Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2021 Volume 23 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2021 Volume 23 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

ROS‑associated mechanism of different concentrations of pinacidil postconditioning in the rat cardiac Nrf2‑ARE signaling pathway

  • Authors:
    • Wei Chen
    • Mengyuan Deng
    • Haiying Wang
    • Ying Wang
    • Wenjing Zhou
    • Tian Yu
  • View Affiliations / Copyright

    Affiliations: Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 433
    |
    Published online on: April 8, 2021
       https://doi.org/10.3892/mmr.2021.12072
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Previous studies have confirmed that 50 µmol/l pinacidil postconditioning (PPC) activates the nuclear factor‑E2 related factor 2 (Nrf2)‑antioxidant responsive element (ARE) pathway, which protects the myocardium from ischemia‑reperfusion (IR) injury; however, whether this is associated with reactive oxygen species (ROS) generation remains unclear. In the present study, a Langendorff rat model of isolated myocardial IR was established to investigate the mechanism of PPC at different concentrations, as well as the association between the rat myocardial Nrf2‑ARE signaling pathway and ROS. A total of 48 rats were randomly divided into the following six groups (n=8 per group): i) Normal; ii) IR iii) 10 µmol/l PPC (P10); iv) 30 µmol/l PPC (P30); v) 50 µmol/l PPC (P50); and vi) N‑(2‑mercaptopropionyl)‑glycine (MPG; a ROS scavenger) + 50 µmol/l pinacidil (P50 + MPG). At the end of reperfusion (T3), compared with the IR group, the P10, P30 and P50 groups exhibited improved cardiac function, such as left ventricular development pressure, heart rate, left ventricular end‑diastolic pressure, +dp/dtmax, myocardial cell ultrastructure and mitochondrial Flameng score. Furthermore, the P10 and P50 groups demonstrated the weakest and most marked improvements, respectively. Additionally, in the P10, P30 and P50 groups, the residual ROS content at the end of reperfusion was highly negatively correlated with relative expression levels of Nrf2 gene and protein. Higher pinacidil concentration was associated with higher ROS generation at 5 min post‑reperfusion (T2), although this was significantly lower compared with the IR group, as well as with increased expression levels of antioxidant proteins and phase II detoxification enzymes downstream of the Nrf2 and Nrf2‑ARE pathways. This result was associated with a stronger ability to scavenge ROS during reperfusion, leading to lower levels of ROS at the end of reperfusion (T3) and less myocardial damage. The optimal myocardial protective effect was achieved by 50 mmol/l pinacidil. However, cardiac function of the P50 + MPG group was significantly decreased, ultrastructure of cardiomyocytes was significantly impaired and the relative expression levels of genes and proteins in the Nrf2‑ARE pathway were decreased. The aforementioned results confirmed that different PPC concentrations promoted early generation of ROS and activated the Nrf2‑ARE signaling pathway following reperfusion, regulated expression levels of downstream antioxidant proteins and alleviated myocardial IR injury in rats. Treatment with 50 mmol/l pinacidil resulted in the best myocardial protection.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA and Vinten-Johansen J: Inhibition of myocardial injury by ischemic postconditioning during reperfusion: Comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 285:H579–H588. 2003. View Article : Google Scholar

2 

Hao M, Zhu S, Hu L, Zhu H, Wu X and Li Q: Myocardial ischemic postconditioning promotes autophagy against ischemia reperfusion injury via the Activation of the nNOS/AMPK/mTOR Pathway. Int J Mol Sci. 18:6142017. View Article : Google Scholar : PubMed/NCBI

3 

Zhang L, Cao S, Deng S, Yao G and Yu T: Ischemic postconditioning and pinacidil suppress calcium overload in anoxia-reoxygenation cardiomyocytes via down-regulation of the calcium-sensing receptor. PeerJ. 4:e26122016. View Article : Google Scholar : PubMed/NCBI

4 

Foster MN and Coetzee WA: KATP channels in the cardiovascular system. Physiol Rev. 96:177–252. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Cohen MV and Downey JM: Signalling pathways and mechanisms of protection in pre- and postconditioning: Historical perspective and lessons for the future. Br J Pharmacol. 172:1913–1932. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Yang HQ, Foster MN, Jana K, Ho J, Rindler MJ and Coetzee WA: Plasticity of sarcolemmal KATP channel surface expression: Relevance during ischemia and ischemic preconditioning. Am J Physiol Heart Circ Physiol. 310:H1558–H1566. 2016. View Article : Google Scholar

7 

Yaşar S, Bozdoğan Ö, Kaya ST and Orallar HS: The effects of ATP-dependent potassium channel opener; pinacidil, and blocker; glibenclamide, on the ischemia induced arrhythmia in partial and complete ligation of coronary artery in rats. Iran J Basic Med Sci. 18:188–193. 2015.

8 

Yang L and Yu T: Prolonged donor heart preservation with pinacidil: The role of mitochondria and the mitochondrial adenosine triphosphate-sensitive potassium channel. J Thorac Cardiovasc Surg. 139:1057–1063. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Yang YH, Zhang Y, Chen W, Wang Y, Cao S, Yu T and Wang H: Pinacidil-postconditioning is equivalent to ischemic postconditioning in defeating cardiac ischemia-reperfusion injury in rat. Eur J Pharmacol. 780:26–32. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Chen X, Han K, Zhang T, Qi G, Jiang Z and Hu C: Grass carp (Ctenopharyngodon idella) NRF2 alleviates the oxidative stress and enhances cell viability through upregulating the expression of HO-1. Fish Physiol Biochem. 46:417–428. 2020. View Article : Google Scholar : PubMed/NCBI

11 

Moon EJ and Giaccia A: Dual roles of NRF2 in tumor prevention and progression: Possible implications in cancer treatment. Free Radic Biol Med. 79:292–299. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Patwardhan J and Bhatt P: Flavonoids derived from abelmoschus esculentus attenuates UV-B induced cell damage in human dermal fibroblasts through Nrf2-ARE pathway. Pharmacogn Mag. 12 (Suppl 2):S129–S138. 2016. View Article : Google Scholar

13 

Loboda A, Damulewicz M, Pyza E, Jozkowicz A and Dulak J: Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell Mol Life Sci. 73:3221–3247. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Bao L, Li J, Zha D, Zhang L, Gao P, Yao T and Wu X: Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-κB pathways. Int Immunopharmacol. 54:245–253. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Oh ET and Park HJ: Implications of NQO1 in cancer therapy. BMB Rep. 48:609–617. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Schlager JJ and Powis G: Cytosolic NAD(P)H: (quinone-acceptor)oxidoreductase in human normal and tumor tissue: Effects of cigarette smoking and alcohol. Int J Cancer. 45:403–409. 1990. View Article : Google Scholar : PubMed/NCBI

17 

Peng Q, Lu Y, Lao X, Chen Z, Li R, Sui J, Qin X and Li S: The NQO1 Pro187Ser polymorphism and breast cancer susceptibility: Evidence from an updated meta-analysis. Diagn Pathol. 9:1002014. View Article : Google Scholar : PubMed/NCBI

18 

Zhang CY, Ren XM, Li HB, Wei W, Wang KX, Li YM, Hu JL and Li X: Simvastatin alleviates inflammation and oxidative stress in rats with cerebral hemorrhage through Nrf2-ARE signaling pathway. Eur Rev Med Pharmacol Sci. 23:6321–6329. 2019.PubMed/NCBI

19 

Feng S, Xu Z, Wang F, Yang T, Liu W, Deng Y and Xu B: Sulforaphane prevents methylmercury-induced oxidative damage and excitotoxicity through activation of the Nrf2-ARE pathway. Mol Neurobiol. 54:375–391. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Zhao T, Chen S, Wang B and Cai D: L-Carnitine reduces myocardial oxidative stress and alleviates myocardial ischemia-reperfusion injury by activating nuclear transcription-related factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1) signaling pathway. Med Sci Monit. 26:e9232512020. View Article : Google Scholar : PubMed/NCBI

21 

Ma W, Liu M, Liang F, Zhao L, Gao C, Jiang X, Zhang X, Zhan H, Hu H and Zhao Z: Cardiotoxicity of sorafenib is mediated through elevation of ROS level and CaMKII activity and dysregulation of calcium homoeostasis. Basic Clin Pharmacol Toxicol. 126:166–180. 2020. View Article : Google Scholar : PubMed/NCBI

22 

Chen W, Chen XY, Wang Y, Wang HY, Zhou WJ and Yu T: Mechanism of emulsified isoflurane Postconditioning-induced activation of the Nrf2-antioxidant response element signaling pathway during myocardial ischemia-reperfusion: The relationship with reactive oxygen species. J Cardiovasc Pharmacol. 73:265–271. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Huang SY, Chen YC, Kao YH, Hsieh MH, Lin YK, Chen SA and Chen YJ: Redox and activation of protein kinase a dysregulates calcium homeostasis in pulmonary vein cardiomyocytes of chronic kidney disease. J Am Heart Assoc. 6:e0057012017. View Article : Google Scholar : PubMed/NCBI

24 

Ivanova S, Batliwalla F, Mocco J, Kiss S, Huang J, Mack W, Coon A, Eaton JW, Al-Abed Y, Gregersen PK, et al: Neuroprotection in cerebral ischemia by neutralization of 3-aminopropanal. Proc Natl Acad Sci USA. 99:5579–5584. 2002. View Article : Google Scholar : PubMed/NCBI

25 

Hartung T: Comparative analysis of the revised Directive 2010/63/EU for the protection of laboratory animals with its predecessor 86/609/EEC-a t4 report. ALTEX. 27:285–303. 2010. View Article : Google Scholar : PubMed/NCBI

26 

National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals, . Guide for the Care and Use of Laboratory Animals. 8th edition. National Academies Press (US); Washington, DC: 2011

27 

Flameng W, Borgers M, Daenen W and Stalpaert G: Ultrastructural and cytochemical correlates of myocardial protection by cardiac hypothermia in man. J Thorac Cardiovasc Surg. 79:413–424. 1980. View Article : Google Scholar : PubMed/NCBI

28 

Li J, Zhou W, Chen W, Wang H, Zhang Y and Yu T: Mechanism of the hypoxia inducible factor 1/hypoxic response element pathway in rat myocardial ischemia/diazoxide post-conditioning. Mol Med Rep. 21:1527–1536. 2020.PubMed/NCBI

29 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

30 

Hausenloy DJ, Barrabes JA, Bøtker HE, Davidson SM, Di Lisa F, Downey J, Engstrom T, Ferdinandy P, Carbrera-Fuentes HA, Heusch G, et al: Ischaemic conditioning and targeting reperfusion injury: A 30 year voyage of discovery. Basic Res Cardiol. 111:702016. View Article : Google Scholar : PubMed/NCBI

31 

Neri M, Riezzo I, Pascale N, Pomara C and Turillazzi E: Ischemia/Reperfusion injury following acute myocardial infarction: A critical issue for clinicians and forensic pathologists. Mediators Inflamm. 2017:70183932017. View Article : Google Scholar : PubMed/NCBI

32 

Tsutsumi YM, Yokoyama T, Horikawa Y, Roth DM and Patel HH: Reactive oxygen species trigger ischemic and pharmacological postconditioning: In vivo and in vitro characterization. Life Sci. 81:1223–1227. 2007. View Article : Google Scholar : PubMed/NCBI

33 

Granger DN and Kvietys PR: Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 6:524–551. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Pisarenko O, Shulzhenko V, Studneva I, Pelogeykina Y, Timoshin A, Anesia R, Valet P, Parini A and Kunduzova O: Structural apelin analogues: Mitochondrial ROS inhibition and cardiometabolic protection in myocardial ischaemia reperfusion injury. Br J Pharmacol. 172:2933–2945. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Han J, Kim N, Park J, Seog DH, Joo H and Kim E: Opening of mitochondrial ATP-sensitive potassium channels evokes oxygen radical generation in rabbit heart slices. J Biochem. 131:721–727. 2002. View Article : Google Scholar : PubMed/NCBI

36 

Zi C, Zhang C, Yang Y and Ma J: Penehyclidine hydrochloride protects against anoxia/reoxygenation injury in cardiomyocytes through ATP-sensitive potassium channels, and the Akt/GSK-3β and Akt/mTOR signaling pathways. Cell Biol Int. 44:1353–1362. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Fan Z, Wen T, Chen Y, Huang L, Lin W, Yin C and Tan W: Isosteviol sensitizes sarcKATP channels towards pinacidil and potentiates mitochondrial uncoupling of diazoxide in guinea pig ventricular myocytes. Oxid Med Cell Longev. 2016:63628122016. View Article : Google Scholar : PubMed/NCBI

38 

Liang W, Chen J, Mo L, Ke X, Zhang W, Zheng D, Pan W, Wu S, Feng J, Song M and Liao X: ATP-sensitive K+ channels contribute to the protective effects of exogenous hydrogen sulfide against high glucose-induced injury in H9c2 cardiac cells. Int J Mol Med. 37:763–772. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Slove S, Lannoy M, Behmoaras J, Pezet M, Sloboda N, Lacolley P, Escoubet B, Buján J and Jacob MP: Potassium channel openers increase aortic elastic fiber formation and reverse the genetically determined elastin deficit in the BN rat. Hypertension. 62:794–801. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Tanonaka K, Iwai T, Motegi K and Takeo S: Effects of N-(2-mercaptopropionyl)-glycine on mitochondrial function in ischemic-reperfused heart. Cardiovasc Res. 57:416–425. 2003. View Article : Google Scholar : PubMed/NCBI

41 

Andreadou I, Iliodromitis EK, Souridis V, Prokovas E, Kostidis S, Zoga A, Dagres N, Tsantili-Kakoulidou A, Kremastinos DT, Mikros E and Anastasiou-Nana M: Investigating the effect of antioxidant treatment on the protective effect of preconditioning in anesthetized rabbits. J Cardiovasc Pharmacol. 58:609–166. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Fantinelli JC, González ALF, Pérez NIA and Mosca SM: Protective effects of N-(2-mercaptopropionyl)-glycine against ischemia-reperfusion injury in hypertrophied hearts. Exp Mol Pathol. 94:277–284. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Ihnken K, Morita K, Buckberg GD, Sherman MP and Young HH: Studies of hypoxemic/reoxygenation injury: Without aortic clamping. VI. Counteraction of oxidant damage by exogenous antioxidants: N-(2-mercaptopropionyl)-glycine and catalase. J Thorac Cardiovasc Surg. 110:1212–1220. 1995. View Article : Google Scholar : PubMed/NCBI

44 

Shanmugam G, Narasimhan M, Tamowski S, Darley-Usmar V and Rajasekaran NS: Constitutive activation of Nrf2 induces a stable reductive state in the mouse myocardium. Redox Biol. 12:937–945. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Buelna-Chontal M, Guevara-Chávez JG, Silva-Palacios A, Medina-Campos ON, Pedraza-Chaverri J and Zazueta C: Nrf2-regulated antioxidant response is activated by protein kinase C in postconditioned rat hearts. Free Radic Biol Med. 74:145–156. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Zai CC, Tiwari AK, Basile V, de Luca V, Müller DJ, Voineskos AN, Remington G, Meltzer HY, Lieberman JA, Potkin SG and Kennedy JL: Oxidative stress in tardive dyskinesia: Genetic association study and meta-analysis of NADPH quinine oxidoreductase 1 (NQO1) and Superoxide dismutase 2 (SOD2, MnSOD) genes. Prog Neuropsychopharmacol Biol Psychiatry. 34:50–56. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Gang GT, Hwang JH, Kim YH, Noh JR, Kim KS, Jeong JY, Choi DE, Lee KW, Jung JY, Shong M and Lee CH: Protection of NAD(P)H:quinone oxidoreductase 1 against renal ischemia/reperfusion injury in mice. Free Radic Biol Med. 67:139–149. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Chen G, Fang Q, Zhang J, Zhou D and Wang Z: Role of the Nrf2-ARE pathway in early brain injury after experimental subarachnoid hemorrhage. J Neurosci Res. 89:515–523. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Freixa X, Bellera N, Ortiz-Pérez JT, Jiménez M, Paré C, Bosch X, De Caralt TM, Betriu A and Masotti M: Ischaemic postconditioning revisited: Lack of effects on infarct size following primary percutaneous coronary intervention. Eur Heart J. 33:103–112. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Limalanathan S, Andersen GØ, Kløw NE, Abdelnoor M, Hoffmann P and Eritsland J: Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-Elevation Myocardial Infarction) randomized trial. J Am Heart Assoc. 3:e0006792014. View Article : Google Scholar : PubMed/NCBI

51 

Paul MK, Bisht B, Darmawan DO, Chiou R, Ha VL, Wallace WD, Chon AT, Hegab AE, Grogan T, Elashoff DA, et al: Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent Notch signaling. Cell Stem Cell. 15:199–214. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Rojo de la Vega M, Chapman E and Zhang DD: NRF2 and the hallmarks of cancer. Cancer Cell. 34:21–43. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Kensler TW, Wakabayashi N and Biswal S: Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 47:89–116. 2007. View Article : Google Scholar : PubMed/NCBI

54 

Ma Q: Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 53:401–426. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Jaramillo MC and Zhang DD: The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 27:2179–2191. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Harder B, Jiang T, Wu T, Tao S, Rojo de la Vega M, Tian W, Chapman E and Zhang DD: Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention. Biochem Soc Trans. 43:680–686. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Iguchi K, Saotome M, Yamashita K, Hasan P, Sasaki M, Maekawa Y and Watanabe Y: Pinacidil, a KATP channel opener, stimulates cardiac Na+/Ca2+ exchanger function through the NO/cGMP/PKG signaling pathway in guinea pig cardiac ventricular myocytes. Naunyn Schmiedebergs Arch Pharmacol. 392:949–959. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, et al: An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 236:313–322. 1997. View Article : Google Scholar : PubMed/NCBI

59 

Satta S, Mahmoud AM, Wilkinson FL, Yvonne AM and White SJ: The role of Nrf2 in cardiovascular function and disease. Oxid Med Cell Longev. 2017:92372632017. View Article : Google Scholar : PubMed/NCBI

60 

Penna C, Rastaldo R, Mancardi D, Raimondo S, Cappello S, Gattullo D, Losano G and Pagliaro P: Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation. Basic Res Cardiol. 101:180–189. 2006. View Article : Google Scholar : PubMed/NCBI

61 

Shoujia Y, Haiying W, Tian Y and Xingkui L: The role of Nrf2-ARE pathway in hypoxia/pinacidil post-treatment in reducing hypoxia-reoxygenation injury of rat cardiomyocytes. Chin J Pathophysiology. 1696–1699, +1703. 2013.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen W, Deng M, Wang H, Wang Y, Zhou W and Yu T: ROS‑associated mechanism of different concentrations of pinacidil postconditioning in the rat cardiac Nrf2‑ARE signaling pathway. Mol Med Rep 23: 433, 2021.
APA
Chen, W., Deng, M., Wang, H., Wang, Y., Zhou, W., & Yu, T. (2021). ROS‑associated mechanism of different concentrations of pinacidil postconditioning in the rat cardiac Nrf2‑ARE signaling pathway. Molecular Medicine Reports, 23, 433. https://doi.org/10.3892/mmr.2021.12072
MLA
Chen, W., Deng, M., Wang, H., Wang, Y., Zhou, W., Yu, T."ROS‑associated mechanism of different concentrations of pinacidil postconditioning in the rat cardiac Nrf2‑ARE signaling pathway". Molecular Medicine Reports 23.6 (2021): 433.
Chicago
Chen, W., Deng, M., Wang, H., Wang, Y., Zhou, W., Yu, T."ROS‑associated mechanism of different concentrations of pinacidil postconditioning in the rat cardiac Nrf2‑ARE signaling pathway". Molecular Medicine Reports 23, no. 6 (2021): 433. https://doi.org/10.3892/mmr.2021.12072
Copy and paste a formatted citation
x
Spandidos Publications style
Chen W, Deng M, Wang H, Wang Y, Zhou W and Yu T: ROS‑associated mechanism of different concentrations of pinacidil postconditioning in the rat cardiac Nrf2‑ARE signaling pathway. Mol Med Rep 23: 433, 2021.
APA
Chen, W., Deng, M., Wang, H., Wang, Y., Zhou, W., & Yu, T. (2021). ROS‑associated mechanism of different concentrations of pinacidil postconditioning in the rat cardiac Nrf2‑ARE signaling pathway. Molecular Medicine Reports, 23, 433. https://doi.org/10.3892/mmr.2021.12072
MLA
Chen, W., Deng, M., Wang, H., Wang, Y., Zhou, W., Yu, T."ROS‑associated mechanism of different concentrations of pinacidil postconditioning in the rat cardiac Nrf2‑ARE signaling pathway". Molecular Medicine Reports 23.6 (2021): 433.
Chicago
Chen, W., Deng, M., Wang, H., Wang, Y., Zhou, W., Yu, T."ROS‑associated mechanism of different concentrations of pinacidil postconditioning in the rat cardiac Nrf2‑ARE signaling pathway". Molecular Medicine Reports 23, no. 6 (2021): 433. https://doi.org/10.3892/mmr.2021.12072
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team