury. Pharmaceuticals (Basel). 6:1287–1303. 2013. View Article : Google Scholar : PubMed/NCBI

107 

Caffes N, Kurland DB, Gerzanich V and Simard JM: Glibenclamide for the treatment of ischemic and hemorrhagic stroke. Int J Mol Sci. 16:4973–4984. 2015. View Article : Google Scholar : PubMed/NCBI

108 

Popovich PG, Lemeshow S, Gensel JC and Tovar CA: Independent evaluation of the effects of glibenclamide on reducing progressive hemorrhagic necrosis after cervical spinal cord injury. Exp Neurol. 233:615–622. 2012. View Article : Google Scholar : PubMed/NCBI

109 

Simard JM, Tsymbalyuk O, Ivanov A, Ivanova S, Bhatta S, Geng Z, Woo SK and Gerzanich V: Endothelial sulfonylurea receptor 1-regulated NC Ca-ATP channels mediate progressive hemorrhagic necrosis following spinal cord injury. J Clin Invest. 117:2105–2113. 2007. View Article : Google Scholar : PubMed/NCBI

110 

Simard JM, Popovich PG, Tsymbalyuk O and Gerzanich V: Spinal cord injury with unilateral versus bilateral primary hemorrhage-effects of glibenclamide. Exp Neurol. 233:829–835. 2012. View Article : Google Scholar : PubMed/NCBI

111 

Simard JM, Woo SK, Schwartzbauer GT and Gerzanich V: Sulfonylurea receptor 1 in central nervous system injury: A focused review. J Cereb Blood Flow Metab. 32:1699–1717. 2012. View Article : Google Scholar : PubMed/NCBI

112 

Cheung V, Hoshide R, Bansal V, Kasper E and Chen CC: Methylprednisolone in the management of spinal cord injuries: Lessons from randomized, controlled trials. Surg Neurol Int. 6:1422015. View Article : Google Scholar : PubMed/NCBI

113 

Anwar MA, Al Shehabi TS and Eid AH: Inflammogenesis of secondary spinal cord injury. Front Cell Neurosci. 10:982016. View Article : Google Scholar : PubMed/NCBI

114 

Bracken MB, Shepard MJ, Hellenbrand KG, Collins WF, Leo LS, Freeman DF, Wagner FC, Flamm ES, Eisenberg HM, Goodman JH, et al: Methylprednisolone and neurological function 1 year after spinal cord injury. Results of the national acute spinal cord injury study. J Neurosurg. 63:704–713. 1985. View Article : Google Scholar : PubMed/NCBI

115 

Sayer FT, Kronvall E and Nilsson OG: Methylprednisolone treatment in acute spinal cord injury: The myth challenged through a structured analysis of published literature. Spine J. 6:335–343. 2006. View Article : Google Scholar : PubMed/NCBI

116 

Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, Eisenberg HM, Flamm E, Leo-Summers L, Maroon J, et al: A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the second national acute spinal cord injury study. N Engl J Med. 322:1405–1411. 1990. View Article : Google Scholar : PubMed/NCBI

117 

Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, Fehlings M, Herr DL, Hitchon PW, Marshall LF, et al: Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the third national acute spinal cord injury randomized controlled trial. National acute spinal cord injury study. JAMA. 277:1597–1604. 1997. View Article : Google Scholar : PubMed/NCBI

118 

Bracken MB: Steroids for acute spinal cord injury. Cochrane Database Syst Rev. 1:CD0010462012.PubMed/NCBI

119 

Bowers CA, Kundu B, Rosenbluth J and Hawryluk GW: Patients with spinal cord injuries favor administration of methylprednisolone. PLoS One. 11:e01459912016. View Article : Google Scholar : PubMed/NCBI

120 

Ferrara G, Petrillo MG, Giani T, Marrani E, Filippeschi C, Oranges T, Simonini G and Cimaz R: Clinical use and molecular action of corticosteroids in the pediatric age. Int J Mol Sci. 20:4442019. View Article : Google Scholar

121 

Fehlings MG, Wilson JR, Tetreault LA, Aarabi B, Anderson P, Arnold PM, Brodke DS, Burns AS, Chiba K, Dettori JR, et al: A clinical practice guideline for the management of patients with acute spinal cord injury: Recommendations on the use of methylprednisolone sodium succinate. Global Spine J. 7 (Suppl 3):203S–211S. 2017. View Article : Google Scholar : PubMed/NCBI

122 

Yue JK, Tsolinas RE, Burke JF, Deng H, Upadhyayula PS, Robinson CK, Lee YM, Chan AK, Winkler EA and Dhall SS: Vasopressor support in managing acute spinal cord injury: Current knowledge. J Neurosurg Sci. 63:308–317. 2019. View Article : Google Scholar : PubMed/NCBI

123 

Resnick DK: Updated guidelines for the management of acute cervical spine and spinal cord injury. Neurosurgery. 72 (Suppl 2):S12013. View Article : Google Scholar

124 

Mojtahedzadeh M, Taghvaye-Masoumi H, Najafi A, Dianatkhah M, Sharifnia H and Shahrokhi M: Management of hypotension and bradycardia caused by spinal cord injury. The usefulness of midodrine and methylxanthines. Iran J Pharm Res. 18:2131–2135. 2019.PubMed/NCBI

125 

Inoue T, Manley GT, Patel N and Whetstone WD: Medical and surgical management after spinal cord injury: Vasopressor usage, early surgerys, and complications. J Neurotrauma. 31:284–291. 2014. View Article : Google Scholar : PubMed/NCBI

126 

Hawryluk G, Whetstone W, Saigal R, Ferguson A, Talbott J, Bresnahan J, Dhall S, Pan J, Beattie M and Manley G: Mean arterial blood pressure correlates with neurological recovery after human spinal cord injury: Analysis of high frequency physiologic data. J Neurotrauma. 32:1958–1967. 2015. View Article : Google Scholar : PubMed/NCBI

127 

Yakovlev AG and Faden AI: Mechanisms of neural cell death: Implications for development of neuroprotective treatment strategies. NeuroRx. 1:5–16. 2004. View Article : Google Scholar : PubMed/NCBI

128 

Knoblach SM, Alroy DA, Nikolaeva M, Cernak I, Stoica BA and Faden AI: Caspase inhibitor z-DEVD-fmk attenuates calpain and necrotic cell death in vitro and after traumatic brain injury. J Cereb Blood Flow Metab. 24:1119–1132. 2004. View Article : Google Scholar : PubMed/NCBI

129 

Thomas S, Quinn BA, Das SK, Dash R, Emdad L, Dasgupta S, Wang XY, Dent P, Reed JC, Pellecchia M, et al: Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets. 17:61–75. 2013. View Article : Google Scholar : PubMed/NCBI

130 

Hall ED and Springer JE: Neuroprotection and acute spinal cord injury: A reappraisal. NeuroRx. 1:80–100. 2004. View Article : Google Scholar : PubMed/NCBI

131 

Squair JW, Ruiz I, Phillip AA, Zheng MMZ, Sarafis ZK, Sachdeva R, Gopaul R, Liu J, Tetzlaff W, West CR and Krassioukov AV: Minocycline reduces the severity of autonomic dysreflexia after experimental spinal cord injury. J Neurotrauma. 35:2861–2871. 2018. View Article : Google Scholar : PubMed/NCBI

132 

Zhang H, Xiang Z, Duan X, Jiang JL, Xing YM, Zhu C, Song Q and Yu QR: Antitumor and anti-inflammatory effects of oligosaccharides from Cistanche deserticola extract on spinal cord injury. Int J Biol Macromol. 124:360–367. 2019. View Article : Google Scholar : PubMed/NCBI

133 

Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI

134 

Scholz R, Sobotka M, Caramoy A, Stempfl T, Moehle C and Langmann T: Minocycline counter-regulates pro-inflammatory microglia responses in the retina and protects from degeneration. J Neuroinflammation. 12:2092015. View Article : Google Scholar : PubMed/NCBI

135 

Tikka TM and Koistinaho JE: Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia. J Immunol. 166:7527–7533. 2001. View Article : Google Scholar : PubMed/NCBI

136 

Wells JE, Hurlbert RJ, Fehlings MG and Yong VW: Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain. 126:1628–1637. 2003. View Article : Google Scholar : PubMed/NCBI

137 

Curtis E, Martin JR, Gabel B, Sidhu N, Rzesiewicz TK, Mandeville R, Van Gorp S, Leerink M, Tadokoro T, Marsala S, et al: A first-in-human, phase I study of neural stem cell transplantation for chronic spinal cord injury. Cell Stem Cell. 22:941–950.e6. 2018. View Article : Google Scholar : PubMed/NCBI

138 

Casha S, Zygun D, McGowan MD, Bains I, Yong VW and Hurlbert RJ: Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain. 135:1224–1236. 2012. View Article : Google Scholar : PubMed/NCBI

139 

Barros TE Jr, Araujo FF, Higino Lda P, Marcon RM and Cristante AF: The effect of monosialoganglyoside (GM-1) administration in spinal cord injury. Acta Ortop Bras. 24:123–126. 2016. View Article : Google Scholar : PubMed/NCBI

140 

Marcon RM, Cristante AF, de Barros Filho TE, de Oliveira RP and dos Santos GB: Potentializing the effects of GM1 by hyperbaric oxygen therapy in acute experimental spinal cord lesion in rats. Spinal Cord. 48:808–813. 2010. View Article : Google Scholar : PubMed/NCBI

141 

Badhiwala JH, Wilson JR, Kwon BK, Casha S and Fehlings MG: A Review of clinical trials in spinal cord injury including biomarkers. J Neurotrauma. 35:1906–1917. 2018. View Article : Google Scholar : PubMed/NCBI

142 

Geisler FH, Dorsey FC and Coleman WP: Recovery of motor function after spinal-cord injury-a randomized, placebo- controlled trial with GM-1 ganglioside. N Engl J Med. 324:1829–1838. 1991. View Article : Google Scholar : PubMed/NCBI

143 

Lee Y, Kim CY, Lee HJ, Kim JG, Han DW and Ko K, Walter J, Chung HM, Schöler HR, Bae YM and Ko K: Two-step generation of oligodendrocyte progenitor cells from mouse fibroblasts for spinal cord injury. Front Cell Neurosci. 12:1982018. View Article : Google Scholar : PubMed/NCBI

144 

Awad BI, Carmody MA and Steinmetz MP: Potential role of growth factors in the management of spinal cord injury. World Neurosurg. 83:120–131. 2015. View Article : Google Scholar : PubMed/NCBI

145 

Ma DN, Zhang XQ, Ying J, Chen ZJ and Li LX: Efficacy and safety of 9 nonoperative regimens for the treatment of spinal cord injury: A network meta-analysis. Medicine (Baltimore). 96:e86792017. View Article : Google Scholar : PubMed/NCBI

146 

Teng YD, Mocchetti I and Wrathall JR: Basic and acidic fibroblast growth factors protect spinal motor neurones in vivo after experimental spinal cord injury. Eur J Neurosci. 10:798–802. 1998. View Article : Google Scholar : PubMed/NCBI

147 

Wu JC, Huang WC, Chen YC, Tu TH, Tsai YA, Huang SF, Huang HC and Cheng H: Acidic fibroblast growth factor for repair of human spinal cord injury: A clinical trial. J Neurosurg Spine. 15:216–227. 2011. View Article : Google Scholar : PubMed/NCBI

148 

Gupta V, Mesa RA, Deininger MW, Rivera CE, Sirhan S, Brachmann CB, Collins H, Kawashima J, Xin Y and Verstovsek S: A phase 1/2, open-label study evaluating twice-daily administration of momelotinib in myelofibrosis. Haematologica. 102:94–102. 2017. View Article : Google Scholar : PubMed/NCBI

149 

Clarke WE, Berry M, Smith C, Kent A and Logan A: Coordination of fibroblast growth factor receptor 1 (FGFR1) and fibroblast growth factor-2 (FGF-2) trafficking to nuclei of reactive astrocytes around cerebral lesions in adult rats. Mol Cell Neurosciences. 17:17–30. 2001. View Article : Google Scholar

150 

Raballo R, Rhee J, Lyn-Cook R, Leckman JF, Schwartz ML and Vaccarino FM: Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. J Neuroscience. 20:5012–5023. 2000. View Article : Google Scholar

151 

Zhou Y, Wang Z, Li J, Li X and Xiao J: Fibroblast growth factors in the management of spinal cord injury. J Cell Mol Med. 22:25–37. 2018. View Article : Google Scholar : PubMed/NCBI

152 

Ko CC, Tu TH, Wu JC, Huang WC, Tsai YA, Huang SF, Huang HC and Cheng H: Functional improvement in chronic human spinal cord injury: Four years after acidic fibroblast growth factor. Sci Rep. 8:126912018. View Article : Google Scholar : PubMed/NCBI

153 

Wu JC, Huang WC, Tsai YA, Chen YC and Cheng H: Nerve repair using acidic fibroblast growth factor in human cervical spinal cord injury: A preliminary phase I clinical study. J Neurosurg Spine. 8:208–214. 2008. View Article : Google Scholar : PubMed/NCBI

154 

Wallner S, Peters S, Pitzer C, Resch H, Bogdahn U and Schneider A: The Granulocyte-colony stimulating factor has a dual role in neuronal and vascular plasticity. Front Cell Dev Biol. 3:482015. View Article : Google Scholar : PubMed/NCBI

155 

Nishio Y, Koda M, Kamada T, Someya Y, Kadota R, Mannoji C, Miyashita T, Okada S, Okawa A, Moriya H and Yamazaki M: Granulocyte colony-stimulating factor attenuates neuronal death and promotes functional recovery after spinal cord injury in mice. J Neuropathol Exp Neurol. 66:724–731. 2007. View Article : Google Scholar : PubMed/NCBI

156 

Derakhshanrad N, Saberi H, Yekaninejad MS, Joghataei MT and Sheikhrezaei A: Granulocyte-colony stimulating factor administration for neurological improvement in patients with postrehabilitation chronic incomplete traumatic spinal cord injuries: A double-blind randomized controlled clinical trial. J Neurosurg Spine. 29:97–107. 2018. View Article : Google Scholar : PubMed/NCBI

157 

Koda M, Yamazaki M, Furuya T, Hanaoka H and Grp GSS: Phase 3 clinical trial of granulocyte colony stimulating factor-for acute spinal cord injury (G-Spirit Trial). J Neurotrauma. 35:A162–A163. 2018.

158 

Kitamura K, Iwanami A, Nakamura M, Yamane J, Watanabe K, Suzuki Y, Miyazawa D, Shibata S, Funakoshi H, Miyatake S, et al: Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury. J Neurosci Res. 85:2332–2342. 2007. View Article : Google Scholar : PubMed/NCBI

159 

Ohta Y, Takenaga M, Hamaguchi A, Ootaki M, Takeba Y, Kobayashi T, Watanabe M, Iiri T and Matsumoto N: Isolation of adipose-derived stem/stromal cells from cryopreserved fat tissue and transplantation into rats with spinal cord injury. Int J Mol Sci. 19:19632018. View Article : Google Scholar

160 

Kitamura K, Fujiyoshi K, Yamane J, Toyota F, Hikishima K, Nomura T, Funakoshi H, Nakamura T, Aoki M, Toyama Y, et al: Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury. PLoS One. 6:e277062011. View Article : Google Scholar : PubMed/NCBI

161 

Kitamura K, Nagoshi N, Tsuji O, Matsumoto M, Okano H and Nakamura M: Application of hepatocyte growth factor for acute spinal cord Injury: The road from basic studies to human treatment. Int J Mol Sci. 20:10542019. View Article : Google Scholar

162 

Dergham P, Ellezam B, Essagian C, Avedissian H, Lubell WD and Mckerracher L: Rho signaling pathway targeted to promote spinal cord repair. J Neurosci. 22:6570–6577. 2002. View Article : Google Scholar : PubMed/NCBI

163 

Siddiqui AM, Khazaei M and Fehlings MG: Translating mechanisms of neuroprotection, regeneration, and repair to treatment of spinal cord injury. Prog Brain Res. 218:15–54. 2015. View Article : Google Scholar : PubMed/NCBI

164 

Fehlings MG, Theodore N, Harrop J, Maurais G, Kuntz C, Shaffrey CI, Kwon BK, Chapman J, Yee A, Tighe A and McKerracher L: A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrauma. 28:787–796. 2011. View Article : Google Scholar : PubMed/NCBI

165 

Gonzenbach RR, Zoerner B, Schnell L, Weinmann O, Mir AK and Schwab ME: Delayed anti-nogo-a antibody application after spinal cord injury shows progressive loss of responsiveness. J Neurotrauma. 29:567–578. 2012. View Article : Google Scholar : PubMed/NCBI

166 

Xing B, Li H, Wang H, Mukhopadhyay D, Fisher D, Gilpin CJ and Li S: RhoA-inhibiting NSAIDs promote axonal myelination after spinal cord injury. Exp Neurol. 231:247–260. 2011. View Article : Google Scholar : PubMed/NCBI

167 

Iannitti RG, Napolioni V, Oikonomou V, De Luca A, Galosi C, Pariano M, Massi-Benedetti C, Borghi M, Puccetti M, Lucidi V, et al: IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis. Nat Commun. 7:107912016. View Article : Google Scholar : PubMed/NCBI

168 

Yiu G and He Z: Glial inhibition of CNS axon regeneration. Nat Rev Neurosci. 7:617–627. 2006. View Article : Google Scholar : PubMed/NCBI

169 

Liebscher T, Schnell L, Schnell D, Scholl J, Schneider R, Gullo M, Fouad K, Mir A, Rausch M, Kindler D, et al: Nogo-A antibody improves regeneration and locomotion of spinal cord-injured rats. Ann Neurol. 58:706–719. 2005. View Article : Google Scholar : PubMed/NCBI

170 

Freund P, Wannier T, Schmidlin E, Bloch J, Mir A, Schwab ME and Rouiller EM: Anti-Nogo-A antibody treatment enhances sprouting of corticospinal axons rostral to a unilateral cervical spinal cord lesion in adult macaque monkey. J Comp Neurol. 502:644–659. 2007. View Article : Google Scholar : PubMed/NCBI

171 

Wiessner C, Bareyre FM, Allegrini PR, Mir AK, Frentzel S, Zurini M, Schnell L, Oertle T and Schwab ME: Anti-Nogo-A antibody infusion 24 hours after experimental stroke improved behavioral outcome and corticospinal plasticity in normotensive and spontaneously hypertensive rats. J Cereb Blood Flow Metab. 23:154–165. 2003. View Article : Google Scholar : PubMed/NCBI

172 

Zörner B and Schwab ME: Anti-Nogo on the go: From animal models to a clinical trial. Ann N Y Acad Sci. 1198 (Suppl 1):E22–E34. 2010. View Article : Google Scholar : PubMed/NCBI

173 

Kawakami M: Molecular dissection of cyclosporin A's neuroprotective effect reveals potential therapeutics for ischemic brain injury. Brain Sci. 3:1325–1356. 2013. View Article : Google Scholar : PubMed/NCBI

174 

Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I and Schreiber SL: Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 66:807–815. 1991. View Article : Google Scholar : PubMed/NCBI

175 

Sharkey J and Butcher SP: Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischaemia. Nature. 371:336–339. 1994. View Article : Google Scholar : PubMed/NCBI

176 

Arii T, Kamiya T, Arii K, Ueda M, Nito C, Katsura KI and Katayama Y: Neuroprotective effect of immunosuppressant FK506 in transient focal ischemia in rat: Therapeutic time window for FK506 in transient focal ischemia. Neurol Res. 23:755–760. 2001. View Article : Google Scholar : PubMed/NCBI

177 

Gold BG, Densmore V, Shou W, Matzuk MM and Gordon HS: Immunophilin FK506-binding protein 52 (not FK506-binding protein 12) mediates the neurotrophic action of FK506. J Pharmacol Exp Ther. 289:1202–1210. 1999.PubMed/NCBI

178 

Kang CB, Hong Y, Dhe-Paganon S and Yoon HS: FKBP family proteins: Immunophilins with versatile biological functions. Neurosignals. 16:318–325. 2008. View Article : Google Scholar : PubMed/NCBI

179 

Jones LL, Oudega M, Bunge MB and Tuszynski MH: Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. J Physiol. 533:83–89. 2001. View Article : Google Scholar : PubMed/NCBI

180 

Weissmiller AM and Wu C: Current advances in using neurotrophic factors to treat neurodegenerative disorders. Transl Neurodegener. 1:142012. View Article : Google Scholar : PubMed/NCBI

181 

Barakat DJ, Gaglani SM, Neravetla SR, Sanchez AR, Andrade CM, Pressman Y, Puzis R, Garg MS, Bunge MB and Pearse DD: Survival, integration, and axon growth support of glia transplanted into the chronically contused spinal cord. Cell Transplant. 14:225–240. 2005. View Article : Google Scholar : PubMed/NCBI

182 

Jiang DJ, Xu CL and Tsang SH: Revolution in gene medicine therapy and genome surgery. Genes. 9:5752018. View Article : Google Scholar

183 

Boyce VS and Mendell LM: Neurotrophic factors in spinal cord injury. Handb Exp Pharmacol. 220:443–460. 2014. View Article : Google Scholar : PubMed/NCBI

184 

Hodgetts SI and Harvey AR: Neurotrophic factors used to treat spinal cord injury. Vitam Horm. 104:405–457. 2017. View Article : Google Scholar : PubMed/NCBI

185 

Campbell JD and Burnett AL: Neuroprotective and nerve regenerative approaches for treatment of erectile dysfunction after cavernous nerve injury. Int J Mol Sci. 18:17942017. View Article : Google Scholar

186 

Doll DN, Barr TL and Simpkins JW: Cytokines: Their role in stroke and potential use as biomarkers and therapeutic targets. Aging Dis. 5:294–306. 2014.PubMed/NCBI

187 

Emsley HC and Tyrrell PJ: Inflammation and infection in clinical stroke. J Cereb Blood Flow Metab. 22:1399–1419. 2002. View Article : Google Scholar : PubMed/NCBI

188 

Huebner EA and Strittmatter SM: Axon regeneration in the peripheral and central nervous systems. Results Probl Cell Differ. 48:339–351. 2009.PubMed/NCBI

189 

Barritt AW, Davies M, Marchand F, Hartley R, Grist J, Yip P, McMahon SB and Bradbury EJ: Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. J Neurosci. 26:10856–10867. 2006. View Article : Google Scholar : PubMed/NCBI

190 

Caggiano AO, Zimber MP, Ganguly A, Blight AR and Gruskin EA: Chondroitinase ABCI improves locomotion and bladder function following contusion injury of the rat spinal cord. J Neurotrauma. 22:226–239. 2005. View Article : Google Scholar : PubMed/NCBI

191 

Iaci JF, Vecchione AM, Zimber MP and Caggiano AO: Chondroitin sulfate proteoglycans in spinal cord contusion injury and the effects of chondroitinase treatment. J Neurotrauma. 24:1743–1759. 2007. View Article : Google Scholar : PubMed/NCBI

192 

Iseda T, Okuda T, Kane-Goldsmith N, Mathew M, Ahmed S, Chang YW, Young W and Grumet M: Single, high-dose intraspinal injection of chondroitinase reduces glycosaminoglycans in injured spinal cord and promotes corticospinal axonal regrowth after hemisection but not contusion. J Neurotrauma. 25:334–349. 2008. View Article : Google Scholar : PubMed/NCBI

193 

Kwok JC, Afshari F, Garcia-Alias G and Fawcett JW: Proteoglycans in the central nervous system: Plasticity, regeneration and their stimulation with chondroitinase ABC. Restor Neurol Neurosci. 26:131–145. 2008.PubMed/NCBI

194 

Grimpe B and Silver J: A novel DNA enzyme reduces glycosaminoglycan chains in the glial scar and allows microtransplanted dorsal root ganglia axons to regenerate beyond lesions in the spinal cord. J Neurosci. 24:1393–1397. 2004. View Article : Google Scholar : PubMed/NCBI

195 

McRae PA and Porter BE: The perineuronal net component of the extracellular matrix in plasticity and epilepsy. Neurochem Int. 61:963–972. 2012. View Article : Google Scholar : PubMed/NCBI

196 

Moon LD, Asher RA, Rhodes KE and Fawcett JW: Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nat Neurosci. 4:465–466. 2001. View Article : Google Scholar : PubMed/NCBI

197 

Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW and McMahon SB: Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 416:636–640. 2002. View Article : Google Scholar : PubMed/NCBI

198 

Wang D, Ichiyama RM, Zhao R, Andrews MR and Fawcett JW: Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. J Neurosci. 31:9332–9344. 2011. View Article : Google Scholar : PubMed/NCBI

199 

Hu HZ, Granger N, Pai SB, Bellamkonda RV and Jeffery ND: Therapeutic efficacy of microtube-embedded chondroitinase ABC in a canine clinical model of spinal cord injury. Brain. 141:1017–1027. 2018. View Article : Google Scholar : PubMed/NCBI

200 

Rosenzweig ES, Courtine G, Jindrich DL, Brock JH, Ferguson AR, Strand SC, Nout YS, Roy RR, Miller DM, Beattie MS, et al: Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat Neurosci. 13:1505–1510. 2010. View Article : Google Scholar : PubMed/NCBI

201 

Lawrence DG and Kuypers HG: The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain. 91:1–14. 1968. View Article : Google Scholar : PubMed/NCBI

202 

Nout YS, Ferguson AR, Strand SC, Moseanko R, Hawbecker S, Zdunowski S, Nielson JL, Roy RR, Zhong H, Rosenzweig ES, et al: Methods for functional assessment after C7 spinal cord hemisection in the rhesus monkey. Neurorehabil Neural Repair. 26:556–569. 2012. View Article : Google Scholar : PubMed/NCBI

203 

Jefferson SC, Tester NJ and Howland DR: Chondroitinase ABC promotes recovery of adaptive limb movements and enhances axonal growth caudal to a spinal hemisection. J Neuroscience. 31:5710–5720. 2011. View Article : Google Scholar

204 

Ma R, Liu X, Clark J, Williams GM and Doi SA: The impact of acupuncture on neurological recovery in spinal cord injury: A systematic review and Meta-analysis. J Neurotrauma. 32:1943–1957. 2015. View Article : Google Scholar : PubMed/NCBI

205 

Wang J, Zhai Y, Wu J, Zhao S, Zhou J and Liu Z: Acupuncture for chronic urinary retention due to spinal cord injury: A systematic review. Evid Based Complement Alternat Med. 2016:92451862016.PubMed/NCBI

206 

Dyson-Hudson TA, Kadar P, LaFountaine M, Emmons R, Kirshblum SC, Tulsky D and Komaroff E: Acupuncture for chronic shoulder pain in persons with spinal cord injury: A small-scale clinical trial. Arch Phys Med Rehabil. 88:1276–1283. 2007. View Article : Google Scholar : PubMed/NCBI

207 

Liu F, Zou Y, Liu S, Liu J and Wang T: Electro-acupuncture treatment improves neurological function associated with downregulation of PDGF and inhibition of astrogliosis in rats with spinal cord transection. J Mol Neurosci. 51:629–635. 2013. View Article : Google Scholar : PubMed/NCBI

208 

Tu WZ, Jiang SH, Zhang L, Li SS, Gu PP, He R, Hu J, Gao LP and Sun QS: Electro-acupuncture at Governor Vessel improves neurological function in rats with spinal cord injury. Chin J Integr Med. Jul 31–2017.(Epub ahead of print). doi: 10.1007/s11655-017-2968-9. View Article : Google Scholar

209 

Lovas J, Tran Y, Middleton J, Bartrop R, Moore N and Craig A: Managing pain and fatigue in people with spinal cord injury: A randomized controlled trial feasibility study examining the efficacy of massage therapy. Spinal Cord. 55:162–166. 2017. View Article : Google Scholar : PubMed/NCBI

210 

Diego MA, Field T, Hernandez-Reif M, Hart S, Brucker B, Field T and Burman I: Spinal cord patients benefit from massage therapy. Int J Neurosci. 112:133–142. 2002. View Article : Google Scholar : PubMed/NCBI

211 

Field T: Massage therapy research review. Complement Ther Clin Pract. 24:19–31. 2016. View Article : Google Scholar : PubMed/NCBI

212 

Moyer CA, Rounds J and Hannum JW: A meta-analysis of massage therapy research. Psychol Bull. 130:3–18. 2004. View Article : Google Scholar : PubMed/NCBI

213 

Field T, Hernandez-Reif M, Diego M, Schanberg S and Kuhn C: Cortisol decreases and serotonin and dopamine increase following massage therapy. Int J Neurosci. 115:1397–1413. 2005. View Article : Google Scholar : PubMed/NCBI

214 

Campeau MP, Gaboriault R, Drapeau M, Van Nguyen T, Roy I, Fortin B, Marois M and Nguyen-Tân PF: Impact of massage therapy on anxiety levels in patients undergoing radiation therapy: Randomized controlled trial. J Soc Integr Oncol. 5:133–138. 2007. View Article : Google Scholar : PubMed/NCBI

215 

Sliwinski MM, Smith R and Wood A: Spinal cord injury rehabilitation patient and physical therapist perspective: A pilot study. Spinal Cord Ser Cases. 2:150362016. View Article : Google Scholar : PubMed/NCBI

216 

DeSantana JM, Walsh DM, Vance C, Rakel BA and Sluka KA: Effectiveness of transcutaneous electrical nerve stimulation for treatment of hyperalgesia and pain. Curr Rheumatol Rep. 10:492–499. 2008. View Article : Google Scholar : PubMed/NCBI

217 

Gozani SN: Remote analgesic effects of conventional transcutaneous electrical nerve stimulation: A scientific and clinical review with a focus on chronic pain. J Pain Res. 12:3185–3201. 2019. View Article : Google Scholar : PubMed/NCBI

218 

Gibson W, Wand BM and O'Connell NE: Transcutaneous electrical nerve stimulation (TENS) for neuropathic pain in adults. Cochrane Database Syst Rev. 9:CD0119762017.PubMed/NCBI

219 

Bi X, Lv H, Chen BL, Li X and Wang XQ: Effects of transcutaneous electrical nerve stimulation on pain in patients with spinal cord injury: A randomized controlled trial. J Phys Ther Sci. 27:23–25. 2015. View Article : Google Scholar : PubMed/NCBI

220 

Dailey DL, Rakel BA, Vance CG, Liebano RE, Amrit AS, Bush HM, Lee KS, Lee JE and Sluka KA: Transcutaneous electrical nerve stimulation reduces pain, fatigue and hyperalgesia while restoring central inhibition in primary fibromyalgia. Pain. 154:2554–2562. 2013. View Article : Google Scholar : PubMed/NCBI

221 

Vance CG, Dailey DL, Rakel BA and Sluka KA: Using TENS for pain control: The state of the evidence. Pain Manage. 4:197–209. 2014. View Article : Google Scholar

222 

Zeb A, Arsh A, Bahadur S and Ilyas SM: Effectiveness of transcutaneous electrical nerve stimulation in management of neuropathic pain in patients with post traumatic incomplete spinal cord injuries. Pak J Med Sci. 34:1177–1180. 2018. View Article : Google Scholar : PubMed/NCBI

223 

Hagen EM and Rekand T: Management of neuropathic pain associated with spinal cord injury. Pain Ther. 4:51–65. 2015. View Article : Google Scholar : PubMed/NCBI

224 

Guanziroli E, Cazzaniga M, Colombo L, Basilico S, Legnani G and Molteni F: Assistive powered exoskeleton for complete spinal cord injury: Correlations between walking ability and exoskeleton control. Eur J Phys Rehabil Med. 55:209–216. 2019. View Article : Google Scholar : PubMed/NCBI

225 

Louie DR, Eng JJ and Lam T: Gait speed using powered robotic exoskeletons after spinal cord injury: A systematic review and correlational study. J Neuroeng Rehabil. 12:822015. View Article : Google Scholar : PubMed/NCBI

226 

Miller LE, Zimmermann AK and Herbert WG: Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: Systematic review with meta-analysis. Med Devices. 9:455–466. 2016. View Article : Google Scholar

227 

Lajeunesse V, Vincent C, Routhier F, Careau E and Michaud F: Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disabil Rehabil Assist Technol. 11:535–547. 2016. View Article : Google Scholar : PubMed/NCBI

228 

Nas K, Yazmalar L, Şah V, Aydın A and Öneş K: Rehabilitation of spinal cord injuries. World J Orthopedics. 6:8–16. 2015. View Article : Google Scholar

229 

Grasmücke D, Zieriacks A, Jansen O, Fisahn C, Sczesny-Kaiser M, Wessling M, Meindl RC, Schildhauer TA and Aach M: Against the odds: What to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level. Neurosurg Focus. 42:E152017. View Article : Google Scholar

230 

Karelis AD, Carvalho LP, Castillo MJ, Gagnon DH and Aubertin-Leheudre M: Effect on body composition and bone mineral density of walking with a robotic exoskeleton in adults with chronic spinal cord injury. J Rehabil Med. 49:84–87. 2017. View Article : Google Scholar : PubMed/NCBI

231 

Gorgey AS, Wade R, Sumrell R, Villadelgado L, Khalil RE and Lavis T: Exoskeleton training may improve level of physical activity after spinal cord injury: A case series. Top Spinal Cord Inj Rehabil. 23:245–255. 2017. View Article : Google Scholar : PubMed/NCBI

232 

Cirnigliaro CM, Myslinski MJ, La Fountaine MF, Kirshblum SC, Forrest GF and Bauman WA: Bone loss at the distal femur and proximal tibia in persons with spinal cord injury: Imaging approaches, risk of fracture, and potential treatment options. Osteoporosis Int. 28:747–765. 2017. View Article : Google Scholar

233 

Escalona MJ, Brosseau R, Vermette M, Comtois AS, Duclos C, Aubertin-Leheudre M and Gagnon DH: Cardiorespiratory demand and rate of perceived exertion during overground walking with a robotic exoskeleton in long-term manual wheelchair users with chronic spinal cord injury: A cross-sectional study. Ann Phys Rehabil Med. 61:215–223. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang Y, Al Mamun A, Yuan Y, Lu Q, Xiong J, Yang S, Wu C, Wu Y and Wang J: Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review). Mol Med Rep 23: 417, 2021.
APA
Zhang, Y., Al Mamun, A., Yuan, Y., Lu, Q., Xiong, J., Yang, S. ... Wang, J. (2021). Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review). Molecular Medicine Reports, 23, 417. https://doi.org/10.3892/mmr.2021.12056
MLA
Zhang, Y., Al Mamun, A., Yuan, Y., Lu, Q., Xiong, J., Yang, S., Wu, C., Wu, Y., Wang, J."Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review)". Molecular Medicine Reports 23.6 (2021): 417.
Chicago
Zhang, Y., Al Mamun, A., Yuan, Y., Lu, Q., Xiong, J., Yang, S., Wu, C., Wu, Y., Wang, J."Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review)". Molecular Medicine Reports 23, no. 6 (2021): 417. https://doi.org/10.3892/mmr.2021.12056
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang Y, Al Mamun A, Yuan Y, Lu Q, Xiong J, Yang S, Wu C, Wu Y and Wang J: Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review). Mol Med Rep 23: 417, 2021.
APA
Zhang, Y., Al Mamun, A., Yuan, Y., Lu, Q., Xiong, J., Yang, S. ... Wang, J. (2021). Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review). Molecular Medicine Reports, 23, 417. https://doi.org/10.3892/mmr.2021.12056
MLA
Zhang, Y., Al Mamun, A., Yuan, Y., Lu, Q., Xiong, J., Yang, S., Wu, C., Wu, Y., Wang, J."Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review)". Molecular Medicine Reports 23.6 (2021): 417.
Chicago
Zhang, Y., Al Mamun, A., Yuan, Y., Lu, Q., Xiong, J., Yang, S., Wu, C., Wu, Y., Wang, J."Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review)". Molecular Medicine Reports 23, no. 6 (2021): 417. https://doi.org/10.3892/mmr.2021.12056
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team